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Abstract. In the bin packing problem we are given an instance consist-
ing of a sequence of items with sizes between 0 and 1. The objective is to
pack these items into the smallest possible number of bins of unit size.
FirstFit and BestFit algorithms are simple online algorithms intro-
duced in early seventies, when it was also shown that their asymptotic
approximation ratio is equal to 1.7. We present a simple proof of this
bound and survey recent developments that lead to the proof that also
the absolute approximation ratio of these algorithms is exactly 1.7. More
precisely, if the optimum needs Opt bins, the algorithms use at most
b1.7 · OPTc bins and for each value of Opt, there are instances that
actually need so many bins. We also discuss bounded-space bin pack-
ing, where the online algorithm is allowed to keep only a fixed number
of bins open for future items. In this model, a variant of BestFit also
has asymptotic approximation ratio 1.7, although it is possible that the
bound is significantly smaller if also the offline solution is required to
satisfy the bounded-space restriction.

1 Introduction

Johnson’s thesis [13] on bin packing together with Graham’s work on schedul-
ing [11, 12] belong to the early influential works that started and formed the
whole area of approximation algorithms. The proof that the asymptotic approx-
imation ratio of FirstFit and BestFit bin packing is 1.7 given by Ullman [20]
and subsequent works by Garey et al. and Johnson et al. [10, 15] were among
these first results on approximation algorithms.

We survey this area with emphasis on the new results, approaches and open
problems.

1.1 The algorithms

Bin packing is a classical combinatorial optimization problem in which we are
given an instance consisting of a sequence of items with rational sizes between 0
and 1, and the goal is to pack these items into the smallest possible number of
bins of unit size. Since bin packing is NP-hard, one particularly active branch of



research has concentrated on approximation algorithms that find near-optimal
packings.

The main topic of this survey are BestFit, FirstFit and related algorithms.
BestFit algorithm packs each item into the most full bin where it fits, possibly
opening a new bin if the item does not fit into any currently open bin. FirstFit
algorithm packs each item into the first bin where it fits, again opening a new
bin only if the item does not fit into any currently open bin.

Both BestFit and FirstFit as well as any algorithm that we will consider
belong to a wide class of algorithms called AnyFit algorithms. An algorithm is
called an AnyFit algorithm if it opens a new bin only if the item being packed
does not fit into any previously open bin. Otherwise the item is allowed to be
packed into any bin where it fits.

A relevant subclass are AlmostAnyFit algorithms (AAF algorithms for
short). An algorithm is an AAF algorithm if it is an AnyFit algorithm and
additionally, if an item fits into more than one of the open bins, it is not packed
into the smallest open bin (breaking ties arbitrarily).

The worst-case performance of an approximation algorithm A is measured
by comparing it against the optimal packing. Let Opt denote the number of
bins used in an optimal packing for instance I, and let A denote the number of
bins used by algorithm A for the same instance. The algorithm A is an absolute
R-approximation algorithm if for every instance I

A ≤ R ·Opt,

and it is an asymptotic R-approximation algorithm if for every instance I

A ≤ R ·Opt + f(Opt),

where f(n) ∈ o(n); typically, and in all cases relevant for us, f(n) is a global
constant.

As far as the worst-case ratios are concerned, FirstFit can be considered as
a special case of BestFit or any other AnyFit algorithm: The items in any in-
stance can be reordered so that they arrive in the order of bins in the FirstFit
packing. This changes neither FirstFit, nor the optimal packing. Thus it is
sufficient to analyze FirstFit on such instances. On the other hand, on them
any AnyFit algorithm behaves exactly as FirstFit, as there is always a single
bin where the new item fits. Thus any lower bound for FirstFit applies imme-
diately to an arbitrary AnyFit algorithms and any upper bound for FirstFit
is equivalent to a bound for this very restricted subset of instances and BestFit
or another AnyFit algorithm.

Both FirstFit and BestFit are online algorithms. An online bin packing
algorithm places each item without knowledge of the future items, that is based
only on the size of this item and the already packed items, and cannot change
the packing of the items in the future.

