
Lecture 3 (6.3.2018)
(translated and slightly adapted from lecture notes by Martin Klazar)

Riemann integral

Now we define precisely the concept of the area, in particular, the area of figure
U(a, b, f) under the graph of a function f . Let −∞ < a < b < +∞ be two
real numbers and f : [a, b] → R any function that may not be continuous or
bounded. The finite k+1-tuple of points D = (a0, a1, . . . , ak) from the interval
[a, b] is called a partition of [a, b] if

a = a0 < a1 < a2 < . . . < ak = b .

These points divide the interval [a, b] into intervals Ii = [ai−1, ai]. We denote
by |Ii| the length of interval Ii: |Ii| = ai − ai−1 and |[a, b]| = b− a. Clearly

k∑
i=1

|Ii| = (a1 − a0) + (a2 − a1) + . . .+ (ak − ak−1) = b− a = |[a, b]| .

Norm of a partition D is the maximum length of an interval of the partition
and is denoted by λ:

λ = λ(D) = max
1≤i≤k

|Ii| .

Partition of an interval [a, b] with points is a pair (D,C) whereD = (a0, a1, . . . , ak)
is a partition of [a, b] and a k-tuple C = (c1, c2, . . . , ck) consists of ci ∈ Ii (i.e.
ai−1 ≤ ci ≤ ai). Riemann sum corresponding to the function f and a partition
with points (D,C) is defined as

R(f,D,C) =
k∑
i=1

|Ii|f(ci) =
k∑
i=1

(ai − ai−1)f(ci) .

If f ≥ 0 on [a, b], it is the sum of k rectangles Ii × [0, f(ci)] whose union
approximates figure U(a, b, f). However, Riemann sum is defined for every
function f , regardless of its sign on [a, b]. The following definition was intro-
duced by Bernhard Riemann (1826–1866).

Definition 4 (First definition of Riemann integral, Riemann). We say that
f : [a, b] → R has Riemann integral I ∈ R on [a, b] if for every ε > 0 there
exists δ > 0 such that for each partition of [a, b] with points (D,C) such that
λ(D) < δ the following holds:

|I −R(f,D,C)| < ε

We require I ∈ R, values ±∞ are not allowed (although, it is possible to
define them). If there is such a number I, we write

I =

∫ b

a

f(x) dx =

∫ b

a

f = (R)

∫ b

a

f
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and say that f is Riemann integrable on the interval [a, b]. We will work with
the class of all Riemann integrable functions

R(a, b) := {f | f is defined and Riemann integrable on [a, b]}.

Thus, the first definition of the Riemann integral can be summarized by the
formula ∫ b

a

f = lim
λ(D)→0

R(f,D,C) ∈ R .

We understand the limit here as defined in the definition above; as a symbol,
we defined only limit of a sequence and of a function in a point.

For the second, equivalent, definition of the integral we will need a few more
concepts. For f : [a, b] → R and a partition D = (a0, a1, . . . , ak) of interval
[a, b] we define lower and upper Riemann sum, respectively, (even though they
were introduced by Darboux) as

s(f,D) =
k∑
i=1

|Ii|mi, and S(f,D) =
k∑
i=1

|Ii|Mi ,

where
mi = inf

x∈Ii
f(x) and Mi = sup

x∈Ii
f(x)

Ii = [ai−1, ai]

These sums are always defined s(f,D) ∈ R∪{−∞} and S(f,D) ∈ R∪{+∞}
Lower and upper Riemann integral, respectively, of a function f on the interval
[a, b] is defined as∫ b

a

f =

∫ b

a

f(x) dx = sup({s(f,D) : D is a partition of [a, b]}) ,

and ∫ b

a

f =

∫ b

a

f(x) dx = inf({S(f,D) : D is a partition of [a, b]}) .

These terms are always defined and we have
∫ b
a
f,
∫ b
a
f ∈ R∗ = R∪{−∞,+∞}.

Definition 5 (Second definition of Riemann integral, Darboux). We say that
f : [a, b]→ R has on [a, b] Riemann integral, if∫ b

a

f(x) dx =

∫ b

a

f(x) dx ∈ R .

This common value, if it exists, is denoted by∫ b

a

f(x) dx =

∫ b

a

f

and we call it the Riemann integral of f on the interval [a, b].

15



The two definitions are equivalent: they give the same classes of Riemann
integrable functions and the same value of the Riemann integral, if defined.

