Theory of Computing Systems manuscript No.
(will be inserted by the editor)

A lower bound on deterministic online algorithms for
scheduling on related machines without preemption

Tomas Ebenlendr - Jiri Sgall

Received: date / Accepted: date

Abstract We consider one-by-one online scheduling on uniformly related ma-
chines. The input is a sequence of machines with different speeds and a se-
quence of jobs with different processing times. The output is a schedule which
assigns the jobs to the machines; the completion time of a machine is the sum
of the processing times of jobs assigned to it divided by its speed. The ob-
jective is to minimize the maximal completion time. The jobs arrive one by
one and each has to be assigned to one machine immediately and irrevocably
without the knowledge of the future jobs. We prove a new lower bound of 2.564
on the competitive ratio of deterministic online algorithms for this problem,
improving the previous lower bound of 2.438.

Keywords Online algorithms - Scheduling - Makespan - Uniformly related
machines - Lower bounds

1 Introduction

We prove a new lower bound for online scheduling on uniformly related ma-
chines. This is one of the simplest and most fundamental scheduling problems,
yet it remains widely open and there have been no recent progress on it.

The instance of this problem consists of a sequence of machines with possi-
bly different speeds and a sequence of jobs specified by their processing times.

Partially supported by the Center of Excellence — Inst. for Theor. Cqmp. Sci., Prague
(project P202/12/G061 of GA CR) and grant IAA100190902 of GA AV CR.

T. Ebenlendr B
Institute of Mathematics, AS CR, Zitné 25, CZ-11567 Praha 1, Czech Republic.
E-mail: ebik@math.cas.cz

J. Sgall

Computer Science Inst. of Charles University, Faculty of Mathematics and Physics, Mal-
ostranské nam. 25, CZ-11800 Praha 1, Czech Republic.

E-mail: sgall@iuuk.mff.cuni.cz

2 Tom3&s Ebenlendr, Jif{ Sgall

A schedule assigns each job to one of the machines; the time needed to pro-
cess a job is equal to its processing time divided by the speed of the machine
where it is assigned. The objective is to minimize the makespan (also called the
length of the schedule, or the maximal completion time). Usually a schedule
also needs to specify the timing of each job (its starting and completion times)
so that the jobs on each machine do not overlap. Due to the simplicity of the
problem we consider, this is not necessary and it is sufficient to specify the
assignment to the machines, silently assuming that each job is started as soon
as all the previous jobs on its machine are processed. Instead of calculating the
completion times individually for each job, we can calculate the completion
time of each machine as the total processing time of the jobs allocated to it
divided by the speed of the machine; the makespan is then the maximum of
the completion times over all machines.

In the online version of the problem, jobs appear online one-by-one. When
a job appears, an online algorithm has to make an irrevocable decision and
assign the job to a machine. This decision is permanent and made without
the knowledge of the future jobs; the algorithm is not even aware of whether
any future jobs exist or not. An online algorithm is R-competitive if for each
instance it produces a schedule with makespan at most R times the optimal
makespan.

We prove a new lower bound of 2.564 for the above-described problem,
i.e., we show that no deterministic online algorithms for makespan scheduling
on uniformly related machines is 2.564-competitive. The previously best lower
bound was 2.438 given by Berman et al [4,5]. They use a combinatorial ap-
proach with a computer search through the graph of discretized possible states
of an online algorithm. In contrast, we use an analytical bound obtained by
reasoning about the maximal number of scheduled jobs on each machine.

Our lower bound is based on an instance where both the machine speeds
and the processing times are a geometric sequence, with both sequences having
the same common ratio, similarly as in [5,11]. The jobs arrive in the order of
increasing processing times. Since from the perspective of the online algorithm,
each coming job may be the last one in the sequence, it is necessary to assign
all jobs to sufficiently fast machines. As the sequence gets longer, it turns
out that the optimum would instead schedule the small initial jobs on slower
machines. Intuitively, the now small jobs block the precious capacity of the fast
machines. To obtain a lower bound, it is necessary to quantify this intuition.
In the previous bounds for similar problems one usually argues about the
total amount of work done by the machines. In contrast, our bound is based
on reasoning about the number of jobs scheduled on every machine. First,
we consider how the algorithm behaves on one of the machines and we upper
bound the number of jobs scheduled on this machine. This bound is a function
of the competitive ratio, the common ratio of the geometric sequence, the speed
of the machine, and the number of jobs in the sequence. It is linear in the
number of jobs (disregarding a negligible additive term), thus the coefficient
in this linear dependence can be interpreted as the maximal frequency of
scheduling a job on that machine. Then we take the sum of these bounds on