In the context of online algorithms, a very interesting concept is that of
bounded-space algorithms. We distinguish the bins to be either open or closed
and items are allowed to be packed only into open bins. When a new bin is



started, we set the status of the bin to be open. At some point, the algorithm
may decide to close some bin(s). This means that no future items can be packed
there; once a bin is closed, it cannot be reopened. A bin packing algorithm is
a k-bounded-space algorithm, if the number of open bins is at most k at all
times. That is, if there are k open bins and an item is packed into a new bin,
one of the open bins needs to be closed.

The natural bounded-space variant of BestFit is BBFk, which packs an
item into the most full open bin where it fits. If the item does not fit into any of
them, a new bin is opened; if already k bins are open, the most full bin is closed.
Note that BBFk is not an AnyFit algorithm. It may happen that an item fits
in one of the already closed bins but not into any open one.

1.2 The old results

The upper bound on BestFit (and FirstFit) was first shown by Ullman in
1971 [20]; he proved that for any instance, BF,FF ≤ 1.7 ·Opt + 3, where BF,
FF and Opt denote the number of bins used by BestFit, FirstFit and the
optimum, respectively. Still in seventies, the additive term was improved first
in [10] to 2 and then in [9] to BF ≤ d1.7 ·Opte; due to integrality of BF and
Opt this is equivalent to BF ≤ 1.7 ·Opt + 0.9. These bounds actually hold for
any AAF algorithms, see [13, 14].

For the lower bound, the early works give examples both for the asymptotic
and absolute ratios. The example for the asymptotic bound gives FF = 17k
whenever Opt = 10k+ 1, thus it shows that the asymptotic upper bound of 1.7
is tight, see [20, 10, 15]. For the absolute ratio, an example is given with FF = 17
and Opt = 10, i.e., an instance with approximation ratio exactly 1.7 [10, 15],
but no such example was known for large Opt. (Also an example with FF = 34
and Opt = 20 is claimed and it can be constructed in a similar manner, but it
seems that this example has never been published.)

Johnson [13, 15] has also analyzed the Best Fit Decreasing and First Fit
Decreasing algorithms, which behave like BestFit and FirstFit but receive
the items on the input sorted from the largest one to the smallest, and proved
that the asymptotic approximation ratio is equal to 11/9. Johnson’s bound had
an additive constant of 4; this was improved several times.

Turning to the bounded-space algorithms, a central result of Lee and Lee
[16] designs k-bounded-space online bin packing algorithms whose asymptotic
ratios come arbitrarily close to the magic harmonic number h∞ ≈ 1.69103, as
the space bound k tends to infinity. They also show that every bounded-space
online bin packing algorithm A satisfies R∞(A) ≥ h∞

Csirik and Johnson [5] show that the k-space-bounded Best Fit algorithm
BBFk has the asymptotic worst case ratio 1.7 for any k ≥ 2. (The case of k = 1
is trivial, 2-approximation is possible and no better algorithm exists.) Among
all 2-space-bounded online algorithms in the bin packing literature, this online
algorithm is the champion with respect to worst-case ratios.

We have mentioned only directly relevant work. Of course, there is much
more work on bin packing, in particular there exist asymptotic approximation



schemes for this problem, as well as many other algorithms. We refer to the
surveys [3, 4] or to the recent excellent book [21].

1.3 The new results

The absolute approximation ratio of FirstFit and BestFit was proven to
be at most 1.75 by Simchi-Levy [19]. This started a renewed interest in these
algorithm and their absolute ratio and the closely related question of decreasing
the additive constant in the approximation ratio. A natural approach to improve
absolute upper bounds is to study fixed small values of Opt and to exclude the
possibility of a higher absolute ratio for them. Indeed, solving a few such cases
necessarily improves upper bounds on the absolute ratio—but cannot give a
tight result. Of course, this is still far from trivial: Even for a fixed Opt, each
such problem seems to lead to a new and more extensive case analysis.

Such analysis lead to a sequence of improvements for FirstFit: Xia and
Tan [22] showed that FF ≤ 1.7 · Opt + 0.7 and that the absolute ratio of
FirstFit is at most 12/7 ≈ 1.7143; the second bound was given independently
by Boyar et al. [1] and later improved to 101/59 ≈ 1.7119 by Németh [17].

In [7, 8], Dósa and the author have shown that FF,BF ