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1 Introduction

Scheduling has been studied extensively in many varieties and from many view-

points. Inspired by applications in practical computer systems, it developed into

a theoretical area with many interesting results, both positive and negative.

The basic situation we study is the following. We have some sequence of jobs

that have to be processed on the machines available to us. In the most basic

problem, each job is characterized by its running time and has to be scheduled

for that time on one of the machines. In other variants there may be additional

restrictions or relaxations specifying which schedules are allowed. We want to

schedule the jobs as e�ciently as possible, which most often means that the total

length of the schedule (the makespan) should be as small as possible, but other

objective functions are also considered.

The notion of an on-line algorithm is intended to formalize the realistic sce-

nario, where the algorithm does not have the access to the whole input instance,

unlike the o�-line algorithms. Instead, it learns the input piece by piece, and has

to react to the new requests with only a partial knowledge of the input. Such

scheduling algorithms are the topic of this survey. (For a general reference on

on-line algorithms see upcoming book [13].)

Scheduling have continuously been an active research area, re
ecting the

changes in the theoretical computer science. When the theory of NP-completeness

was developed, many scheduling problems have been shown to be NP-complete:

Garey and Johnson [39] give 18 basic NP-complete scheduling problems; since

then many new variants were considered and shown to be NP-complete. After

the NP-completeness results, the focus shifted to designing approximation algo-

rithms, often using quite non-trivial techniques and insights. There is extensive

literature on these subjects, for a recent surveys see e.g. [59, 54].

Many natural heuristics for scheduling are in fact on-line algorithms. Hence

when the study of on-line algorithms using competitive analysis became usual,

this approach was naturally and quite successfully applied to scheduling.

Organization of the survey

We de�ne some of the variants of scheduling that have been studied in the on-

line setting in Section 2. In Section 3 we discuss the early results on on-line



scheduling, focusing on Graham's paper [43]. The three sections 4 to 6 survey

the results divided according to the three di�erent on-line paradigms described

in Section 2.2. In Section 7 we discuss several papers which study various mod-

i�cation of competitive analysis in which the on-line algorithm is less restricted

than in the standard situation.

We keep the exposition as informal as possible, focusing on the intuition

behind the results. We include several algorithms and proofs that are reasonably

simple and illustrate more general techniques. Each section contains its own

subsection of open problems, where we describe the open problems which we

feel are the most important ones. In addition, there are of course many cases

where we do not know the tight bounds on the competitive ratio, or variants that

were not studied at all in the on-line setting. We give the appropriate citations

for each result or variant of scheduling; whenever we give the citation in the

heading of a section, it means that all the results come from the cited paper(s).

2 Taxonomy of on-line scheduling problems

After giving the general de�nitions, in Sections 2.2 to 2.5 we survey the features

important in every variant of scheduling; these include the on-line character of

the problem, the objective function, the use of randomization, release times and

precedence constraints. Then we de�ne other features which are used only in a

few variants.

2.1 General de�nitions and preliminaries

The number of machines is always denoted m, and n stands for the number of

jobs. Each job is characterized by its running time, which we denote t (it is also

often denoted p and called processing time), and perhaps other characteristics

as required by each variant of scheduling. The scheduling algorithm is asked

to produce a schedule, which means that each job is assigned to one or more

machines and one or more time slots, according to the variant of scheduling.

Each machine is assigned to a single job at any time, and the processing of a job

always takes at least its running time.

All scheduling problems we consider ask for minimization of some objective

function (performance measure). The performance of an on-line algorithm is

measured by the competitive ratio (w.r.t. some objective function). An on-line

algorithm is �-competitive if for each input instance the objective value of the

schedule produced by the algorithm is at most � times larger than the optimal

objective value. The competitive ratio may depend on m, but should be inde-

pendent of n, which re
ects the fact that the number of jobs is not known to

the on-line algorithm.

The minimal makespan for a given instance is denoted T

opt

. A machine is

busy at a given time, if it is assigned to some job, otherwise it is idle. The load

of the machine is the total time during which this machine is busy (i.e., the idle

time does not contribute to the load of the machine). A job is available at a given
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time, if it was not scheduled yet and can be scheduled in a time slot(s) starting

at that time consistently with the restrictions of the given variant of scheduling

(e.g., it is after its release time). In many variants of scheduling we encounter

the golden ratio, de�ned by � = (

p

5 + 1)=2 � 1:6180.

While most results work with arbitrary real running times, some make tech-

nical restrictions, e.g., the minimal running time is speci�ed or the running times

and release times are required to be integral. This is important for example for

some results on preemptive scheduling, where we want to divide the time of

one machine equally among all jobs. Another possibility how to deal with this

problem is to use the common more general de�nition of competitiveness which

includes an additive term, an algorithm is then �-competitive if its objective

value is at most some constant plus � times the optimal objective value. We do

not pay much attention to these restrictions, as they are only technical details.

2.2 Di�erent on-line paradigms

For on-line scheduling the most important classi�cation of the on-line problems

is according to which part of the problem is given on-line. There are several very

di�erent possibilities.

Scheduling jobs one by one. In this paradigm the jobs are ordered in some

list (sequence) and are presented one by one according to this list. Each of them

has to be assigned to some machine(s) and time slot(s) before the next jobs are

seen, consistently with other restrictions given by the problem. As soon as the job

is presented we know all its characteristics, including the running time. We are

allowed to assign the jobs to arbitrary time slots (i.e., they can be delayed), thus

a job can start running later than the successive jobs in the sequence; however,

once we see the successive jobs we cannot change the assignment of the previous

jobs.

Unknown running times. Here the main on-line feature is the fact that the

running time of a job is unknown until the job �nishes; an on-line algorithm only

knows whether a job is still running or not. Unlike in the previous paradigm,

at any time all currently available jobs are at the disposal of the algorithm;

any of them can be started now on any machine(s) or delayed further. Also, if

preemptions or restarts are allowed (see Section 2.6), the algorithm can decide

to preempt or stop any job which is currently running. The jobs may become

available over time according to their release times or precedence constraints

(see Section 2.5), but the situation when all jobs are available at the beginning

plays an important role in this paradigm, too. If there are other characteristics

of a job than its running time, they are known when the job becomes available

(such characteristics may include for example the number of parallel processors

it uses, which has to be known to guarantee that the job is scheduled legally).
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Jobs arrive over time. In this paradigm the algorithm has the same freedom

as in the previous one, and in addition the running time of each job is also known

when that job is available. Thus the only on-line feature is the lack of knowledge

of jobs arriving in the future.

Sometimes the algorithm that know the running time of a job as soon as

it arrives are called clairvoyant, in contrast to non-clairvoyant algorithms that

correspond to the previous paradigm of unknown running times.

Interval scheduling. All the previous paradigms assume that a job may be de-

layed. Contrary to that, the paradigm of interval scheduling assumes that each

job has to be executed in a precisely given time interval; if this is impossible

it may be rejected. This scenario is very di�erent from the previous three. For

example, it is meaningless to measure the length of the schedule, as it is essen-

tially �xed; instead we measure the weight (or the number) of accepted jobs.

We do not cover this paradigm in this survey. It is studied for example in the

papers [83, 62, 32], and it is also related to load balancing [5].

2.3 Objective functions

The most common objective function is the makespan, which is the length of

the schedule, or equivalently the time when the last job is completed. In one

of the variations we allow jobs to be rejected at a certain penalty, in which

case we minimize the sum of the makespan and the penalties of rejected jobs.

These objective functions formalize the viewpoint of the owner of the machines.

If the makespan is small, the utilization of his machines is high; this captures

the situation when the bene�ts of the owner are proportional to the work done.

Penalties are intended to capture the situation when this is not true: if a job

has a long running time and small bene�t (i.e., there is a small penalty for not

scheduling it), it is better to reject it.

If we turn our attention to the viewpoint of a user, the time it takes to �nish

individual jobs may be more important; this is especially true in interactive

environments. Thus, if many short jobs are postponed after some long job, it

is unacceptable to the user of the system even if the makespan is optimal. For

that reason other objective functions are studied, namely the total completion

time, the total 
ow time (also called response time), and the total waiting time.

The completion time of a job is the time when this particular job is completed;

thus the makespan equals the maximal completion time. The 
ow time of a job

is the time the job is in the system, i.e., the completion time minus the time

when it becomes �rst available. The waiting time is the 
ow time minus the

running time of a job. The objective functions are the sums of these values over

all jobs. (Equivalently, we can take the average values, as they always di�er by

a factor of n.) The competitive ratio w.r.t. the total completion time is at most

the competitive ratio w.r.t. the total 
ow time, as the 
ow times are smaller by

an additive term which is equal for both on-line and optimal schedules; similarly

the competitive ratio w.r.t. the total 
ow time is at most the competitive ratio
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w.r.t. the total waiting time. Thus the best algorithms are those competitive

w.r.t. the total waiting time. The weighted variant of these measures is also

studied; in this case each job has its weight and we take the weighted sums. This

captures the situation when some jobs are more important than others. Maximal

waiting and 
ow time are also reasonable objective functions, but they were not

considered in the context of on-line scheduling algorithms so far.

Another possibility is to consider general L

p

norms of the vector of loads of

the machines, which is studied for load-balancing, where in particular L

2

norm

has a natural interpretation [5, 4].

If we allow preemptions (see Section 2.6), we usually want to minimize the

number of times we preempt a job. However, this is always a secondary criterion.

This means that we are interested to quantify how many preemptions we need

to use to obtain optimal or almost optimal competitive ratio w.r.t. some other

objective function.

2.4 Randomization

In most cases we are interested in both deterministic and randomized algorithms.