A lower bound for online scheduling on related machines 3

frequencies over all machines. Any online algorithm has to schedule one job in
one step, thus this sum has to be at least 1. Finally, we let the common ratio of
the geometric sequence to approach 1, and obtain our lower bound. This yields
a certain inequality for the competitive ratio which we solve numerically.

Related work

Naturally, the lower bounds need to be compared to the existing algorithms.
The first constant-competitive algorithm for non-preemptive scheduling on
uniformly related machines was developed in [1]. The currently best deter-
ministic algorithms achieve competitive ratio 3 + /8 ~~ 5.828 and randomized
algorithms are 4.311-competitive [5]. For an alternative very nice presentation
see [3]. All these algorithms use doubling, i.e., strategies that work with some
estimate of the optimal makespan and when it turns out that the estimate is
too low, it is multiplied by 2 or some other constant. While this is a standard
technique for obtaining a constant competitive ratio, it would be surprising if
it led to optimal algorithms. The lower bound for randomized algorithms is
2, see [11]. Thus, both in the deterministic and randomized cases, significant
gaps remain.

For a small number of machines the best known algorithm is the greedy
List Scheduling. Here List Scheduling is defined so that the next job is always
scheduled so that it will finish as early as possible. For many machines it is far
from optimal, its competitive ratio is @(logn), see [1]. The exact competitive
ratio for m = 2 is ¢ and for 3 < m < 6 it is equal to 1+ /(m —1)/2 [7];
moreover for m = 2,3 it can be checked easily that there is no better determin-
istic algorithm. For m = 2 it is possible even to give the exact optimal ratio
for any speed combination, see [10]. In contrast, even for three machines it is
not known exactly for which speed combinations is List Scheduling optimal
(even though for the worst possible combination of speeds we know that it is
optimal); some recent progress is reported in [6,12]. Another special case when
some partial results about optimality of List Scheduling are known is the case
when m — 1 machines have the same speed, see e.g. [12,14].

The previous lower bound of 2.438 works for m = 9; for a smaller number
of machines, no lower bound was known, except for the bound of 2 that fol-
lows from the analysis of List Scheduling for m = 3. Subsequent to our work
and partially building on its ideas, new lower bounds for a small number of
machines (m =4,...,11) were found in [13].

It is interesting to compare our results to the related problem of preemptive
scheduling on uniformly related machines. In that problem, each job can be
divided into several pieces that may be scheduled on different machines so
that the corresponding time slots are non-overlapping; the time slots may
also be non-consecutive, so that at some times a partially completed job is
not being processed at all. Contrary to our (non-preemptive) problem, with
preemption it is necessary to specify the schedule completely, including the
timing information. In the online version, for each job we have to specify

4 Tom3&s Ebenlendr, Jif{ Sgall

its schedule completely before the next job is revealed. Interestingly, for this
preemptive problem, it is possible to give an optimal online algorithm for
any combination of the speeds and its competitive ratio is between 2.112 and
e & 2.718, see [9,8]. Similar results seem to be out of reach for non-preemptive
scheduling, as the combinatorial structure is much more rich and the value of
the optimum is NP-hard to compute, while for the preemptive scheduling it is
computable, in fact given by an easy formula.

The problem of non-preemptive scheduling can be also formulated in the
language of online load balancing as the case where the jobs are permanent
and the load is their only parameter corresponding to our processing time.
The arriving jobs are assigned to the machines and the goal is to minimize the
maximal load of a machine, where a load of a machine is the sum of the loads
of jobs divided by the speed of that machine. Consequently, there are many
results on load balancing that extend the basic results on online scheduling in
a different direction, see e.g. [2].

