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Abstract. In this talk we survey the area of scheduling with the ob-
jective to maximize the throughput, i.e., the (weighted) number of com-
pleted jobs. We focus on several open problems.

1 Introduction

Scheduling is a very wide research area with a multitude of variants that may
appear confusing to non-specialists. The first rough classification is based on
the objective that the algorithms try to optimize. Two most studied classes of
problems try to minimize the costs generally depending on the completion times
of jobs. One class minimizes a max-type objective, typically the length of the
schedule (makespan). The other class minimizes a sum-type objective, typically
the sum (average) of completion times or flow times (the time a job is in the
system).

In this talk we focus on another area of scheduling. Our objective is to max-
imize the benefit. The benefit is throughput, i.e., the number of scheduled jobs,
or the weighted number of scheduled jobs, in case when jobs have profits indi-
vidually given by their weights. This area received considerable attention in the
last decade esp. in the online case, with motivation such as packet forwarding in
network switches and power management.

In turns out that some of very basic and easily formulated problems in this
area are still open. We center our talk around a few of such problems. Needless
to say, any such selection is necessarily biased. Our choice is motivated mostly
by simplicity and certain elegance of the problems.

In each of the considered variants the jobs are given by several parameters.
We use the following notation: for a job j, pj is its processing time also called
length, rj its release time, dj its deadline, and wj is its weight. There may be a
single machine or m machines. A schedule assigns to each job a machine and a
time slot of length pj starting not before rj and ending no later than dj ; some
jobs may remain unscheduled. The time slots on each machine have to be non-
overlapping. The objective is to maximize the sum of the weights wj of all the
scheduled jobs.
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We follow the standard convention that the job parameters are non-negative
integers. Then we may assume that all jobs are started at integral time, as
rounding the start times of all jobs down preserves feasibility.

We consider both offline and online problems. In the online setting, we let
the time progress and at each time t we learn about jobs released at time t, i.e.,
those with rj = t; at this time also all the job parameters of j become known. At
time t, we may start some pending job (with rj ≤ t, t+pj ≤ dj , and not running
or completed) on one of the available machines (those not running any job).
Sometimes we may also use preemption, i.e., stop the currently running job; in
variants that we consider this job is then lost and cannot be even restarted.

We consider some variants of this general problem. Typically the set of possi-
ble job lengths is restricted. In the most restricted case, unit-length jobs, all job
lengths are equal to 1. This corresponds to a special case of maximum matching
on bipartite graph (where the vertices correspond to jobs and time slots), thus
it can be solved to optimality offline. A less restricted case is that of equal-length
jobs where all the job lengths are equal to some p (since release times and dead-
lines are integral, this is different from unit-length jobs). In several variants we
have unit weights of jobs, which is equivalent to the objective of maximizing the
number of scheduled jobs instead of the total weight. In some of the variants we
allow parallel jobs. Then each job comes with an additional parameter sizej and
requires to be given the same time slot on sizej machines.

2 Offline scheduling

2.1 Instances with length of jobs bounded by a constant

If we allow arbitrary processing times, the problem is (strongly) NP-hard; it
is even hard to check if all jobs can be scheduled in the unweighted version
on a single machine by an easy reduction from 3-PARTITION. To avoid this
reason for NP-hardness, a natural option is to reduce the number of job lengths.
Surprisingly, very little is known about this case.

Open problem 1 Consider scheduling on a single machine, with the restric-
tion that pj ≤ C for some constant C. Is there a polynomial-time algorithm to
compute a schedule maximizing the number of completed jobs? Is it NP-hard to
compute the maximal weight of scheduled jobs for some C?

We do not even know a polynomial-time algorithm for the unweighted variant
for C = 2, i.e., every job needs one or two time slots. The only positive result
known is that for C = 2, it is possible to check in polynomial time if it is possible
to schedule all jobs. (Since we are scheduling all the jobs, it makes no difference
whether the weights are unit or arbitrary.) This can be strengthened to the case
when pj ∈ {1, p} for any fixed p. This result follows closely the methods from [12],
but it appears to be new. We prove it in Section 4. Note that the restriction that
one of the allowed job lengths equals 1 is essential in our proof. Even in the case



pj ∈ {2, 3} it is not known whether checking feasibility of scheduling of all jobs
is polynomial!

In case of equal length jobs, the problem of maximizing the number of sched-
uled jobs is still far from trivial. On a single machine it is polynomial [3, 7],
but on parallel machines, it is known to be polynomial only if the number of
machines m is a constant [1]. The following is still open:

Open problem 2 Consider scheduling of equal-length jobs on m parallel ma-
chines with m a part of the input. Is there a polynomial-time algorithm to com-
pute a schedule maximizing the number of completed jobs? Is it NP-hard to com-
pute the maximal weight of scheduled jobs?

2.2 Unit-length parallel jobs

If we allow parallel jobs but on the other had restrict the instances to the case of
unit-length jobs, the situation is very similar to the case of restricted job lengths
on a single machine. Indeed, instead of using m parallel machines, one can use
a single machine and scale all the release times and deadline by a factor of m;
the length of parallel jobs is also scaled to pj = m. This transformation does not
give an exact formal reduction between these two models, but intuitively they
are very close to each other.

Open problem 3 Consider scheduling of unit-length parallel jobs on m parallel
machines. Is there a polynomial-time algorithm to compute a schedule maximiz-
ing the number of completed jobs for some fixed m ≥ 2? Is it NP-hard to compute
the maximal weight of scheduled jobs if m is a part of the input and the job sizes
are bounded by sizej ≤ C for some constant C?

We do not even know a polynomial-time algorithm for the unweighted variant
for m = 2, i.e., there are only two machines and naturally every job needs one
or two of them.

The best positive result known is that for the so called tall/small jobs, i.e.,
the case when sizej ∈ {1,m}, we can check the feasibility of scheduling of all
jobs [2, 12]. (The same proof actually works even if sizej ∈ {1, p} for some p
that divides m.) However, again, if sizej ∈ {2, 3} it is not even known whether
checking feasibility of scheduling of all jobs is polynomial.

Another interesting case is the restriction of job sizes to the powers of two,
which is motivated by scheduling parallel jobs on hypercubes. Even though the
number of job sizes is unbounded, this restriction also avoids the hardness proof
by the reduction from partition-type problems. Here it is known that the number
of completed jobs can be maximized in polynomial time if all of them are released
at the same time [23], or, more generally, if the intervals [rj , dj ] are nested [24]. It
would be very nice to generalize this to the general release times; this would be
much stronger than a positive solution of the previous open problem for m = 2.



3 Online scheduling

The most natural online algorithm is often some greedy strategy. For our prob-
lems, it means that at each time we choose to schedule the pending job with
the maximal weight. For equal-length jobs with unit weights or unit jobs with
general weight, such an algorithm can be shown to be 2-competitive by a fairly
generic argument: We “charge” each job in the optimal schedule to some job in
the greedy schedule; either to the job that the greedy schedule runs at the same
time (and machine), or to the same job if greedy schedule schedules it earlier
than or at the same time as the optimum. Each job receives at most one charge of
each type, furthermore all charges go to a job with weight at least the weight of
the charged job. The challenge is then to improve the competitive ratio below 2.

3.1 Unit-length jobs: Buffer management and dynamic queues

The online variant of unit-length jobs is probably the most extensively studied
variant of throughput scheduling. It is motivated by buffer management in net-
work elements, as the unit-length jobs represent packets of some fixed length
and different weights and deadlines represent their priorities.

The generic charging argument implies a 2-competitive algorithm, but to
improve this upper bound, the algorithm has to deal with the choice of scheduling
either a heavy job (possibly with a large deadline) or an urgent job (possibly with
a small weight). The first better than 2-competitive algorithm for this problem
was randomized; its competitive ratio is e/(e− 1) ≈ 1.582 which is still the best
upper bound [6, 19]. An improved deterministic algorithm needs a significantly
more delicate argument; the first such algorithm has competitive ratio 64/33 ≈
1.939 [8] and the currently best upper bound is 2

√
2− 1 ≈ 1.828 [14].