If we allow randomization, we consider the expected objective value, where the

expectation is taken over the random choices of the algorithm. A randomized

algorithm is �-competitive if for each instance this expectation is within a factor

of � of the optimal objective value. This corresponds to the so-called oblivious

adversary [12], which has to commit to an input instance beforehand, without

any knowledge of the random bits or actions of the algorithm.

2.5 Release times and deadlines, precedence constraints and

con
icting jobs

Each job may have an individual release time, which is the earliest time when

it may be scheduled, and in the on-line setting also the time when it becomes

known. The dual notion of individual deadlines is common in o�-line scheduling,

but not in the on-line case. The reason is that individual deadlines only de�ne

feasible solutions, which is not compatible with the goal of the on-line algorithm

which is to do reasonably well on some global measure. This intuition can even

be stated formally. In the case of preemptive scheduling of jobs arriving over time

with known running times there exists an on-line algorithm which schedules all

jobs before their common deadline if this is feasible; as soon as we allow two

di�erent deadlines no such on-line algorithm exists [48].

An often considered variant assumes that there are some precedence con-

straints between the jobs. They are generally given by a directed acyclic graph

on the jobs; each directed edge indicates that one job has to be scheduled before

another one. In the on-line framework a job is known only after all its predeces-

sors in the dependency graph are processed by the on-line algorithm. A related

model considers the case of con
icting jobs when the jobs may con
ict with each

other, but the order in which such pairs have to be scheduled is not given; in

such a case the con
ict graph is undirected.
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2.6 Preemptions and restarts

In many problems it is assumed that a running job may be preempted, i.e., its

processing may be stopped and resume later on the same or di�erent machine(s).

In the on-line setting, there is another possibility which is meaningless for the

o�-line algorithms. Namely, a running job can be stopped and restarted later on

the same or di�erent machine(s); thus in order to �nish, it has to be assigned to

the same machine(s) for its whole running time without an interruption.

2.7 Parallel jobs

Parallel jobs are those jobs that have to be scheduled on some number of ma-

chines at the same time. They are characterized by two parameters, the running

time t and the number of requested machines p. We consider two variants. In the

�rst the jobs are non-malleable, which means that they have to be scheduled on

the requested number of machines. On the other hand, malleable jobs may be

scheduled on fewer machines, at the cost of increasing the processing time. Most

of the time we consider ideally malleable jobs, where the increase of the running

time is proportional to the decrease of the number of machines, i.e., scheduling

on q � p machines takes time tp=q.

2.8 Di�erent speeds of machines

The speeds of the machines can be di�erent. The three most common models of

this situation were both studied in the on-line setting.

In the variant of uniformly related machines the ith machine has speed s

i

> 0.

If a job with running time t is scheduled on ith machine, its processing takes

time t=s

i

. (Here we possibly deviate from our convention that processing a job

takes always at least its running time; we can always repair this by scaling the

speeds so that s

i

� 1.)

The next variant is that of unrelated machines where the vector of speeds is

possibly di�erent for each job. However, even if the running time is unknown,

we assume that the speeds are known for each job (i.e., for each job we know

the relative speeds of the machines).

The last variant is the restricted assignment. Here the machines have identical

speed, but each job can be executed only on some subset of processors. This can

be thought of as a special case of unrelated machines, where the speeds are

always 1 or in�nitely small. This variant is not comparable to uniformly related

machines.

2.9 Shop scheduling

In shop scheduling the job has several tasks (operations) that have to be pro-

cessed on di�erent machines. The running time of each task is a separate pa-

rameter. The di�erent tasks of the same job cannot be scheduled at the same

time. According to additional restrictions, we distinguish open shop, when the
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di�erent tasks of a job may be scheduled in any order (in addition, if preemption

is allowed, di�erent tasks may be even interleaved), 
ow shop, if the order of the

tasks is �xed and it is the same for all jobs, and job shop, if the order of the

tasks is �xed and possibly di�erent for each job.

2.10 Variants not covered in this survey

A very di�erent model of on-line scheduling in real-time systems, where each job

has its deadline and value and the goal is to maximize the value of jobs �nished

before their deadline, is considered in several papers [28, 11, 52, 65].

Other papers study models with additional obstacles. On-line scheduling in

the presence of processor faults is studied in [51, 53]. On-line scheduling in pres-

ence of delays in communication between processors is studied in [26, 27].

3 General results and history

The �rst proof of competitiveness of an on-line algorithm for a scheduling prob-

lem, and perhaps for any problem, was given by Graham already in 1966 [43].

He studied a simple deterministic greedy algorithm, now commonly called List

Scheduling. The studied model is the basic one, where we have m identical ma-

chines and a sequence of sequential jobs characterized by their running times.

The objective is to minimize the makespan. The algorithm was designed for

the case of precedence constraints, but it can be easily modi�ed to handle also

release times [46]. Preemption is not used.

Algorithm List Scheduling

(i) The jobs are ordered in arbitrary list (sequence).

(ii) Whenever some machine is idle, we schedule on it the �rst job on the

list which is available (i.e., it is not scheduled yet, the current time is

greater than its release time, and all its predecessors in the precedence

graph are �nished).

This algorithm works in all three on-line paradigms we study. It is already

formulated in the model with release times, and since it does not use the informa-

tion about running times, it carries over to the paradigm or unknown running

times. For the paradigm of scheduling jobs one by one we simply present the

jobs in the order of the input list, and when a job is presented, we schedule it

on a machine with the smallest load so far. This works only for the case with

no precedence constraints, but we do not study precedence constraints in this

paradigm (cf. Section 4).

Theorem1 [43, 46]. The competitive ratio of List Scheduling is 2�

1

m

.

Proof. First we show that the competitive ratio of List Scheduling is not better

than 2�

1

m

. Consider the sequence of m(m�1) jobs with running time 1 followed
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by one job with running time m. There are no precedence constraints or release

times (and hence the lower bound is true in any of the three on-line paradigms).

List Scheduling schedules this sequence in time 2m�1, while the optimal schedule

has makespan m.

Next we show that List Scheduling is (2 �

1

m

)-competitive if there are no

precedence constraints and no release times. Consider the job that �nishes as

the last one, suppose it was started at time � and its running time is T . At all

times before � , all the machines are busy, as otherwise the last job would be

scheduled earlier. Hence the optimal makespan T

opt

is at least T

opt

� � +

T

m

, as

the optimal schedule has to schedule all the jobs. We certainly have T

opt

� T ,

as the optimal schedule takes time T to process even this single job. Combining

these two inequalities we get that the makespan of the on-line solution, which is

� + T , is bounded by � + T = � +

T

m

+ (1�

1

m

)T � (2�

1

m

)T

opt

.

For the general case with precedence constraints and release times we need

a di�erent bound on the time when some machine is idle. We de�ne a sequence

of jobs J

1

,: : : ,J

k

inductively as follows. Let J

1

be the job that �nishes last. If

no predecessor of J

i

in the dependency graph �nishes after the release time of

J

i

, we stop. Otherwise J

i+1

is de�ned as the latest-�nishing predecessor of J

i

.

It follows that whenever some machine is idle, either one of the jobs J

1

,: : : ,J

k

is

running or it is before the release time of J

k

(otherwise one of the jobs J

i

would

be available and hence scheduled). The optimal schedule has to schedule these

jobs sequentially from J

k

to J

1

, and it can start only after J

k

is released. This

proves that the total time when some machine is idle is bounded by the optimal

makespan, and the rest of the argument is the same as without precedence

constraints. ut

While we now interpret Graham's result as a proof of competitiveness of List

Scheduling, it should be stressed that his analysis was deeper. He gives examples

where we can increase the makespan by making the problem easier (\timing

anomalies" stands for this paradox), namely by either increasing the number of

machines, or decreasing the running time of some job, by relaxing the precedence

constraints, or, �nally, by reordering the list. He proves that in all of these cases

the makespan can change by almost a factor of 2, giving the tight bounds in all

cases. The case of reordering the list amounts to the competitiveness analysis

given in Theorem 1, as the optimal schedule can be obtained by some particular

ordering of the list.

In the follow-up paper [44] Graham shows that the factor of 2 decreases if we

modify the algorithm so that some number of long jobs is scheduled �rst using

an optimal schedule, and the rest is scheduled by List Scheduling. Clearly, this

algorithm is no longer on-line in any of the paradigms we study.

Other two early papers that contain results about on-line scheduling algo-

rithms are [66, 23]. The �rst one gives an optimal algorithm for minimizing the

makespan of a preemptive schedule on identical machines where jobs arrive over

time, and mentions that the algorithm is on-line. The second paper is to our best

knowledge the �rst one that states explicitly a lower bound on the performance

ratio of any on-line algorithm for some scheduling problem, namely the bound
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of 
(

p

n) for non-preemptive scheduling jobs with unknown running times on

uniformly related machines; the paper even mentions the possible usefulness of

restarts, which later indeed proved to be quite useful in this case [75].

Around 1990 new results were discovered concerning many variants of on-

line scheduling, both old and new. Most of the results use the makespan as the

objective function, consequently our understanding of this measure is most com-

plete. Recently other objective functions are drawing more attention, perhaps

also because in many practical applications they are more important.

4 Scheduling jobs one by one

This paradigm corresponds most closely to the standard model of request se-

quences in competitive analysis. It can be formulated in the language of on-line

load balancing as the case where the jobs are permanent and the load is their

only parameter corresponding to our running time (cf. [5]).