Notations

We number the machines as well as the jobs from 0 (to obtain simpler for-
mulas). Thus we have machines My, My, ..., M,,_1 and jobs Jo, J1,..., Jn—_1.
The speed of machine M; is denoted by s;. The processing time of job J; is
denoted by p;; thus the job takes time p;/s; to be processed on M;.

No preemptions are allowed, i.e., once the job is started it cannot be in-
terrupted and the machine is busy with this job until the job is processed; in
particular each job is assigned to a single machine. Let J; be the set of jobs
scheduled on machine M;. The completion time of the machine is then simply
the sum of processing times of the jobs scheduled to the machine divided by
its speed: C; = Si > jiseq; Pi- The makespan is then the maximal completion
time over all machines and we compare the makespan in the output of the
algorithm with the makespan of an optimal schedule.

We use J = (Jo, J1,...,Jn—1) and C%_ (J) to denote the input sequence
of jobs and its optimal makespan. Furthermore, let J[j] = (Jo, J1,...,J;)
and C},.(J[j]) denote the input sequence of jobs cut off after J; and the
optimal makespan of this initial segment of the input sequence. The initial
segments are important, as the online algorithm needs to guarantee that it
is competitive even if the sequence ends after the current job. For the same
reason it is useful to consider the completion time of job .J;, defined as the

completion time of the machine where J; is scheduled just after scheduling it,
. 1

e 3 Dkek<jned: Pi

2 Lower bound

Our lower bound is proved by the following instance. Both sequences of ma-
chines and jobs have the same length, i.e., n = m. The speeds of machines form

A lower bound for online scheduling on related machines 5

a geometric sequence, namely we set s; = a~¢, for some o > 1. The processing
times of jobs also form a geometric sequence, namely we set p; = o'. The opti-
mal schedule after step t, i.e., for J[t], is to schedule the jobs on the machines
in the reverse order, i.e., the J; on machine M;_;. The optimal makespan is
thus equal to the processing time of the largest job that runs on machine M,
with speed 1, so Cf . (J[t]) = p: = .

To achieve the competitive ratio of R on the initial segment J[t], the
algorithm has to complete the job J; before time R - Cf . (J]t]). It follows
immediately that it cannot schedule any job at any machine with speed below
1/R. Furthermore, if the speed of a machine is only slightly above 1/R, the
jobs cannot be scheduled on it very often. Intuitively, the faster machines can
schedule a job more frequently. We calculate for each machine separately the
maximal number of jobs that can be scheduled on it, depending on its speed,
R, and n (the number of jobs). The lower bound will follow from the fact
that the sum of these bounds needs to be at least n so that the algorithm
schedules all the jobs. The following main lemma gives these bounds for a
single machine. The coefficient 1/¢; in the bound on the number of jobs can
also be interpreted as the highest possible frequency of scheduling a job to
machine M; with respect to the claimed competitive ratio R.

Lemma 2.1 Let A be an R-competitive algorithm. Consider the instance de-
scribed above. Let

7 - for i such that s; = a”">R!
-«

t; = IOg(x
Then, for any fized o > 1 and n, the algorithm A schedules at most [R] + £
jobs from the input sequence on machine M;. Moreover the algorithm schedules
at most one job on the machine with speed equal to 1/R (if there is any) and
no job on any slower machine.

Proof 1If s; < 1/R, then no job can be scheduled the machine M;. To see this,
observe that if the sequence ended at that moment, the optimal makespan
would be equal to the processing time of the last job on input, i.e, C¥ . (J[t]) =
p¢ for the current ¢, while the makespan of the algorithm would be at least
Pt/ i, which is strictly larger than R - p;. Moreover, if s; = 1/R, then only
a single job can be scheduled on M;: After scheduling the second job, the
makespan of the algorithm would be strictly larger than p;/s; = R - p;, thus
the competitive ratio R would be violated again. Thus we assume s; > 1/R
from now on.

Let ¢1,ca,...,¢n, be the completion times of the jobs in J; (i.e., those
scheduled on the machine M;). If n; < [R], the lemma holds. Otherwise let kg
be the first index such that ¢, > R. Note that all jobs have processing times
at least 1 and the machine speeds are at most 1, thus kg exists and kg < [R].

