8th problem set for Probability and Statistics — April 9th

Recall that the cumulative distribution function F_X is defined by

$$F_X(x) = P(X \le x).$$

If X is continuous, then

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

for a non-negative function f_X (the density of X). Then

$$P(X \in A) = \int_{A} f_X(t)dt$$
, thus $P(a \le X \le b) = \int_{a}^{b} f_X(t)dt$

Also, $\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$ and in general

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(t) \ f_X(t) dt$$

Just as for discrete random variables, here also holds that $\operatorname{var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$.

Before solving the problems, you might want to recall how to compute definite integrals using primitive functions.

Using F and f

- **1.** For a random variable X with the distribution function F_X , express (a) $P(X \in (0,1])$ (b) P(X > 0) (c) * P(X < 0) (d) * $P(X \in [0,1])$
- **2.** Solve the previous part again, now for a random variable X with density f_X .

3. Let X be a random variable satisfying P(X = x) = 0 for every x. (Actually, there is nothing strange about this, and in fact it happens for every continuous random variable.)

Express the distribution function of the following random variables using F_X

(a) -X. (b) $X^+ = \max(0, X)$, (c) |X|.

4. Let X be a random variable with density $f_X(t) = 1/t^2$ for $t \ge 1$ and $f_X(t) = 0$ otherwise.

- (a) Verify that this is a density function.
- (b) Determine $\mathbb{E}(X)$.
- (c) Compute the distribution function F_X .
- (d) Determine $P(2 \le X \le 3)$.
- (e) Let Y = 1/X. What is the distribution function of the random variable Y?
- (f) Determine the density of the random variable Y.

5. We say that X has an exponential distribution, $X \sim Exp(\lambda)$, if

$$F_X(x) = 1 - e^{-\lambda x}$$
 for $x \ge 0$, otherwise 0.

Find f_X . We will show in the lecture that $\mathbb{E}(X) = 1/\lambda$.

6. Let's assume that at a post office counter, the time for serving one customer follows an exponential distribution with an average of 4 minutes.

- (a) What is the parameter λ , what is the distribution function?
- (b) What is the probability that we will wait more than 4 minutes?
- (c) What is the probability that we will wait between 3 and 5 minutes?

More practice problems

7. The average lifespan of a hard disk is 4 years. Let's assume that this time is described by a random variable with an exponential distribution. (This is not a realistic assumption, see e.g., https://www.backblaze.com/blog/how-long-do-disk-drives-last/.)

- (a) What is the probability that the disk will fail within the first three years?
- (b) What is the probability that it will last at least 10 years?
- (c) After what time will 10% of the disks fail?

8. Plutonium-238 has a half-life of 87.7 years. We will model its decay using an exponential distribution: for each atom, we consider the time until decay as an independent random variable with the distribution $Exp(\lambda)$.

(a) What is λ ?

- (b) What is the average lifespan of a plutonium-238 atom?
- (c) After how much time will 90% of the atoms decay?

(d) What percentage of atoms will decay after 50 years? (Some cardiac pacemakers use plutonium-238 as an energy source. https://en.wikipedia.org/wiki/Plutonium-238#Nuclear_powered_pacemakers)

9. The time until we see a meteor is exponentially distributed with a mean of 1 minute.

- (a) What is the probability that we will have to wait more than 5 minutes?
- (b) What is the probability that we will see it within at most one minute?

(c) * What is the distribution of the time when we see the second meteor? The third, ... (We assume that individual meteors are independent.)

8th homework, due next week

Let F_X be given by the formula $F_X(x) = x/3$ for $x \in [0,3]$, $F_X(x) = 0$ for x < 0, and $F_X(x) = 1$ for x > 3. Let Y = 1/X and $Z = X^2$. Compute

(d) $P(1 \le X \le 2)$ (e) $P(X \le Y)$ (f) $P(X \le Z)$ (g) the density function f_X . (h) the distribution functions F_Y and F_Z .