In both cases this is quite far from the lower bound, which is 1.25 for random-
ized algorithms and φ ≈ 1.618 for deterministic ones. In both cases, the lower
bound instances are 2-bounded, which means that each job has dj − rj ≤ 2, so
that it has to be scheduled either immediately upon its arrival or in the next
time step. This seems to be a very restricted case, so one would expect that
larger lower bounds should be possible for more general instances.

On the other hand, the 2-bounded case is generalized by the case of agree-
able deadlines (also called similarly ordered) which includes all instances which
can be ordered so that both the sequence of release times and the sequence of
deadlines are non-decreasing with j. In this substantially more general case there
exist better algorithms, namely 4/3 [18, 20] randomized one and φ-competitive
deterministic one [21, 20]; the latter even matches the lower bound.

In light of this, the question is much less clear and we state it as our next
problem. Of course, any improvement of any of the bounds would be nice, but the
question whether the 2-bounded case is as hard as the general case is particularly
interesting.

Open problem 4 Does there exist an algorithm for scheduling of arbitrary
unit-length jobs on a single machine that matches the performance of algorithms



for the special case when dj − rj ≤ 2? That is 1.618-competitive deterministic
algorithm and/or 1.25-competitive algorithm?

The randomized algorithms use only the relative order of the deadlines, not
their actual values. This is not true for the deterministic algorithms, and for a
long time the use of exact values of deadlines seemed to be essential. However, it
turns out that even in the model of dynamic queues, which does allow the algo-
rithm to use only the relative order of deadlines, a 1.897-competitive algorithm
exists [5].

3.2 Equal jobs

In this section we focus on the case when all the jobs have both equal length
and unit weights. The generic charging argument again implies that any greedy
strategy is 2-competitive [4], and in fact on a single machine no deterministic
algorithm can be better [16].

One possibility to improve the algorithm is to use randomization. We know
that there exists a 5/3-competitive randomized algorithm [9] for a single machine.
This algorithm actually uses only a single bit of randomness: It generates online
two schedules (connected by a lock mechanism) and randomly chooses to follow
one of them from the beginning. This is still far from the best lower bound,
which is only 4/3 for randomized algorithms on a single machine [16].

Open problem 5 Suppose that all jobs have equal processing time pj = p and
unit weights. What is the best competitive ratio of a randomized algorithm on a
single machine with the objective to maximize the (expected) number of completed
jobs?

If we have more machines, the problem appears to be easier. At the first
sight this may be surprising, but it is natural: If the online algorithm receives
a single job with a large deadline, it has to decide to schedule it at some point.
This blocks the only available machine, and the adversary may exploit this by
releasing a job with a tight deadline in the next step. In contrast, already with
two machines, the algorithm can try to keep one of them as a reserve for such
tight jobs. This vaguely corresponds to generating two schedules and randomly
choosing one of them, although we are not aware of any formal relationship of
the two problems.

For two machines, it is known that the optimal competitive ratio of a de-
terministic algorithm is 3/2 [11, 17]. For more machines, much less is known.
The lower bound for deterministic algorithm approaches 6/5 from above for
m → ∞ [11]. The best algorithm has a competitive ratio that approaches
e/(e − 1) ≈ 1.582 from above for m → ∞ [10]. This algorithm actually works
in a much more restricted model in which upon the release of each job it is
immediately decided if and when it is scheduled. We note that in this restricted
model with immediate decision, no better algorithm for m→∞ is possible even
for unit-length jobs [13].



Open problem 6 Suppose that all jobs have equal processing time pj = p and
unit weights. For m→∞, find either a better than e/(e− 1)-competitive deter-
ministic algorithm or a lower bound larger than 6/5.

3.3 Fixed start times

A special case of the general case is the problem of interval scheduling, where
all the jobs are tight, i.e., pj = dj − rj . This means that upon its release, a
job must be started or it is lost. A classical study [22] shows that for variety of
cases a 4-competitive preemptive deterministic algorithm exists and this is tight;
this includes the case of unit-length jobs (with arbitrary weights) and jobs with
weight equal to their length.

This 4-competitive algorithm was recently extended to a variant of parallel
machines with speeds (uniformly related machines) [15]. Here each machine has
a speed si and a job j needs time slot of length pj/si to be run on this machine.
Instead of formulating the problem as interval scheduling (which has no clear
meaning, as tight jobs cannot be defined), we use the other equivalent formula-
tion: Each job has to be started on one of the machines immediately upon its
release, or else it is lost. We call this variant scheduling with fixed start times.