In this paradigm we do not allow release times and precedence constraints,

as these restrictions appear to be unnatural with scheduling jobs one by one. In

most of the variants it is also su�cient to assign each job to some machine(s) for

some length of time, but it is not necessary to specify the actual time slot(s), in

other words it is not necessary or useful to introduce idle time on any machine.

We �rst give the results considering minimizing the makespan, only in Sec-

tions 4.7 and 4.8 we brie
y mention results for other objective functions, namely

minimizing the L

p

norm and the total completion time.

4.1 The basic model

We have m machines and a sequence of jobs characterized by their running

times. The jobs are presented one by one, and we have to schedule each job

before we see the next one. Performance is measured by the makespan. Each job

is assigned to a single machine. There are no additional constraints, preemption

is not allowed, all the machines have the same speed, and the objective function

is the makespan. In this section we are interested in deterministic algorithms.

By Theorem 1 it follows that the competitive ratio of List Scheduling is 2�

1

m

.

This is provably the best possible for m = 2 and m = 3 [31], but for larger m it

is possible to develop better algorithms.

From the proof of Theorem 1 it is clear what is the main issue in designing

algorithms better than List Scheduling. If all machines have equal loads and a

job with long running time is presented, we create a schedule which is almost

twice as long as the optimal one. This is a problem if the scheduled jobs are

su�ciently small, and the optimal schedule can distribute them evenly on m� 1

machines in parallel with the last long job on the remaining machine. Thus, to

achieve better results, we have to create some imbalance and keep some machines

lightly loaded, to be used by long jobs.

Let us suppose that we want to achieve competitive ratio �. When a job

is presented, we can schedule it on any machine such that after this step the
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deterministic randomized

m lower bound upper bound LS lower bound upper bound

2 1.5000 1.5000 1.5000 1.3333 1.3334

3 1.6666 1.6667 1.6667 1.4210 1.5567

4 1.7310 1.7333 1.7500 1.4628 1.6589

5 1.7462 1.7708 1.8000 1.4873 1.7338

6 1.7730 1.8000 1.8333 1.5035 1.7829

7 1.7910 1.8229 1.8571 1.5149 1.8169

1 1.8520 1.9230 2.0000 1.5819 {

Table 1. Current bounds for algorithms scheduling jobs one by one with no constraints.

competitive ratio is at most �. Suppose that we choose always the most loaded

of these machines, to create as large imbalance as possible. This seems to be a

natural idea to prevent the previous problems, however, it turns out that it does

not work, either. If this algorithm is presented with a long list of jobs with the

same running time, it distributes them almost evenly on a constant fraction of the

machines, with only one job scheduled on each of the remaining machines. Now

we can continue with a sequence of long jobs, �rst making the load distributed

evenly on all machines, and then forcing the schedule to be too long. Thus this

method cannot give a better competitive ratio than List Scheduling.

To design a good algorithm, we need to avoid both of these extremes. Current

results use two di�erent approaches. One is to schedule each job on one of the

two currently least loaded machines [37, 17]. This gives better results than List

Scheduling for any m � 4, and achieves the currently best upper bounds for

small m. However, for large m, the competitive ratio still approaches 2. This

approach leaves at most one lightly loaded machine, hence after two long jobs

we get a long schedule and the competitive ratio is at least 2 �

2

m

. To keep

the competitive ratio bounded away from 2 even for large m it is necessary to

keep some constant fraction of machines lightly loaded. Such an algorithm was

�rst developed in [8], later better algorithms based on this idea were designed

in [55, 1] to give the currently best upper bounds for large m. The analysis of

all these algorithms is relatively complicated.

The current state of our knowledge is summarized in Table 1. For comparison

we include also the competitive ratio of List Scheduling. (See Section 4.2 for

a discussion of results for randomized algorithms.) The observation that List

Scheduling is optimal form = 2; 3 is due to [31]. The other lower bounds for small

m are due to [17]. The lower bound for large m is due to [1], improving upon [9].

Very recently R. Chandrasekaran claimed a lower bound of

p

3 � 1:7321 for

m = 4, which would signi�cantly decrease the gap in this case.
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4.2 Randomized algorithms

Much less is known about randomized algorithms for the basic model studied in

Section 4.1. Only for the case of m = 2 we know an optimal randomized algo-

rithm. A 4=3-competitive randomized algorithm for two machines was presented

in [8]. First we prove that this is best possible.

Theorem2 [8]. No randomized algorithm for 2-machine scheduling can be bet-

ter than 4=3-competitive.

Proof. Consider the sequence of three jobs with running times 1, 1, and 2. Sup-

pose we have an algorithm which is better than 4=3-competitive. We schedule

the �rst two jobs, order the machines according to their load and consider the

expected load of the more loaded machine and of the less loaded one, where the

expectation is taken over the random choices of the algorithm. After scheduling

the �rst two jobs, the expected load of the more loaded machine is less than 4=3,

as it is equal to the expected makespan and the optimal makespan is 1. Hence

the expected load of the less loaded machine is more than 2=3, and even if the

last job is always scheduled on the least loaded machine, the expected makespan

after scheduling of all three jobs is more than 8=3, contradicting the assumption

that the algorithm is better than 4=3-competitive. ut

In the proof we can replace the �rst two jobs by an arbitrary sequence of

jobs with total running time 2. Hence the proof actually shows that in any 4=3-

competitive algorithm, the expected load of the more loaded machine has to be

at least twice as much as the expected load of the other machine at all times.

This has to be tight whenever we can partition the jobs into two sets with exactly

the same sum of running times. The most natural way to design an algorithm

with this in mind is to keep the desired ratio of expected loads at all times, and

this in fact works.

Algorithm Random

(i) If possible, schedule the job randomly so that afterwards the expected

makespan equals 2=3 of the total running time.

(ii) Otherwise schedule the job always on the less loaded machine.

To implement this algorithm it is necessary to keep track of all possible

schedules and their probabilities. The naive way of doing this uses 2

n�1

con�g-

urations after n jobs, but it is possible to implement the algorithm with only n

con�gurations [8].

Theorem3 [8]. The algorithm Random is 4=3-competitive for two machines.

Proof. After scheduling some sequence of jobs, let a be the expected makespan,

b be the total running time of all jobs scheduled so far, and let T be the longest
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running time among all jobs scheduled so far. We prove by induction that at any

time the following is true:

a �

2

3

b; and (1)

If a >

2

3

b then T �

3

4

a: (2)

From this condition it follows that the algorithm is 4=3-competitive, as the op-

timal makespan is at least max(T; b=2). Both conditions are trivially true before

any job is scheduled.

Let t be the running time of the job that has to be scheduled next, and let

a(t) be the expected makespan after scheduling this job deterministically on the

less loaded machine. Consider what happens if we change the probability that

the job is scheduled on the more loaded machine continuously from 0 to 1. The

expected makespan increases continuously from a(t) to a+ t. By the induction

assumption (1), a + t �

2

3

b + t �

2

3

(b + t). Hence if a(t) �

2

3

(b + t), we can

schedule the job so that afterwards the expected makespan equals to

2

3

(b + t),

as required in the step (i) of the algorithm, and both (1) and (2) are satis�ed.

Thus we only need to consider the case when a(t) >

2

3

(b + t). In this case

the next job is always scheduled on the less loaded machine, and (1) is satis�ed

since the expected makespan is a(t). It remains to prove the condition (2). We

distinguish three cases according to the value of t.

First suppose that t � 2T � b. This means that T � t + b � T , i.e., T is

larger than the total running time of all the other jobs including the next one.

Hence by scheduling the new job on the less loaded machine we do not change

the makespan and (2) remains satis�ed.

Next suppose that t � b. This means that the next job has longer running

time than all the previous jobs together, and hence the machine on which it is

scheduled always becomes the more loaded one. Hence a(t) = t + b � a. Since

b� a � b=3 by the induction assumption (1), it follows that a(t) � t+ b=3 �

4

3

t,

and (2) remains true, as t is now the longest running time.

Now consider the remaining case when max(0; 2T � b) � t � b. We prove

that in this case a(t) �

2

3

(b+ t), hence by the previous considerations the next

job is scheduled by the step (i) of the algorithm and the inductive conditions are

satis�ed. We prove that a(t) �

2

3

(b+t) at the endpoints of the interval allowed for

t and that a(t) is a convex function of t; the inequality then follows for every t in

the interval, since the right hand side is linear in t. First consider the endpoints of

the interval. If t = b, we have seen in the previous paragraph that a(t) � t+ b=3,

which equals

2

3

(b+ t). If t = 2T � b � 0, we have a(t) = a �

4

3

T =

2

3

(b+ t), using

the induction assumption (2). If t = 0 > 2T � b, we know that T <

1

2

b �

3

4

a by

the assumption (1); therefore it has to be the case that a =

2

3

b =

2

3

(b+ t) if (2) is

satis�ed. It remains to prove that a(t) is convex. The derivative of a(t) at point

t is equal to the probability that after scheduling the job with running time t on

the less loaded machine it becomes the more loaded one. It is easy to see that

this probability is non-decreasing in t, hence a(t) is convex. (To be more precise,

12



we should notice that the derivative may be unde�ned at �nitely many points.

However, this does not change the conclusion.) ut

Very recently new randomized algorithms for small m were developed in [71,

70]. It is provably better than any deterministic algorithm for m = 3; 4; 5 and

better than the currently best deterministic algorithm for m = 6; 7. It always

assigns the new job on one of the two least loaded machines, similarly to the

deterministic algorithms for small m from [37, 17]. Consequently, its competitive

ratio approaches two as m grows. The analysis of this algorithm is again di�cult,

even involving extensive computations to obtain the best results.

The idea of the lower bound for two machines can be extended to arbitrary

number of machines [16, 72, 74]. It turns out that for m machines, the expected

loads should be in geometric sequence with the ratio m : (m�1), if the machines

are always ordered so that their loads are non-decreasing. (For example, for m =

3 the ratio of loads is 4 : 6 : 9.) This leads to a lower bound of 1=(1�(1�1=m)

m

),

which approaches e=(e�1) � 1:5819 for largem and increases with increasing m.

For any m > 2 it is an open question whether there exists an algorithm

matching this lower bound. (Seiden [71] demonstrated that his algorithm does

not match this bound.) The insight from the proof of the lower bound leads

to a natural invariant that should be preserved by any algorithm matching it.

Namely, such an algorithm should preserve the ratio of expected loads described

above. An algorithm based on this invariant would be a natural generalization

of the optimal algorithm for two machines from [8]; it would also follow the

suggestion from [18] (see Section 4.3). This faces several problems.

First of all, it is not clear at all that we would be able to handle long jobs

similarly as for m = 2. A job is long if its running time is more than the

1=(m� 1) fraction of the sum of running times of all previous jobs (intuitively

this means that its running time determines the optimal makespan). For m = 2

this means that the running time of a long job is more than the total running

time of all previous jobs, therefore we know that no matter on which machine

it is scheduled, this machine will become the most loaded one; we used this fact

signi�cantly in the proof of Theorem 3. For three machines this is no longer true,

and hence the structure of the problem is much more di�cult.

Second, it is not clear whether we would be able to preserve the invariant

ratio of expected loads even if all jobs are small. In [74] it is demonstrated that

even for m = 3 it is impossible to preserve this invariant inductively, meaning

that there exists a probability distribution on the con�gurations such that the

expected loads have the desired ratio, but after the next job this ratio cannot

be maintained; moreover this con�guration is reachable so that the ratio is kept

invariant at all times, except for the �rst few jobs. We want to keep the ratio

invariant, so this means that for a design of a matching algorithm we should use

a stronger inductive invariant; at present we do not know if this is possible.

Third, for m = 2 the lower bound proof implies that the ratio of loads has

to be at least 2 : 1 at all times. For m = 3 this is only true if the previous jobs

can be exactly balanced on two machines, and for m > 3 we get even more such

balancing conditions. This means that we have some more freedom in the design

13



of the algorithm, and hence it is harder to improve the lower bounds.

To summarize, we have the optimal algorithm form = 2, and an improvement

of the deterministic algorithms for small m. However, for m > 7 we have no

randomized algorithm with a better competitive ratio than known deterministic

algorithms; this means that we do not know how to make use of randomization

for large m. See Table 1.

4.3 Preemptive scheduling [18]

In this model preemption is allowed. Each job may be assigned to one or more

machines and time slots (the time slots have to be disjoint, of course), and this

assignment has to be determined completely as soon as the job is presented.

It should be noted that in this model the o�-line case is easily solved, and the

optimal makespan is the maximum of the maximal running time and the sum

of the running times divided by m (i.e., the average load of a machine).

It is easy to see that the lower bounds from Section 4.2 hold in this model,

too, as they only use the arguments about expected load. This again leads to

a lower bound of 1=(1� (1� 1=m)

m

), which approaches e=(e� 1) � 1:5819 for

large m, valid even for randomized algorithms. The proof shows that expected

loads in the optimal algorithm have to be in geometric sequence with the ratio

m : (m � 1), if the machines are always ordered so that their loads are non-

decreasing and there are no long jobs; in this case this has to be true at all

times, as using preemption we can always balance the machines exactly.

Interestingly, for this model there exists a deterministic algorithm matching

this lower bound. It essentially tries to preserve the invariant above, with some

special considerations for large jobs.

Thus, in this model both deterministic and randomized cases are completely

solved, giving the same bounds as the randomized lower bounds in Table 1. More-

over, we know that randomization does not help. This agrees with the intuition.

In the basic model randomization can serve us to spread the load of a job among

more machines, but we still have the problem that the individual con�gurations

cannot look exactly as we would like. With preemption, we can spread the load

as we wish, while still keeping just one con�guration with the ideal spread of the

total load, and this makes it more powerful than randomization.

4.4 Scheduling with rejections

In this version jobs may be rejected at a certain penalty. Each job is characterized

by the running time and the penalty. A job can either be rejected, in which case

its penalty is paid, or scheduled on one of the machines, in which case its running

time contributes to the completion time of that machine (as usual). The objective

is to minimize the makespan of the schedule for accepted jobs plus the sum of

the penalties of all rejected jobs. Again, there are no additional constraints and

all the machines have the same speed.

The main goal of an on-line algorithm is to choose the correct balance be-

tween the penalties of the rejected jobs and the increase in the makespan for the
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accepted jobs. At the beginning it might have to reject some jobs, if the penalty

for their rejection is small compared to their running time. However, at some

point it would have been better to schedule some of the previously rejected jobs

since the increase in the makespan due to scheduling those jobs in parallel is

less than the total penalty incurred. Thus this on-line problem can be seen as a

non-trivial generalization of the well-known ski rental problem.

We �rst look at deterministic algorithms in the case when preemption is

not allowed [10]. At �rst it would seem that a good algorithm has to do well

both in deciding which jobs to accept, and on which machines to schedule the

accepted jobs. However, it turns out that after the right decision is made about

rejections, it is su�cient to schedule the accepted jobs using List Scheduling.

This is certainly surprising, as we know that without rejections List Scheduling

is not optimal, and hence it is natural to expect that any algorithm for scheduling

with rejections would bene�t from using a better algorithm for scheduling the

accepted jobs.

We can solve this problem optimally for m = 2 and for unbounded m, the

competitive ratios are � and 1+�. However, the best competitive ratio for �xed

m � 3 is not known. It certainly tends to 1 + �, which is the optimum for

unbounded m, but the rate of convergence is not clear: while the upper bound

is 1 + � � 1=m (i.e., the same rate of convergence as for List Scheduling), the

lower bound is only 1 + �� 1=O(logm).

The optimal algorithm for two machines is extremely simple: if a job with

running time t and penalty p is presented, we reject it if t � �p; otherwise we

schedule it using List Scheduling. The optimal algorithm for arbitrary m uses

two rules for rejecting jobs: (i) a job is rejected whenever t � mp, and (ii) a job

is rejected if t � �(P + p), where P is the total penalty of all jobs rejected so

far by the rule (ii); accepted jobs are again scheduled by List Scheduling.

The lower bounds for small m from [10] work also for preemptive determinis-

tic algorithms, but for large m yield only a lower bound of 2. An improved algo-

rithm for deterministic preemptive scheduling was designed in [69]. It achieves

competitive ratio 2:3875 for all m. The scheme for rejecting jobs is similar as in

the previous case, but the optimal algorithm for preemptive scheduling is used

instead of List Scheduling. An interesting question is whether a better than 2-

competitive algorithm can be found for m = 3: we now know several di�erent

2-competitive algorithms even without preemption, but the lower bound does

not match this barrier.

Randomized algorithms for this problem were designed in [70, 69]. The gen-

eral idea is to use modi�cations of the deterministic algorithms where the thresh-

olds for rejection are parameterized, and certain random choice of these param-

eters is made. In the non-preemptive case the competitive ratios are 1:5, 1:8358,

and 2:0545 for m = 2; 3, and 4. With preemption better upper bounds can be

achieved. No algorithms better than the deterministic ones are known for large

m. The lower bounds for randomized scheduling without rejection (Table 1)

clearly apply here (set the penalties in�nitely large), and no better lower bounds

are known.
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deterministic deterministic upper bounds randomized upper bounds

m lower bounds non-preemptive preemptive non-preemptive preemptive

2 � � 1:6180 � � 1.5000 1.5000

3 1.8392 2.0000 2.0000 1.8358 1.7774

4 1.9276 2.1514 2.0995 2.0544 2.0227

5 1.9660 2.2434 2.1581 2.1521 2.0941

1 1 + � � 2:6180 1 + � 2:3875 { {

Table 2. Current bounds for algorithms scheduling jobs one by one with possible

rejection.

The results are summarized in Table 2. The deterministic lower bounds apply

both for algorithms with and without preemption, with the exception of arbitrary

m where the lower bound is only 2 with preemption.

4.5 Di�erent speeds

For related machines, a simple doubling strategy leads to a constant competitive

ratio [2]. We guess an estimate on the makespan, and schedule each job on the

slowest machine such that the current makespan does not exceed the estimate;

if this fail we double the estimate and continue. The competitive ratio can be

improved by using more sophisticated techniques instead of doubling, but its

precise value is not known, see [5] for more references.

For the restricted assignment the optimal competitive ratio is �(logm) both

for deterministic and randomized algorithms [6]. For unrelated machines with

no restriction it is also possible to obtain O(logm)-competitive deterministic

algorithm [2, 60]. By the previous lower bound this is optimal, too.

It is interesting that both for related and unrelated machines the optimal

algorithms are asymptotically better than List Scheduling. Here List Scheduling

is modi�ed so that the next job is always scheduled on that machine on which it

will �nish earliest (for the case of identical speed this is clearly equivalent to the

more usual formulation that the next job is scheduled on the machine with the

smallest load). For unrelated machines the competitive ratio of List Scheduling

is exactly n [2]. For related machines the competitive ratio of List Scheduling

is asymptotically �(logm) [22, 2] (the lower and upper bounds, respectively).

The exact competitive ratio for m = 2 is � and for 3 � m � 6 it is equal to

1 +

p

(m� 1)=2 [22]; moreover for m = 2; 3 it can be checked easily that there

is no better deterministic algorithm.

For two machines we are able to analyze the situation further [30]. Suppose

that the speeds of the two machines are 1 and s � 1. It is easy to see that

List Scheduling is the best deterministic on-line algorithm for any choice of s.

For s � � the competitive ratio is 1 + s=(s + 1), increasing from 3=2 to �. For
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s � � the competitive ratio is 1 + 1=s, decreasing from � to 1; this is the same

as for the algorithm which puts all jobs on the faster machine. It turns out

that this is also the best possible randomized algorithm for s � 2. On the other

hand, for any s < 2 randomized algorithms are better than deterministic ones. If

we consider deterministic preemptive scheduling, the competitive ratio is better

than for non-preemptive randomized scheduling for any s > 1, moreover, it is

also always better than for the identical machines (s = 1), in contrast without

preemption the worst competitive ratio (both deterministic and randomized) is

achieved for some s > 1.

4.6 Shop scheduling [21]

On-line shop scheduling was so far considered mainly for two machines. This vari-

ant of scheduling is somewhat di�erent from all the ones we considered before,

since here it may be necessary to introduce idle times on the machines. Hence

we need to specify also the time slots for each job, not only the machine(s) on

which it runs as before. As a consequence, this variant no longer corresponds to

load balancing.

For 
ow shop and job shop scheduling it turns out that no deterministic

algorithm is better than 2-competitive. To design 2-competitive algorithm is

trivial: just reserve for each job the needed time on both machines. The same

lower bound holds even if preemption is allowed. On the other hand, we do not

know if it is possible to extend it to randomized algorithms, with or without

preemption.

For open shop the situation is more interesting. If preemption is allowed,

the optimal competitive ratio is 4=3. As far as randomization is concerned, the

situation is similar as in the basic model with preemption: the 4=3-competitive

algorithm is deterministic, while the lower bound holds also for randomized

algorithms. Without preemption we have a 1:875-competitive deterministic al-

gorithm and a lower bound of � � 1:6180 for deterministic algorithms. Nothing

is known about the power of randomization in this case.

Only a few observations are known about open shop scheduling for m � 3.

Joel Wein observed that for preemptive open shop scheduling there exists a

2-competitive algorithm for arbitrary m. Gerhard Woeginger and the author ob-

served that the randomized lower bound from the basic model which approaches

e=(e� 1) � 1:5819 (see Table 1) can be modi�ed to work for open shop, too.

4.7 Minimizing the L

p

norm [3]

Here we minimize the L

p

norm of the load vector, instead of the makespan, which

is equivalent to the L

1

norm. Of special interest is the Euclidean L

2

norm, the

square root of the sum of squares of loads, which has a natural interpretation in

load balancing [5, 4]. For L

2

norm, List Scheduling is

p

4=3 competitive, and this

is optimal. The performance of List Scheduling is not monotone in the number

of machines. It is equal to

p

4=3 only for m divisible by 3, otherwise it is strictly

better.
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More surprisingly, there exists an algorithm which is for su�ciently large

m better than

p

4=3 � � for some � > 0, which means that also the optimal

competitive ratio is not monotone in m. For a general p, the same approach

leads also to an algorithm better than List Scheduling for large m.

4.8 Minimizing the total completion time [36]

In this variant it is necessary to use idle times, as we have to �nish the jobs with

short running times �rst to minimize the total completion time. Even on a single

machine it is hard to design a good algorithm and the competitive ratio depends

on the number of jobs logarithmically. More precisely, there exists a deterministic

(logn)

1+"

-competitive algorithm on a single machine without preemptions, but

no logn-competitive algorithm exists even if preemption is allowed.

4.9 Open problems

Randomized algorithms We understand very little about the power of ran-

domization in this on-line paradigm. We know that randomization does not help

in most of the variations with preemption. It is open whether randomization

helps for shop scheduling and in the model with rejections for large m.

In the basic model, we only know the optimal randomized algorithm for

m = 2, but for large m we even know no better randomized algorithms than

deterministic ones. We conjecture that randomized algorithms are provably bet-

ter than deterministic ones for every m, and also for m tending to in�nity. The

following two problems seem to be most interesting.

Open Problem 4.1 Design an optimal randomized algorithm for 3-machine

scheduling (in the basic model).

Open Problem 4.2 Design a randomized algorithm for arbitrary number of

machines which is provably better than any such deterministic algorithm.

Asymptotic behavior of the competitive ratio In the basic model we do

not know optimal deterministic algorithms for any �xed m > 3. A major open

problem is this.

Open Problem 4.3 Determine the optimal competitive ratio for deterministic

scheduling algorithms in the basic model working for arbitrary m.

Considering this problem, we usually assume that the competitive ratio in-

creases with increasing m, and hence the hardest case is for m large. However,

the following problem is open.

Open Problem 4.4 Prove that the optimal competitive ratio for m is less than

or equal to the optimal competitive ratio for m+ 1.
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Not only that, we even cannot prove that the competitive ratio increases if the

number of machines for example doubles (this seems to be a more reasonable

goal, as we could avoid some anomalies that occur when the increase of the

number of machines is small, cf. [43]). The lack of our knowledge is demonstrated

by the fact that we even cannot exclude that the maximal competitive ratio

is actually attained for some m < 1. The problems about behavior of the

competitive ratio as a function of m are equally open for randomized scheduling.

To compare, for scheduling with rejections we know the limiting value for

large m, and we also know that if we increase the number of machines exponen-

tially, the competitive ratio actually increases. On the other hand, if we minimize

the L

2

norm instead of the makespan, the maximal competitive ratio is achieved

for m = 3, and the limit for large m is strictly smaller.

5 Unknown running times

In this on-line paradigm the running time of a job is unknown until the job

�nishes. This is motivated by the situation of a scheduling algorithm which gets

the jobs from di�erent users and has no way of saying how long each job will

take. We �rst focus on minimizing the makespan and later in Section 5.4 we

discuss other objective functions.

We are interested in the variants with jobs released over time, either at their

release times or according to the precedence constraints, but also in the variant

of batch-style scheduling where all the jobs are given at time 0. The next general

reduction theorem explains why the batch-style algorithms are so important.

Theorem4 [75]. Suppose that we have a batch-style �-competitive algorithm

(w.r.t. the makespan). Then there exists a 2�-competitive algorithm which allows

release times.

Proof. Consider an on-line algorithm that works in phases as follows. In each

phase all jobs available at the beginning of the phase are scheduled using the

batch-style algorithm. The next phase starts immediately after all these jobs are

processed, or, if no jobs are available at that time, at the time the next job is

released. This describes a legal algorithm, as at the beginning of each phase no

job is running and hence we can use the batch-style algorithm.

Now consider a schedule generated by this algorithm. Let T

3

be the time

spent in the last phase, T

2

the time spent in the last but one phase, and T

1

be the time of all the previous phases. We know that T

2

� �T

opt

, as the jobs

scheduled during T

2

must be scheduled by the optimal schedule, too, and the

batch-style algorithm is �-competitive. Similarly, T

1

+ T

3

� �T

opt

, as the jobs

scheduled during T

3

can be scheduled in the optimal schedule only after the time

T

1

(if they are released earlier, the on-line algorithm would schedule them in one

of the earlier phases), and the batch-style algorithm takes at most � times longer

than the optimal one. The theorem now follows. ut

The above reduction is completely satisfactory if we are interested only in

the asymptotic behavior of the competitive ratio. However, if the competitive
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ratio is a constant, we may be interested in a tighter result. In [34] it is proved

that for a certain class of algorithms the competitive ratio is increased only by

1, instead of the factor of 2 in the previous theorem; this class of algorithms

includes all algorithms that use a greedy approach similar to List Scheduling.

The intuition beyond these reductions is that if the release times are �xed,

the optimal algorithm cannot do much before the last release time. In fact, if

the on-line algorithm would know which job is the last one, it could wait until

its release, then use the batch-style algorithm once, and achieve the competitive

ratio of � + 1 easily.

In the basic model where the only characteristic of a job is the running time,

there is not much we can do if we do not know it. Theorem 1 shows that List

Scheduling is 2 �

1

m

competitive also if release times are allowed (hence we do

not lose anything in the competitive ratio, unlike in the reductions above), the

same bound is true even with precedence constraints. This competitive ratio is

tight for deterministic algorithms and almost tight for randomized algorithms,

even restricted to the batch-style model.

Theorem5 [75]. For batch-style scheduling with unknown running times, no

deterministic algorithm is better than (2 �

1

m

)-competitive and no randomized

algorithm is better than (2�O(

1

p

m

))-competitive.

Proof. In the deterministic case we use the same instance as in Theorem 1. The

algorithm is given m(m� 1) + 1 jobs. All of them have running time 1, except

the one scheduled last, which has running time m. We can assign the running

times in this way, since the algorithm is deterministic and we can simulate it on

the instance where all the jobs have running time 1. After we see which job is

scheduled last, we change its running time to m. As the algorithm does not see

the running times, it has to behave identically. The last job is scheduled at time

at least m� 1, hence the on-line schedule has makespan at least 2m� 1, while

the optimal makespan is m.

For the randomized case we consider the instance with

p

m jobs of running

time m and m(m �

p

m) jobs of running time 1, permuted randomly. As the

algorithm does not see the running times, whenever it schedules a job, it in fact

chooses one of the remaining ones at random. A standard computation shows

that the probability that the last cm

3=2

jobs contain no long jobs is at most �

c

for some constant �. Hence the expected time when the last long job is scheduled

is at least m � O(

p

m) and the expected makespan of the on-line algorithm is

at least 2m�O(

p

m), while the optimal makespan is m. ut

5.1 Di�erent speeds

Here we consider both variants, uniformly related machines and unrelated ma-

chines. In the case of related machines the speed of each machine is the same for

all jobs and given in advance. For unrelated machines the speeds are di�erent

for each job. However, we assume that the speeds are known for each job, only
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the running time is not known (i.e., for each job we know the relative speeds of

machines).

If no restarts are allowed, a simple example shows that the best competitive

ratio is 
(

p

m) [23], even for uniformly related machines. Consider the case of

m jobs to be scheduled on m machines, one with speed

p

m and the rest with

speed 1. Whenever a job is scheduled on one of the slow machines, we assign

it long running time, and scheduling it on the fast machine is

p

m times faster;

if all jobs are scheduled on the fast machine we assign them the same running

time, and lose the same factor. A matching, O(

p

m)-competitive, algorithm is

known even for unrelated machines [23].

Next we consider the case when restarts are allowed, studied in [75]. In this

case we can use a similar general reduction as Theorem 4 to convert an arbi-

trary o�-line algorithm into an on-line algorithm. (We can use either the op-

timal algorithm, or, if we require polynomial time algorithm, we can use the

approximation schemes known for the considered problems to obtain the same

asymptotic bounds.) Since we do not know the running time, we guess that all

jobs have some chosen running time, then run the appropriate schedule. If any

job is not �nished in the guessed time, we stop it, double the estimate, and

repeat the procedure for all such jobs. This method, together with additional

improvements, yields for uniformly related machines an algorithm with compet-

itive ratio O(min(logm; logR)), where R is the ratio between the largest and

smallest speed. A matching lower bound shows that this is optimal. Also in the

restricted assignment case there exists O(logm)-competitive algorithm, but it is

not known whether this is tight; in fact the best lower bound is only 2�

1

m

. For

unrelated machines similar methods yield an O(logn)-competitive algorithm,

where n is the number of jobs. It would be interesting to know if there exists an

on-line algorithm with a competitive ratio independent of n.

5.2 Parallel jobs

In this variant each job is characterized by its running time and the number

of machines (processors) it requests. We consider two variants, batch-style al-

gorithms and algorithms for instances with precedence constraints. While the

running times are unknown, the number of machines a job requests is known as

soon as it becomes available. All machines have the same speed and no preemp-

tions or restarts are allowed.

Consider the simplest greedy approach for batch-style algorithms: whenever

there are su�ciently many machines idle, we schedule some job on as many

machines as it requests. This leads to (2�

1

m

)-competitive algorithm, regardless

of the rule by which we choose the job to be scheduled (note that here we have

a meaningful choice, as we know how many machines each job requests) [35].

This is optimal by Theorem 5, as the basic model corresponds to the special

case when each job requests only one machine. Moreover, this algorithm works

even for non-malleable jobs.

If we allow precedence constraints, no reasonable on-line algorithm exists for

non-malleable parallel jobs. Consider the following situation. At the beginning
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there are available m jobs requesting one machine; one of them has running time

1 and all other 0. There is one parallel job requesting all machines and running

time 0; this job is dependent on one of the jobs with running time 0. The on-line

algorithm cannot distinguish the jobs available at the beginning, so that it may

happen that the parallel job can be scheduled only after the job with running

time 1 is �nished. If we iterate this properly, we obtain a lower bound of m on

the competitive ratio; a trivial algorithm which at each time schedules only one

job achieves this [33]. This argument works also for randomized algorithms, and

gives a lower bound of m=2 in this case [72].

Hence we turn our attention to ideally malleable jobs. It turns out that the

optimal competitive ratio for deterministic algorithms is 1 + � � 2:6180, and it

is achieved by the following simple algorithm [33].

Algorithm Parallel

(i) If an available job requests p machines and p machines are idle, schedule

this job on p machines.

(ii) If less than m=� machines are busy and some job is available, schedule

it on all available machines.

Note that this algorithm uses the fact that jobs are malleable only for large

jobs. Accordingly, if there is an upper bound on the number of machines a job

can use, we can get better algorithms and also algorithms for non-malleable

jobs. The tight tradeo�s are given in [33]. It is also interesting that this result

improves on the best previously known o�-line algorithm, which only achieves

an approximation ratio 3 [82].

5.3 Parallel jobs on speci�c networks

Here we consider a similar model as in the last section with an additional restric-

tion. We require that each parallel job is scheduled on some subset of machines

with a speci�c structure, not an arbitrary subset as before. This is motivated

by the situation in which parallel jobs are designed for speci�c multiprocessor

systems and may use the speci�c properties of the network connecting the indi-

vidual processors. We consider three topologies of this network. If the network

is a hypercube, each parallel job can only be scheduled on a subhypercube of

the network (in particular the number of processors a job requests must be a

power of two). If the network is a linear array, each job must be scheduled on a

contiguous segment of this line. If the network is a two-dimensional mesh, a job

must be scheduled on a rectangle of given dimensions. The previous case with

no restriction on the set of machines may be viewed as the case of PRAM or a

complete graph, where every two machines are directly connected, and therefore

there is no preference among the subsets.

Table 3 summarizes the results in this model. The results for deterministic

batch-style algorithms are from [35], the results for deterministic algorithm with

precedence constraints from [33], and the results on randomized algorithms are

from [72, 73].
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Network Batch-style With precedence constraints

Deterministic Randomized Deterministic Randomized

Hypercube 2�

1

m

� 2�

1

m

O(

logm

log logm

) O(

logm

log logm

)

Linear array � 2:5 � 2:5 �(

logm

log logm

) �(

logm

log logm

)

Two-dimensional mesh O(

p

log logm) O(1) O((

logm

log logm

)

2

) O((

logm

log logm

)

2

)

Table 3. Summary of results for scheduling parallel jobs with unknown running times

on speci�c networks.

For batch-style algorithms we have seen in the previous section that with

no restriction given by the network the simple greedy approach works. This

is no longer true for speci�c networks; the problem is that a few jobs using

one machine can make the whole system unusable for larger jobs. If we allow

preemptions or restarts, we can solve this easily by rearranging the jobs into

some compact area, but if it is impossible to stop a job, the situation is more

di�cult. It is always essential to sort the jobs according to their sizes. If we

then schedule the jobs greedily from the largest ones (i.e., those requesting most

machines), we get the optimal batch-style algorithm for hypercubes. For linear

array this leads to 3-competitive algorithm, the 2:5-competitive algorithm needs

more careful placement of the jobs.

For two-dimensional mesh the situation is most interesting. It is no longer

possible to start from the largest jobs, as for example 10�10 and 5�20 meshes

are not comparable. Instead, we divide the jobs into (logm)

2

classes so that the

jobs in each class require meshes of similar sizes, and deal with each of them

separately. The optimal deterministic algorithm always schedules all of them at

once in equal partitions of the mesh, and repeats this procedure several times.

Interestingly, any greedy approach that tries from the beginning to use the whole

mesh fails and leads to an algorithm whose competitive ratio is the square of

the optimal one; to achieve the optimal results we have to start by using only a

small portion of the mesh.

In the case of two-dimensional meshes we know that randomization decreases

the competitive ratio from non-constant one to a constant. The basic idea is to

sample the running times in each class of jobs, and then to schedule each class in

an area of the mesh proportional to the estimate of the total work (running time

times the number of machines requested) in that class (unlike the deterministic

case where we use the same area for each class). To make this work, it is essential

to bound the probability that some estimate is wrong by a constant. Since the

number of classes is non-constant, this requires a trick: we use the fact that from

the classes of jobs requiring less machines we can sample more jobs in the same

time and thus we get more accurate estimates.

As in the previous section, all the batch-style algorithms work for non-

malleable jobs, but no better algorithms exist even for malleable jobs. Again,
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with precedence constraints, we always need to use malleable jobs to obtain

non-trivial upper bounds.

Even then in the presence of precedence constraints we cannot use the same

ideas as for the batch-style algorithms. Even if we process at the beginning

all available large jobs, we cannot exclude that later on more of them become

available. Thus the best algorithms we can design simply set aside groups of

machines for each size of the jobs. For example, for linear array we divide the

line of machines into logm= log logm segments, divide the jobs according to the

sizes so that in each class the number of requested machines di�ers by at most a

factor of logm= log logm, and schedule each class in its segment greedily, using

malleability if necessary. Whenever some job is available and not running, one

of the segments is fully used, and no job is slowed down by a larger factor than

logm= log logm due to malleability; this together gives the upper bound. It is

interesting that this simple approach is optimal and even randomization does

not help to improve it; the proof of this result is tedious.

Many results in Table 3 are tight, but a few gaps remain. For batch-style

algorithms we do not know the exact competitive ratio for the case of linear

array. This is interesting, since the case of linear array is an on-line version of

the strip packing, where we have to pack given rectangles into a strip of �xed

width and as small height as possible. For a long time the best algorithm for

this o�-line problem gave approximation ratio 2:5 [76], which was matched by

the on-line algorithm mentioned in the table. Later, the o�-line solution was

improved to approximation ratio 2 [77], and it would be interesting to see if this

can be achieved by an on-line algorithm, too. The strip packing problem was

also studied in the setting equivalent to our paradigm of scheduling jobs one by

one as a variant of two-dimensional bin packing, see [38].

For scheduling with precedence constraints on two-dimensional meshes, both

deterministic and randomized, there is a gap between the lower bound which

follows from the lower bound for linear arrays and is 
(logm= log logm) and

the upper bound which is the square of the lower bound. For hypercubes there

is no non-trivial lower bound, the claim of a tight bound for this case in [33] is

incorrect.

