
Lecture 2 (27.2.2019)
(translated and slightly adapted from lecture notes by Martin Klazar)

(Warning: not a substitute for attending the lectures, probably contains
typos. let me know if you spot any!)

Methods for computing primitive functions

To calculate the derivative of the product of two functions, we have the Leibniz
formula (fg)′ = f ′g+ fg′. By inverting it, we will get the following important
result for primitive functions.

Theorem 6 (Integration per partes (by parts)). If f, g : I → R are continuous
functions on an interval I and F,G their corresponding primitive functions on
I then the following equality holds on I:∫

fG+

∫
Fg = FG+ c .

In other words, the functions fG and Fg have primitive functions on I whose
sum is always equal to function FG on I, up to the additive constant c.

Proof. Since that f and g are continuous on I, and by Theorem 3, the primitive
functions F and G are also continuous. So products fG and Fg are also
continuous, and by Theorem 4, they have primitive functions

∫
fG and

∫
Fg

on I. By linearity of primitive functions, the sum
∫
fG +

∫
Fg is a primitive

function of fG + Fg. Moreover, the FG function is a primitive function of
fG+ Fg, because the Leibniz formula gives (FG)′ = fG+ Fg. Thus, we get
that

∫
fG+

∫
Fg = FG+ c.

The formula for integration per partes is usually given in an equivalent form∫
F ′G = FG−

∫
FG′

So if we can calculate the primitive function of FG′ for the two functions F
and G with continuous derivatives (F ′ = f and G′ = g) we get a primitive
function of F ′G according to this formula.

Example 2. With x′ = 1 and (log x)′ = 1/x on the interval (0,+∞) we have∫
log x =

∫
x′ log x = x log x−

∫
x(log x)′ = x log x−

∫
1 = x log x− x+ c

on (0,+∞). By taking derivative, we can easily check the correctness of the
derived formula.
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Inverting the rule for derivative of the product gives the formula for in-
tegration per partes and by inverting the rule for derivative of the composed
function we get a formula for integration by substitution. It has two forms,
according to the direction of reading the equality of f(ϕ)′ = f ′(ϕ)ϕ′.

Theorem 7 (Integration by substitution). Let ϕ : (α, β) → (a, b) and f :
(a, b)→ R be two functions such that ϕ has a proper derivative ϕ′ on (α, β).

1. If F =
∫
f on (a, b), then

∫
f(ϕ)ϕ′ = F (ϕ) + c on (α, β).

2. Suppose ϕ additionally that ϕ((α, β)) = (a, b) and either ϕ′ > 0 or ϕ′ < 0
on (α, β). If G =

∫
f(ϕ)ϕ′ on (α, β), then

∫
f = G(ϕ〈−1〉 on (a, b).

Proof. The first part follows immediately by the derivative:

F (ϕ)′ = F ′(ϕ)ϕ′ = f(ϕ)ϕ′

on (α, β), from the assumption about F and derivative of the composed func-
tion.

In the second part assumptions about ϕ guarantee that it is a strictly
increasing or a strictly decreasing bijection from (α, β) to (a, b). So it is an
injective function, it has an inverse function

ϕ〈−1〉 : (a, b)→ (α, β).

We can compute derivative of this function using the inverse function derivative
rule. This gives, together with the assumption about G, derivative of the
composed function and the derivative of the inverse function, that G(ϕ〈−1〉) is
primitive function of f on (a, b) :

G(ϕ〈−1〉)′ = G′(ϕ〈−1〉) · (ϕ〈−1〉)′ = f(ϕ(ϕ〈−1〉))ϕ′(ϕ〈−1〉) · 1

ϕ′(ϕ〈−1〉)
= f .

Here are two examples of both forms of the substitution rule.
1. When F (x) =

∫
f(x) dx at some I a a, b ∈ R, a 6= 0, then according to

the first part we calculate that∫
f(ax+ b) dx = a−1

∫
f(ax+ b) · (ax+ b)′ dx = a−1F (ax+ b) + c ,

on the interval J = a−1(I − b) = {a−1(x − b) | x ∈ I}. It is easy to check
backwards by taking derivative. We took ϕ(x) = ax+ b.