Example 3 (Bounded function without integral). A function f : [0, 1] →
{0, 1} defined as f(α) = 1 when α is a rational number, and f(α) = 0, when α
is irrational, is called Dirichlet function, and does not have Riemann integral
on [0, 1], although bounded.

Each positive-length interval contains points where f has a value of 0, as
well as points that have a value of 1. Then s(f,D) = 0 and S(f,D) = 1 for
every partition of D and therefore∫ 1

0

f = 0 <

∫ 1

0

f = 1 .

Theorem 10 (Unbounded functions have no integral). If the f : [a, b] → R
function is not bounded then it does not have a Riemann integral on [a, b],
according to both definitions.

When D = (a0, a1, . . . , ak) a D′ = (b0, b1, . . . , bl) are partitions of [a, b] and
D ⊂ D′, that is for every i = 0, 1, . . . , k there exists j, such that ai = bj
(therefore k ≤ l), we say that D′ is a refinement of D or that D′ refines D.

Lemma 11 (Riemann sums of a refinement). If f : [a, b]→ R and D,D′ are
two partitions of [a, b], and D′ refines D, then

s(f,D′) ≥ s(f,D) and S(f,D′) ≤ S(f,D).

Proof. Considering the definition of s(f,D) a S(f,D) and the fact that D′ can
be created from D by adding points, it is enough to prove both inequalities in
a situation where D = (a0 = a < a1 = b) a D′ = (a′0 = a < a′1 < a′2 = b).
Definem1 = infa0≤x≤a1 f(x), m′1 = infa′0≤x≤a′1 f(x) and m′2 = infa′1≤x≤a′2 f(x).
According to the definition of infimum, we have m1 ≤ m′1 and m1 ≤ m′2. Then

s(f,D′) = (a′1 − a′0)m′1 + (a′2 − a′1)m′2
≥ (a′1 − a′0)m1 + (a′2 − a′1)m1

= (a′2 − a′0)m1 = (b− a)m1

= s(f,D) .

Proof of the inequality S(f,D′) ≤ S(f,D) is similar.

Corollary 12. When f : [a, b]→ R and D,D′ are two partitions [a, b], then

s(f,D) ≤ S(f,D′) .
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Proof. Let E = D∪D′ be a common refinement of both partitions. According
to the previous lemma we have

s(f,D) ≤ s(f, E) ≤ S(f, E) ≤ S(f,D′)

More precisely, the first and last inequality follow from the previous lemma,
and the middle one from the definition of upper and lower sum.

Theorem 13 (Lower integral does not exceed upper). Let f : [a, b] → R,
m = infa≤x≤b f(x), M = supa≤x≤b f(x) and D,D′ be two partitions of interval
[a, b]. Then the following inequalities hold:

m(b− a) ≤ s(f,D) ≤
∫ b

a

f ≤
∫ b

a

f ≤ S(f,D′) ≤M(b− a) .

Proof. The first and last inequality are the special cases of the previous lemma.
The second and penultimate inequality comes straight from the definition of
the lower and upper integral as supremum or infimum respectively. According
to the corollary, each element is a set of lower sums whose supremum is

∫ b
a
f

smaller or equal to each element of the upper sum set whose infimum is
∫ b
a
f .

Using the definition of infimum (the largest lower bound) and supremum (the
smallest upper bound) we get the middle inequality: For each partition D,

s(f,D) the lower bound of the set of upper sums, that is, s(f,D) ≤
∫ b
a
f , and

so
∫ b
a
f is the upper bound of the set of lower sums, thus

∫ b
a
f ≤

∫ b
a
f .

Example 4. We calculate by definition that∫ 1

0

x dx = 1/2 .

For n = 1, 2, . . . take a partition of Dn = (0, 1
n
, 2
n
, . . . , 1). Then

s(f,Dn) =
n∑
i=1

1

n

(i− 1

n

)
= n−2(0 + 1 + 2 + . . .+ (n− 1))

similarly

S(f,Dn) =
n∑
i=1

1

n

( i
n

)
= n−2(1 + 2 + . . .+ n) .

Since S(f,Dn)−s(f,Dn) = 1
n
→ 0 for n→∞, f(x) = x has Riemann integral

on [0, 1] by Integrability criterion. Moreover, we have∫ 1

0

x dx = lim
n→∞

s(f,Dn) = lim
n→∞

(n− 1)n

2
· 1

n2
= 1/2

∫ 1

0

x dx = lim
n→∞

S(f,Dn) = lim
n→∞

n(n+ 1)

2
· 1

n2
= 1/2

So,
∫ 1

0
x dx = 1/2.
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