5.4 Other objective functions

In this section we consider the competitive ratio w.r.t. the total waiting time

and completion time on identical machines. To minimize these objectives o�-

line, we have to schedule �rst the jobs with small running times. If there are no

preemptions, we clearly cannot do this at all for unknown running times even

in batch-style scheduling: consider a sequence of n � 1 jobs with running time

0 and one job with running time t on a single machine. If we do not know the

running time, it may happen that we schedule as the �rst job the long one (even

in the randomized case with probability 1=n), and the resulting total waiting

time is (n� 1)t, while the optimal schedule has waiting time 0. Thus, we have

to use preemption, and even then it is surprising that we can design competitive
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algorithms at all. We also assume that there is a minimal running time for each

job (the above example also shows that this is necessary).

First we consider batch style algorithms for sequential jobs. In turns out

that the optimal competitive ratio is obtained by the simple Round Robin algo-

rithm. It cycles through all un�nished jobs and assigns to each of them to one

of the machines and time slot of length � �xed beforehand. This algorithm has

competitive ratio 2 [63] even w.r.t. the total waiting time. (More precisely, if �

approaches zero, the competitive ratio approaches 2 from above.) This is optimal

even for randomized algorithms, and even if we consider the total completion

time instead of waiting time [63].

It is somewhat unsatisfactory that in the previous algorithm the number of

preemption is �(t) for a job with running time t. It turns out that for sequential

jobs we can increase � during the Round Robin algorithm so that the values in

the successive cycles form a geometric sequence. Then the competitive ratio is

the same, approaching 2 from above for small starting � and a small step of the

geometric sequence, and the number of preemption decreases to �(log t) [63].

This is optimal for deterministic algorithms, as any algorithm with o(log t) pre-

emptions has competitive ratio at least 
(n) [63].

Interestingly, the results for batch-style scheduling can be generalized to par-

allel jobs. Here we consider only total completion time (note that waiting time

is not well de�ned for malleable parallel jobs). For ideally malleable jobs there

exists a 2-competitive deterministic algorithm [25], matching the performance

for sequential jobs (consequently, randomization cannot help in this case).

A wide range of types of non-ideally malleable jobs together with various

restrictions on the number of preemptions is studied in [29]. It is even possible

to obtain algorithm for non-ideally malleable jobs under the restriction that the

speedup function is non-decreasing and sublinear, which means that allocating an

extra processor cannot decrease the actual processing time and cannot decrease

the work done for this job; we can even allow to that this parallelism pro�le

changes over time for each job. Here the simple algorithm which assigns the

same number of processors to each un�nished job has competitive ratio at most

2 +

p

3 � 3:74; the number of preemptions is n for each job, but it can be

decreased to logn at the cost of constant factor increase in the competitive

ratio [29]. (Note that here the jobs are allowed to change parallelism pro�le; in

other models this would be treated e.g. as a sequence of distinct di�erent jobs and

the number of jobs n could increase signi�cantly.) Another type of parallel jobs

is studied in [24]. Here each job is represented as a directed graph of sequential

(sub)jobs, and the competitive ratio achieved is 4.

For algorithms with release times, we know that there are no good on-line

algorithms w.r.t. total 
ow time even for sequential jobs. The competitive ratio

is at least 
(n

1=3

) for deterministic algorithms and 
(logn) for randomized

algorithms [63].
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5.5 Open problems

This on-line paradigm seems to be understood relatively well, including such

issues like randomization. Perhaps the most interesting problem concerns the

general reduction in Theorem 4.

Open Problem 5.1 Find a variant of scheduling for which the optimal com-

petitive ratio (w.r.t. the makespan) for algorithms with release times is twice the

optimal competitive ratio for batch-style algorithms.

In particular, this possibility is open for parallel jobs with no speci�c network,

on hypercubes, and on linear arrays, where the best competitive ratios in the

presence of release times given by Theorem 4 are 4, 4, and 5, respectively. It

would be interesting to improve any of these bounds. Note that if we allow

malleable jobs in the case with no speci�c network, the algorithm Parallel gives

the upper bound of 1+�, which is strictly below the upper bound of 4 obtained

by Theorem 4 for this case.

6 Jobs arriving over time

In this paradigm the only feature unknown to the on-line algorithm is the ex-

istence of the jobs whose release time did not pass yet. In the results surveyed

in this section we will see that from many viewpoints such algorithms can do

almost as well as o�-line algorithms.

We �rst consider the objective of minimizing the makespan, and then turn

to other objective functions and scheduling of con
icting jobs.

6.1 Minimizing the makespan

Here a batch-style algorithm has full information, and hence it can schedule the

jobs optimally. Thus from Theorem 4 we get the following result.

Theorem6 [75]. For any variant of on-line scheduling of jobs arriving over

time (with all characteristics known), there exists a 2-competitive algorithm

w.r.t. the makespan.

As most of the scheduling variants are NP-hard, algorithms obtained by the

previous theorem may not be computationally feasible. However, instead of an

optimal algorithm we can use an o�-line �-approximation algorithm, in which

case we obtain a 2�-competitive on-line algorithm.

For the basic scheduling problems we can achieve even better results than

using this reduction. The optimal, i.e., 1-competitive, on-line algorithms for pre-

emptive scheduling on identical machines is given in [42, 48]. The idea of the

algorithm is simple: whenever a new job arrives, we reschedule the un�nished

parts of previous jobs and all unscheduled jobs so that they are �nished as early

as possible. For uniformly related machines with di�erent speeds an optimal on-

line algorithm exists if and only if the speeds satisfy s

i�1

=s

i

� s

i

=s

i+1

, where
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s

i

is the speed of ith fastest machine [80, 81]. All these algorithms use �(mn)

preemptions, and this is actually necessary [80, 81].

For uniformly related machines with arbitrary speeds there exist optimal

algorithms that are nearly on-line [66, 58]. This means that at each time we know

when the next job will be released, in addition to the running times of already

released jobs. Any nearly on-line optimal algorithm can be easily transformed

into a (1 + ")-competitive on-line algorithm for arbitrary " > 0: The on-line

algorithm chooses a small � > 0, changes the instance by introducing new jobs

with release dates at each multiple of � and running time 0 (or su�ciently small)

and by delaying each release time of an original job by �. Now it uses the nearly

on-line scheduler on the new instance; it always knows the next release time

which is at most � away. The result is an on-line algorithm which produces a

makespan of T

opt

+�, i.e., with only a small additive constant; to achieve a small

relative error, choose � proportional to the running time of the �rst released job

with non-zero running time. Note that this on-line algorithm is 1-competitive

if we allow an additive term in the de�nition of competitiveness, but it is not

optimal and not 1-competitive if we allow no additive term. Thus, using the

results of [80, 81], for uniformly related machines with certain speed ratios we

have a curious situation where (1 + ")-competitive algorithms do exist for any

" > 0, but no optimal on-line algorithm exists.

If we consider scheduling without preemptions, we no longer can get a 1-

competitive algorithm, even for identical machines. The best upper bound was

obtained for the simple algorithm which always schedules the available job with

the longest running time; this algorithm is 1:5-competitive [19, 81]. A lower

bound of 1:3473 shows that this is close to the best possible [19, 81].

For open shop scheduling on two machines the greedy algorithm achieves the

competitive ratio of 3=2; this is optimal for scheduling without preemptions [20].

With preemption, a 5=4 competitive algorithm exists and this is optimal [20].

Note that the greedy algorithm can also be used in the paradigm with unknown

running times; in that case it is optimal even if preemptions are allowed [20].

6.2 Minimizing the total weighted completion time

For minimizing the total completion time, and even total weighted completion

time, it is possible to give a similar general theorem as Theorem 6 [47, 45, 14].

More surprisingly, it is possible to design schedules that are close to optimal si-

multaneously for the total completion time and the makespan [14]. For technical

reasons we assume that all running times are at least 1. The algorithm for this

general reduction is the following.

Algorithm Greedy-Interval

for i := 0; 1; : : : do

At time � = 2

i

consider all the jobs released by the time � and not sched-

uled yet.
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(i) Find a schedule with the optimal makespan for these jobs. If it is

shorter than � , use it starting at time � (i.e., at time 2� all the

jobs will be �nished).

(ii) Otherwise �nd a schedule with makespan at most � which schedules

the jobs with the largest possible total weight and use it starting

at time � .

Theorem7 [47, 45, 14]. For any variant of on-line scheduling of jobs arriving

over time, Greedy-Interval is 4-competitive w.r.t. the total weighted completion

time and simultaneously 3-competitive w.r.t. the makespan.

Proof. First we prove that Greedy-Interval is competitive w.r.t. the total weighted

completion time. Fix an optimal schedule. The rule (ii) of the algorithm guar-

antees that the total weight of the jobs that Greedy-Interval completes by the

time 2

l+1

is at least the total weight of jobs �nished by time 2

l

in the optimal

schedule. Hence the weight of jobs Greedy-Interval �nishes by an arbitrary time

� is at least the weight the optimal schedule �nishes by time �=4. The bound

now follows as the total completion time can be equivalently expressed as the

sum of the weight of un�nished jobs over all times.

Next we prove that Greedy Interval is competitive w.r.t. the makespan. Sup-

pose that the optimal makespan T

opt

satis�es 2

i

� T

opt

< 2

i+1

. All jobs are

released by 2

i+1

, so in the next iteration Greedy-Interval is able to sched-

ule all jobs and �nds the optimal schedule. Hence its makespan is at most

T

opt

+ 2

i+1

� 3T

opt

. ut

For preemptive scheduling on a single machine w.r.t. the total completion

time it is easy to construct an optimal schedule on-line by always running the

job with shortest remaining processing time. The same rule yields a 2-competitive

algorithm on identical machines [64].