First we claim that for all £ = 2,...,n;,

i1 R

> -,
Ck R— o

(1)

6 Tom3&s Ebenlendr, Jif{ Sgall

The processing time of the job completing at c¢xy1 equals s;(cpr1 — ¢x), thus
the optimal makespan for the initial segment of the instance ending by this
job is s;(cg+1 — cx) as well. Since the algorithm A is R-competitive also on this
initial segment, we have cx 11 < R-; (cpe1 — cr) = R-a % (cgy1 — cx) and the
claim (1) follows.

Considering the instance with n jobs, we have ¢,, < R-a”™. Applying the
claim (1) for n; — ko pairs of adjacent completion times implies that

n'—ko
n R-a™ ey, Cn; Cny—1 Cho+1 R ‘
a” = > — = - S > -
R Chy Cn;—1 Cny—2 Chy R— o

and, after taking logarithm with base «,
> ko)1 L k
n =~ (TLZ — 0) Oga m = (nz — O)ti~

The lemma now follows by recalling that ky < [R]. O
Let us define

In(R)
—In(l1 — R—%)

/fodx_Awdx'

The function f(R,z) is a positive and increasing both in R and z for R > 1
and x > 0. Thus F(R) is increasing as well for R > 1. Let R* be the unique
solution of the equation F(R*) =1 in (1, 400).

and

f(R,z) =

Theorem 2.2 For any R-competitive deterministic algorithm for nonpreemp-
tive scheduling on uniformly related machines, it holds that F(R) > 1. This
gives R > R* > 2.564.

Proof Let n; be the number of jobs scheduled on the machine M; at the end
of the sequence. The algorithm has to schedule all jobs, hence

m—1 |log,, R] [log, R]—1 n
;n ;” [R] - Tlog, R] +1+ ; n

To obtain the last inequality, we bound n; using Lemma 2.1 as follows: For
every i < log, R to obtain n; < [R] 4+ i It i =log, R is integral, we have
n; < 1. Finally, if ¢ > log, R then n; = O "The inequality follows by summing
these bounds.

A lower bound for online scheduling on related machines 7

£t

N

-1 0 b a

Fig. 1 The labels on the horizontal axis are a = log,, R and b = [log, R| — 1. The sparsely
hatched region shows the area of the sum in (2). The densely hatched region shows the
additional area of the integral in (3).

We can set n arbitrarily large, so that the term [R] - [log, R| + 1 is negli-
gible. Thus, for any € > 0, we get:

[log, R]—1 1 [log, R]—1 Ina
1—-e< — = _ 2
°= Z t; Z —In(1 - *R71) @)
=0 =0
log,, Ina
< —_—— i 3
- /_1 —In(1 — o*R71) ‘ 3)
! In R
= ————d 4
o —In(1— Rv-1) Y)
In R

In (3) we simply bound the sum by the appropriate integral. We use the fact
that the function in the sum can be viewed as a continuous and decreasing
function of ¢, see Figure 1. We substitute i = ylog, R = y% to get (4) and
x=1—1y to get (5).

Since f(R,x) is positive and increasing for x > 0, it is bounded in the
neighborhood of 1 and we have

1% 1

lim f(R,z)dx = f(R,x)dx = F(R) .

a—=1 /o 0

Thus by taking the limits o« — 1 and € — 0 in (5) we get 1 < F(R) and the
first part of the theorem holds.
The monotonicity of F now implies R < R*. The monotonicity of f also

makes it easy to evaluate the integration numerically and evaluate the thresh-
old as R* ~ 2.5649877. O

8 Tom3&s Ebenlendr, Jif{ Sgall

A natural question is the size of the instance we need in our lower bound.
Clearly, to achieve a bound close to R*, we need « close to 1 and a large n.
However, our limit argument gives little intuition about the size of n. In the
rest of this section we show that in order to prove a lower bound of R’ = R* -4,
the size of the instance is O(1/62).

First we need to calculate 1 — F(R’). While we do not have a closed form
for F(R), it can be verified that

0 0 x
3R (R’x)_ax<—R-ln(1—R—m)> and thus

d 1 a 1
EF(R):/O apl Whe)de = “R-m(1-R V)’

So the derivative of F(R) for R close to R* is bounded and bounded away
from zero, thus 1 — F(R') = ©(9).