2. We want to calculate the primitive function of
√

1− t2 on (−1, 1).
Because it resembles the derivative of arcsin, we try the substitution t =
ϕ(x) = sin x : (−π

2
, π
2
)→ (−1, 1). The assumptions of the second form of the

substitution rule are fulfilled.
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G(x) =

∫ √
1− sin2 x · (sinx)′ dx =

∫ √
cos2 x · cosx dx =

∫
cos2 x dx .

Did it help? It helped because the last primitive function can easily be calcu-
lated by integrating per partes:∫

cos2 x =

∫
cosx(sinx)′ = cosx sinx+

∫
sin2 x

= cos x sinx+

∫
(1− cos2 x)

= sin x cosx+ x−
∫

cos2 x ,

so,

G(x) =

∫
cos2 x =

sinx cosx+ x

2
+ c =

sinx
√

1− sin2 x+ x

2
+ c .

After letting x = ϕ〈−1〉(t) = arcsin t we get the desired result∫ √
1− t2 = G(arcsin t) + c =

t
√

1− t2 + arcsin t

2
+ c, on (−1, 1) .

By derivative, we can easily verify it is correct.

By saying that fcan be expressed using elementary functions we mean that
f can be expressed from the basic functions exp(x) (exponential), log x, sin x,
arcsinx, cosx, arccos x, tan x and arctanx repeatedly using the arithmetic
operations +,−,×, :, and the folding operations. Many primitive functions can
be expressed in this way, but many primitive functions cannot. The following
theorem, which we will not prove, gives some important examples of such
functions.

Theorem 8 (Non-elementary primitive functions). Primitive functions

F1(x) =

∫
exp(x2), F2(x) =

∫
sinx

x
and F3(x) =

∫
1

log x

(on the intervals where they are defined) cannot be expressed using elementary
functions.

Primitive functions of rational functions

A relatively wide class of functions to which primitive functions can be com-
puted are rational functions, which are fractions of polynomials. Let’s give a
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simple example. Let I ⊂ R be any open interval that does not contain −1 and
1. Then ∫

x2

x2 − 1
=

∫ (
1 +

1

x2 − 1

)
=

∫ (
1 +

1/2

x− 1
− 1/2

x+ 1

)
=

∫
1 +

1

2

∫
1

x− 1
− 1

2

∫
1

x+ 1

= x+
log |x− 1| − log |x+ 1|

2
+ c

= x+ log(
√
|(x− 1)/(x+ 1)|) + c

on I . It turns out that similarly, a primitive function can be calculated for
any rational function. The key is a decomposition to the sum simpler rational
functions (the first line of calculation), which is called decomposition into
partial fractions. In the following we use some results from algebra that we
will not prove here.

Theorem 9 (Primitive function for rational function can always be calcu-
lated). Let P (x) and Q(x) 6= 0 be polynomials with real coefficients and I ⊂ R
is an open interval not containing no roots of Q(x). Primitive function

F (x) =

∫
P (x)

Q(x)
(on I)

can be expressed using elementary functions, namely using rational functions,
logarithms and arcustangent.

Proof. Without loss of generality, assume that Q(x) is monic (i.e. its leading
coefficient is 1). After dividing P (x) by Q(x) with remainder we have

P (x)

Q(x)
= p(x) +

R(x)

Q(x)
,

where p(x), R(x) are real polynomials and R(x) has smaller degree than Q(x).
There is unique way to express Q(x) as a product of irreducible real polyno-
mials (i.e. polynomials that cannot be expressed as product of polynomials of
smaller degree), moreover, these polynomials will have degree at most 2:

Q(x) =
k∏
i=1

(x− αi)mi

l∏
i=1

(x2 + βix+ γi)
ni ,

where k, l ≥ 0 are integers, αi, βi, γi ∈ R, mi, ni ≥ 1 are integers, numbers αi
are pairwise distinct, pairs (βi, γi) are pairwise distinct and always β2

i −4γi < 0
(thus, the polynomial x2 +βix+γi is irreducible as it has no real roots). It can
be shown that R(x)/Q(x) has unique expression as the sum of partial fractions

R(x)

Q(x)
=

k∑
i=1

mi∑
j=1

δi,j
(x− αi)j

+
l∑

i=1

ni∑
j=1

εi,jx+ θi,j
(x2 + βix+ γi)j

,
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where δi,j, εi,j, θi,j ∈ R. In the previous example we have P (x) = x2, Q(x) =
x2−1, p(x) = 1, R(x) = 1, k = 2, m1 = m2 = 1, l = 0 (decomposition of Q(x)
contains no quadratic polynomial with three non-zero coefficients), α1 = 1,

α2 = −1, δ1,1 = 1
2

a δ2,1 = −1
2
. Thus, a primitive function

∫ P (x)
Q(x)

equals to the
sum of finitely many primitive functions of three types:∫

p(x),

∫
δ

(x− α)j
a

∫
εx+ θ

(x2 + βx+ γ)j
,

where p(x) is a real polynomial, j ∈ N and except x all other symbols are
real constants, and β2 − 4γ < 0. If we can express these primitive functions
using elementary functions, we can express

∫ P (x)
Q(x)

using elementary functions
as well.

It is easy to calculate primitive functions of the first two types:∫
p(x) =

∫
(anx

n + . . .+ a1x+ a0) =
anx

n+1

n+ 1
+ . . .+

a1x
2

2
+ a0x

on R and∫
δ

(x− α)j
=

δ

(1− j)(x− α)j−1
(j ≥ 2),

∫
δ

x− α
= δ log |x− α|

on (−∞, α) and (α,+∞) (we omitted additive constants). The third type is
more complex. We have∫

εx+ θ

(x2 + βx+ γ)j
=
ε

2

∫
2x+ β

(x2 + βx+ γ)j
+ (θ − εβ/2)

∫
1

(x2 + βx+ γ)j
.

For the last but one
∫

is after substituting y = x2 + βx + γ of the second
typewe have∫

2x+ β

(x2 + βx+ γ)j
=

1

(1− j)(x2 + βx+ γ)j−1
(j ≥ 2)

and ∫
2x+ β

x2 + βx+ γ
= log |x2 + βx+ γ| = log(x2 + βx+ γ) .

on R (recall that x2 + βx + γ has no real root) . It remains to calculate a
primitive function

∫
1/(x2 + βx+ γ)j. We denote η =

√
γ − β2/4 (recall that

γ − β2/4 > 0) and use substitution y = y(x) = x/η + β/2η. By completing
the square we get∫

1

(x2 + βx+ γ)j
=

1

η2j−1

∫
1/η

((x/η + β/2η)2 + 1)j

=
1

η2j−1

∫
y′

((x/η + β/2η)2 + 1)j

=
1

η2j−1

∫
1

(y2 + 1)j
.

10



Thus, it remains to compute the following primitive function on R:

Ij =

∫
1

(1 + x2)j
.

For j = 1 we already know that I1 = arctan x. For j = 2, 3, . . . we express Ij
using recurrence obtained by integration by parts:

Ij =

∫
x′

(1 + x2)j
=

x

(1 + x2)j
+

∫
2jx2

(1 + x2)j+1

=
x

(1 + x2)j
+ 2j

∫
x2 + 1

(1 + x2)j+1
− 2j

∫
1

(1 + x2)j+1

=
x

(1 + x2)j
+ 2jIj − 2jIj+1 ,

thus
Ij+1 = Ij(1− 1/2j) +

x

2j(1 + x2)j
.

For instance,

I2 =
arctanx

2
+

x

2(1 + x2)
a I3 =

3 arctanx

8
+

3x

8(1 + x2)
+

x

4(1 + x2)2
.

In general, the recurrence shows that for every j = 1, 2, . . ., Ij has form
Ij = κ arctanx + r(x), where κ is a fraction and r(x) is a rational function.
Thus, we have completed the calculation of the primitive function of the third
type from the expression R(x)/Q(x) of the sum of the partial fractions and ob-

tained a complete expression of the primitive function
∫ P (x)

Q(x)
using elementary

functions.

Riemann integral

Now we define precisely the concept of the area, in particular, the area of figure
U(a, b, f) under the graph of a function f . Let −∞ < a < b < +∞ be two
real numbers and f : [a, b] → R any function that may not be continuous or
bounded. The finite k+1-tuple of points D = (a0, a1, . . . , ak) from the interval
[a, b] is called a partition of [a, b] if

a = a0 < a1 < a2 < . . . < ak = b .

These points divide the interval [a, b] into intervals Ii = [ai−1, ai]. We denote
by |Ii| the length of interval Ii: |Ii| = ai − ai−1 a |[a, b]| = b− a. Clearly

k∑
i=1

|Ii| = (a1 − a0) + (a2 − a1) + . . .+ (ak − ak−1) = b− a = |[a, b]| .
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Norm of a partition D is the maximum length of an interval of the partition
and is denoted by λ:

λ = λ(D) = max
1≤i≤k

|Ii| .

Partition of an interval [a, b] with points is a pair (C,D) wherD = (a0, a1, . . . , ak)
is a partition of [a, b] and a k-tuple C = (c1, c2, . . . , ck) consists of ci ∈ Ii (i.e.
ai−1 ≤ ci ≤ ai). Riemann sum corresponding to the function f and a partition
with points (D,C) is defined as

R(f,D,C) =
k∑
i=1

|Ii|f(ci) =
k∑
i=1

(ai − ai−1)f(ci) .

If f ≥ 0 on [a, b], it is the sum of k rectangles Ii × [0, f(ci)] whose union
approximates figure U(a, b, f). However, Riemann sum is defined for every
function f , regardless of its sign on [a, b]. The following definition was intro-
duced by Bernhard Riemann (1826–1866).

Definition 2 (First definition of Riemann integral, Riemann). We say that
f : [a, b] → R has Riemann integral I ∈ R on [a, b] if for every ε > 0 there
exists δ > 0 such that for each partition of [a, b] with points (D,C) such that
λ(D) < δ the following holds:

|I −R(f,D,C)| < ε

Therefore, we require I ∈ R, values ±∞ are not allowed (although, it is
possible to define them). If there is such a number I, we write

I =

∫ b

a

f(x) dx =

∫ b

a

f = (R)

∫ b

a

f

and say that f is Riemann integrable on the interval [a, b]. We will work with
the class of all Riemann integrable functions

R(a, b) := {f | f is defined and Riemann integrable on [a, b]}.

Thus, the first definition of the Riemann integral can be summarized by the
formula ∫ b

a

f = lim
λ(D)→0

R(f,D,C) ∈ R .

We understand the limit here as defined in the definition above; as a symbol,
we defined only limit of a sequence and of a function in a point.

For the second, equivalent, definition of the integral we will need a few more
concepts. For f : [a, b] → R and a partition D = (a0, a1, . . . , ak) of interval
[a, b] we define lower and upper Riemann sum, respectively, (even though they
were introduced by Darboux) as

s(f,D) =
k∑
i=1

|Ii|mi, and S(f,D) =
k∑
i=1

|Ii|Mi ,
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where
mi = inf

x∈Ii
f(x) and Mi = sup

x∈Ii
f(x)

Ii = [ai−1, ai]

These sums are always defined s(f,D) ∈ R∪{−∞} and S(f,D) ∈ R∪{+∞}
Lower and upper Riemann integral, respectively, of a function f on the interval
[a, b] is defined as∫ b

a

f =

∫ b

a

f(x) dx = sup({s(f,D) : D is a partition of [a, b]}) ,

and ∫ b

a

f =

∫ b

a

f(x) dx = inf({S(f,D) : D is a partition of [a, b]}) .

These terms are always defined and we have
∫ b
a
f,
∫ b
a
f ∈ R∗ = R∪{−∞,+∞}.

Definition 3 (Second definition of Riemann integral, Darboux). We say that
f : [a, b]→ R has at [a, b] Riemann integral, if∫ b

a

f(x) dx =

∫ b

a

f(x) dx ∈ R .

This common value, if it exists, we denote by∫ b

a

f(x) dx =

∫ b

a

f

and we call it the Riemann integral of f on the interval [a, b].

The two definitions are equivalent: they give the same classes of Riemann
integrable functions and the same value of the Riemann integral, if defined.
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