We conclude by a restricted variant of scheduling with fixed start times where
we cannot even determine the competitive ratio of the greedy algorithm. In
this case we have equal jobs once again (i.e., equal lengths and unit weights).
Obviously, if we have a single machine or parallel machines with equal speeds,
any greedy strategy is optimal. However, this is no longer true with speeds.
Actually, with speeds there is no better than 3/2-competitive algorithm for m→
∞ [15]. Any greedy algorithm is 2-competitive by the generic charging argument.
However, no better upper bound is known for m ≥ 3 for any algorithm. The most
natural greedy algorithm always starts a job on the fastest available machine.
This turns out to be 4/3-competitive and optimal for m = 2, but for m → ∞
we only know that the competitive ratio is at least 25/16 = 1.5625.

Open problem 7 Suppose that all jobs have equal processing times and unit
weights. For m → ∞ machines with speeds, find a better than 2-competitive
deterministic algorithm for scheduling with fixed start times.

4 Checking feasibility with two job lengths

Now we return to the offline problem and give a polynomial-time algorithm for
deciding whether all the jobs can be scheduled if the lengths are restricted to
{1, p} for some p.

Theorem 1. Suppose that our input consists of p and an instance with pj ∈
{1, p} for all jobs. Then there exists an algorithm which in polynomial time
decides if there exists a feasible schedule that schedules all jobs.



Proof. Let us call the jobs with pj = 1 short and the jobs with pj = p long.
For two times s, t let As,t = {j | pj = 1 ∧ s ≤ rj ∧ dj ≤ t}, as,t = |As,t|,
Bs,t = {j | pj = 2 ∧ s ≤ rj ∧ dj ≤ t}, and bs,t = |Bs,t|. I.e., as,t and bs,t denote
the number of short jobs and long jobs, respectively, that need to be scheduled
(started and completed) between s and t.

We may assume that rj + pj ≤ dj for all jobs; otherwise the instance is
infeasible. We may also assume that

as,t ≤ t− s (1)

for all t and s, as otherwise the instance is again infeasible.
We now formulate a linear program (2)–(5) that should describe the feasible

schedules. It has no objective function, we are only interested in its feasibility.
The intended meaning of the variable xt is the number of long jobs started
strictly before time t. For convenience, we set xt = 0 for any t ≤ 0. Let D be
the maximal deadline.

∀t ∈ {1, . . . , D} : xt − xt−1 ≥ 0 (2)

∀t ∈ {p, . . . ,D} : xt − xt−p ≤ 1 (3)

∀s, t ∈ {0, . . . , D}, s+ p ≤ t : xt+1−p − xs ≤
⌊
t− s− as,t

p

⌋
(4)

∀s, t ∈ {0, . . . , D}, s+ p ≤ t : xt+1−p − xs ≥ bs,t (5)

Inequalities (2) make sure that xt form a non-decreasing sequence, (3) that at
most one long job is started in any p adjacent steps and thus the long jobs do
not overlap. Inequalities (4) and (5) make sure that sufficiently many slots are
available for short and long jobs in each interval.

The crucial observation is that the matrix of our linear program is totally
unimodular. Indeed, every row contains at most single −1 and at most single +1
and such matrices are known to be totally unimodular. This implies that if the
linear program is feasible, there exists an integral solution.

We now prove that the linear program is feasible if and only if there exist a
feasible schedule.

Suppose we have a feasible schedule. As noted in the introduction, we may
assume that all jobs are started at integral times. Then for (integral) s such that
the schedule starts a long job at time s we put xs+1 = xs + 1 and for all other
s we put xs+1 = xs. It is easy to check that this is a feasible solution of our
linear program. Inequalities (2) and (3) are trivial. For (4) note that xt+1−p−xs
long jobs are started and completed in the slots s, . . . , t − 1, thus they occupy
p(xt+1−p−xs) of these t−s slots and at least as,t of these slots are taken by the
short jobs. Thus p(xt+1−p−xs) ≤ t−s−as,t and (4) follows from the integrality
of x. Similarly, (5) follows from the fact that at least bs,t long jobs are started
and completed in the slots s, . . . , t− 1 in the feasible schedule.