In the case of single-machine non-preemptive scheduling it is also possible to

get better bounds than in Theorem 7. For minimizing the total completion time

2-competitive algorithms were given [64, 49, 78], moreover this is optimal [49,

78]. (An open question is whether it helps if we allow restarts, a lower bound

for deterministic algorithms is 1:112 [81].) For minimizing the total weighted

completion time a slight modi�cation of Greedy-Interval yields a competitive

ratio of 3 [45]; later this was improved to 1 +

p

2 � 2:414 by �-point scheduling

discussed below [40].

As in Theorem 6, it is possible to use an approximation algorithm instead

of the infeasible optimal one and obtain accordingly larger competitive ratios.

Here the goal of the approximation algorithm is not to schedule all jobs as fast

as possible, but it needs to solve a dual problem, namely within a given time, to

schedule jobs with as large weight as possible; we then use this algorithm also in

the step (i) of Greedy-Interval instead of the optimal makespan schedule. This

gives competitive ratio 4� w.r.t. both the makespan and the total completion

time, if � is the approximation ratio of the algorithm we use. Number of results

that follows from using such approximation algorithms is described in [47, 45,

14]; for example for minimizing the total weighted completion time on identical
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machines there exists an (1+ ")-approximation polynomial time algorithm, and

hence we obtain (4 + ")-competitive polynomial time algorithm [45].

A general randomization technique can be used to improve upon the deter-

ministic algorithm Greedy-Interval. If we use � = �2

i

in the algorithm for �

chosen uniformly between 1=2 and 1, the competitive ratios will be 2:89 w.r.t.

the total completion time and 2:45 w.r.t. the makespan [14]. (Note that since

the randomized competitive ratio is actually an expectation, we cannot guaran-

tee that the schedule is actually simultaneously within the given factor of both

objective functions. However, this proves e.g. that there always exists a schedule

which is within a factor of 2:89 of the optimal total completion time and within

a factor of 3 of the optimal makespan.)

One method to obtain deterministic 2-competitive algorithms w.r.t. the total

completion time is to take the optimal preemptive schedule (which is easy to

compute even on-line) and schedule the jobs in the order of their completion in

this auxiliary schedule [64]. This idea led to a generalization which turned to be

very useful for o�-line approximation algorithms and also for randomized on-line

scheduling.

Call an �-point of a job the �rst time when � fraction of this job is �n-

ished. Now schedule the jobs in the order of �-points for some � [47]. (Thus

the method of [64] is simply scheduling in the order of 1-points.) After using

�-point scheduling for o�-line algorithms in [47], it was observed that choosing

� randomly, under a suitable distribution and starting from a suitable preemp-

tive schedule that can be computed on-line, leads to new randomized on-line

algorithms [15, 40]. These methods generally lead not only to c-competitive al-

gorithms for non-preemptive scheduling, they in fact guarantee that the pro-

duced non-preemptive schedule is within the factor c of the optimal preemptive

schedule.

In the case of a single machine �-point scheduling leads to a randomized

algorithm with competitive ratio w.r.t. the total completion time e=(e � 1) �

1:5819 [15]; this is also optimal [79, 81]. For the total weighted completion time

�-point scheduling gives a randomized 2-competitive algorithm for a single ma-

chine [40]. Recently, this has been improved to 1:6853-competitive algorithm, us-

ing a further modi�cation that the � is chosen randomly not once for the whole

schedule but independently for each job [41]. Similar methods can be used also

for other problems. If preemption is allowed, a competitive ratio of 4=3 w.r.t.

the total weighted completion time for a single machine can be achieved [67].

On parallel identical machines without preemptions a randomized algorithm 2-

competitive w.r.t. the total weighted completion time was given in [68].

6.3 Minimizing the total 
ow time

Minimizing the total 
ow time is much harder than to minimize the total com-

pletion time also with known running times.

Without preemption we have strong lower bound even for a single machine.

Clearly, no deterministic algorithm can be better then n � 1 competitive: con-

sider an instance where one job with running time arrives at time 0 and n � 1
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jobs with running time 0 arrive just after this job was scheduled. Even if the al-

gorithm is randomized, no algorithm is better than 
(

p

n) competitive [79, 81],

and if a deterministic algorithm is allowed to restart jobs, the lower bound is


(

4

p

n) [81]. Note that also the o�-line problem is hard, it is NP-hard to achieve

an approximation ratio n

1

2

�"

for any " > 0 [56].

With preemptions the optimal competitive ratio still depends on the number

of jobs; it is �(log(n=m)) [61]. Only in the case when the ratio between the

maximum and the minimum running time is bounded by P , we can obtain a

bound independent of n, namely �(logP ); this is again tight [61].

6.4 Con
icting jobs

The last variant we consider in this section is very di�erent than all the ones

considered before. Here some jobs may con
ict with each other, in which case we

cannot schedule them at the same time. These con
icts are given by a con
ict

graph, which means that at any time we are allowed to schedule only an inde-

pendent set in this graph; we assume that on a given node of the con
ict graph

there may be more jobs which then have to be scheduled one by one (this can

be modeled by a clique of these jobs, but this generalization is important if we

consider restricted graphs). We assume that we have in�nitely many machines,

which allows us to focus on the issue of con
icts, and also corresponds to some

practical motivation, cf. [50]. We assume that the jobs have integral release times

and all the running times are 1; however, we can clearly relax this to arbitrary

times if we allow preemptions, as job with running time t is equivalent to t jobs

of time 1 on the same node in the con
ict graph.

For the makespan, the optimal competitive ratio is 2, even for randomized

algorithms, and it is achieved by the following simple algorithm. At any time

we �nd the coloring of the available jobs by the smallest number of colors and

schedule one of these colors. This bound follows directly from Theorem 4, even

for arbitrary known running times, and it was rediscovered in [63], who also

proved the matching lower bound.

If we consider maximal 
ow time instead of the makespan, some partial

results were obtained by [50]. They show that for con
ict graphs that are either

interval graphs or bipartite graph, there is an on-line algorithm with the maximal

response time bounded by O(v

3

A

2

), where A is the optimal objective value and

v is the number of vertices in the con
ict graph. It would be interesting to obtain

a competitive ratio which is a function of only v, i.e., a performance guarantee

linear in A. The same paper gives a lower bound of 
(v) for the competitive

ratio of deterministic algorithms which applies even to the interval and bipartite

graphs.

6.5 Open problems

Theorems 6 and 7 give very good general algorithms for the makespan and the

total weighted completion time. Moreover, for the total completion time we have

tight results at least on a single machine.
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To our best knowledge, no lower bounds for total weighted completion time

are known that are better than the bounds for the unweighted total completion

time, and also no lower bounds for total completion time on identical machines

are better than the bounds on a single machine.

Open Problem 6.1 Prove for some scheduling problem that the competitive

ratio on identical machines w.r.t. the total weighted completion time is strictly

larger than the competitive ratio on a single machine w.r.t. the total completion

time.

Another open problem is to investigate the other objective functions, total


ow time and total waiting time even in some restricted cases (as we have seen

that to minimize these objectives is hard in general).

7 Relaxed notions of competitiveness

For several variants of scheduling we have seen quite strong negative results.

However, it turns out that if we allow the on-line algorithm to use some addi-

tional information or slightly more resources than the o�-line algorithm, we can

sometimes overcome these problems and obtain reasonable algorithms.

7.1 Algorithms with more computational power

If we allow the on-line algorithm to use machines with speed 1 + ", there exists

a (1 + 1=")-competitive algorithm for minimizing total 
ow time with preemp-

tions and unknown running times on one machine [52]; in contrast without the

additional power we have seen that the competitive ratio has to depend on the

number of jobs. For scheduling of jobs arriving over time with known running

times several results of this kind are obtained by [65]; they either use O(logn)

machines instead of one in the non-preemptive one-machine version or increase

the speed of the machines by a factor of two in the preemptive m-machine ver-

sion, and in both cases they obtain the optimal sum of 
ow times. In the second

case they also show that increasing the speed by 1+" for some small " is not suf-

�cient. The positive results should again be contrasted with the negative results

if we do not allow additional resources.

7.2 Algorithms with additional knowledge

Another way to improve the performance of the on-line algorithms is to give

them some additional information. If we use List Scheduling on a sequence of

jobs with non-increasing running times arriving one by one, the competitive

ratio is 4=3 � 1=(3m), an improvement from 2 � 1=m [44]. For deterministic

scheduling of jobs arriving one by one on two machines several such possibilities

are considered in [57]. They show that the competitive ratio decreases from 3=2

to 4=3 in any of the following three scenarios. First, we know the total running
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time of all jobs. Second, we have a bu�er where we can store one job (if we allow

bu�er for more jobs, we do not gain either). Third, we are allowed to produce

two solutions and choose the better one afterwards (equivalently, this means that

we get one bit of a hint in advance). If the optimum is known, the problem is

also called bin-stretching (because we know that the jobs �t into some number

of bins of some height, and we ask how much we need to \stretch" the bins to �t

the jobs on-line), and is studied in [7]. For two machines once again 4=3 is the

correct and tight answer and for more machines a 1:625-competitive algorithm

is presented.

8 Conclusions

We have seen a variety of on-line scheduling problems. Many of them are under-

stood satisfactorily, but there are also many interesting open problems. Studied

scheduling problems di�er not only in the setting and numerical results, but also

in the techniques used. In this way on-line scheduling illustrates many general

aspects of competitive analysis.
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