Let e = (1 — F(R'))/2 = ©(J). We set a and n so that the errors in the
two limits & — 1 and € — 0 are each bounded by ¢.

First we choose a = 1 + 7 such that

ey
/ f(R x)dx <e.
1

We have Ina/In(R’) = O(7). Since f(R,x) is increasing in R and z, we can
bound its values by some constant M (arbitrarily close to f(R*,1), which is
positive), and we have

L tany In
R, x)dx < - M = 6(1).
[s < ol ")
Thus it is sufficient to choose 7 = O(e) = O(4) and o = 1 + O(9).
Finally, we need to choose n large so that

[R[logo (R +1 _

We have [R'][log, (R')]+1 = ©(1/Ina) = O(1/7) = O(1/§). Thus it is
sufficient to choose n = ©(1/6) /e = O(1/52).

Numerical calculations show that the constants in the proof can be bounded
as followes: For § < 1/10 it is sufficient to take ¢ = 6/3, 7 = ¢/3, and n =
4/(eT), overall this gives n = 36/52.

3 Conclusions

We have been able to improve the lower bound for non-preemptive online
scheduling on related machines. The advantage of the new lower bound is that
it provides a clean analytical argument. On the other hand, it seems that
the limit case with many machines may be not the hardest one. For a fixed

A lower bound for online scheduling on related machines 9

small number of machines, we assume that the combinatorial structure of the
problem could lead to new lower bounds. Subsequent to our work, this was
partially achieved in a recent paper [13] using a combination of our analytical
approach and the enumerative techniques from [5].

Our techniques cannot be used for lower bounds for the randomized algo-
rithms; the best lower bound in this case remains at 2. Of course, the main
challenge in this area is to design new algorithms, perhaps not based on the
doubling techniques used so far.

Acknowledgements We are grateful to anonymous reviewers and Gyorgy Désa for helpful
comments.

References

1. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts., O.: On-line load balancing with
applications to machine scheduling and virtual circuit routing. J. ACM 44, 486-504
(1997)

2. Azar, Y.: On-line load balancing. In: A. Fiat, G.J. Woeginger (eds.) Online Algorithms:
The State of the Art, pp. 178-195. Springer (1998)

3. Bar-Noy, A., Freund, A., Naor, J.: New algorithms for related machines with temporary
jobs. J. Sched. 8, 259-272 (2000)

4. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines.
In: Proc. 5th Workshop on Algorithms and Data Structures (WADS), Lecture Notes in
Comput. Sci., vol. 1272, pp. 116-125. Springer (1997)

5. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines.
J. Algorithms 35, 108-121 (2000)

6. Cai, S.Y., Yang, Q.F.: Online scheduling on three uniform machines. Discrete Appl.
Math. 160, 291-302 (2011)

7. Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Comput.
9, 91-103 (1980)

8. Ebenlendr, T.: Combinatorial algorithms for online problems: Semi-online scheduling
on related machines. Ph.D. thesis, Charles University, Prague (2011)

9. Ebenlendr, T., Jawor, W., Sgall, J.: Preemptive online scheduling: Optimal algorithms
for all speeds. Algorithmica 53, 504-522 (2009)

10. Epstein, L., Noga, J., Seiden, S.S., Sgall, J., Woeginger, G.J.: Randomized on-line
scheduling for two uniform machines. J. Sched. 4, 71-92 (2001)

11. Epstein, L., Sgall, J.: A lower bound for on-line scheduling on uniformly related ma-
chines. Oper. Res. Lett. 26, 17-22 (2000)

12. Han, F., Tan, Z., Yang, Y.: On the optimality of list scheduling for online uniform
machines scheduling. Optim. Lett. (2011). To appear

13. Jez, L., Schwartz, J., Sgall, J., Békési, J.: Lower bounds for online makespan minimiza-
tion on a small number of related machines (2012). To appear in J. Sched.

14. Musitelli, A., Nicoletti, J.M.: Competitive ratio of list scheduling on uniform machines
and randomized heuristics. J. Sched. 14, 89-101 (2011)