Suppose now that the linear program is feasible and let us fix its integral
solution x. The solution x determines at which time slots a long or short job can



start. More precisely, let S1 = {r ∈ {0, . . . , D − 1} | xr+1−p = xr+2−p = . . . =
xr = xr+1} and S2 = {r ∈ {0, . . . , D−1} | xr+1 > xr}. Note that S2 are exactly
the slots where a long job should start and S1 are exactly the slots where no
long job started at time r ∈ S2 can be running. Now we construct the schedule
greedily increasing r from r = 0. If r ∈ S1 then we start a pending short job
with the smallest deadline. If r ∈ S2, then we start a pending long job with
the smallest deadline. In both cases we break ties arbitrarily. The definitions of
S1 and S2 together with (2) and (3) guarantee that no two jobs overlap in the
schedule.

It remains to show that the schedule completes all the jobs before their
deadlines. For a contradiction, assume that j is a job with dj = t that is not
completed before t and t is minimal. We distinguish two cases.

Case 1: j is a long job. Let s−1 ∈ S2 be the largest time before t such that at
time s−1 either no job is started or a job with the deadline larger than t is started.
Let s = 0 if no such time exists. This implies that rj ≥ s as otherwise we would
have started j at time s− 1. At any time in S2 ∩{s, . . . , t− p}, a long job with a
deadline at most t is started by the choice of s; also any of these jobs is released
at s or later (as otherwise we would have started it at s− 1). Thus all these jobs
and j belong to Bs,t. We have bs,t ≥ 1 + |S2 ∩ {s, . . . , t− p}| = 1 + xt+1−p − xs,
contradicting (5).

Case 2: j is a short job. Let t′ be the first time in S1 such that t′ ≥ t.
Note that j is not completed at time t′. Let s − 1 ∈ S1 be largest time before
t such that at time s − 1 either no job is scheduled or a job with the deadline
larger than t is scheduled. Let s = 0 if no such time exists. This implies that
rj ≥ s as otherwise we would have started j at time s− 1. Similarly as in Case
1, at any time in S1 ∩ {s, . . . , t − 1} = S1 ∩ {s, . . . , t′ − 1}, a short job with
a deadline at most t is scheduled by the choice of s; also any of these job is
released at s or later (as otherwise we would have started it at s − 1). Thus
all these jobs and j belong to As,t ⊆ As,t′ . Furthermore, since s, t′ ∈ S1, the
number of time slots in {s, . . . , t′ − 1} \ S1 is equal to p(xt′+1−p − xs). We have
as,t′ ≥ 1 + |S1 ∩ {s, . . . , t′ − 1}| = 1 + (t′ − s)− p(xt′+1−p − xs). It follows that

xt′+1−p − xs ≥
1 + t′ − s− as,t′

p
>
t′ − s− as,t′

p
.

This contradicts (4) if s+ p ≤ t′ or (1) if s+ p > t′ (note that then s ≥ t′+ 1− p
and xt′+1−p − xs ≤ 0 by (2)).

The last problem that we need to solve is that the linear program as we
have formulated it may have a superpolynomial size if p or the release times
or the deadlines are superpolynomial. This is only a technical issue, as there
are clearly only polynomially many “important” times. More precisely, we can
modify any feasible schedule so that each job starts either at its release time or
at the completion time of some other job (the schedule with the lexicographically
minimal sequence of start times will satisfy this). Then all the jobs are started
at times rj +α ·p+β for some job j and α, β ∈ {0, . . . , n} where n is the number
of jobs. There are O(n3) of such times. For all the other t, we set xt+1 = xt.



By substituting these identities, we get a linear program with only polynomially
many variables and also polynomially many distinct constraints, and it can be
even written down efficiently. Thus feasibility can be checked in polynomial time.

In fact, we have not been very efficient in our proof. As shown in [12], instead
of solving a linear program, we can use a shortest path computation, as the
matrix of the linear program is an adjacency matrix of a directed graph. ut
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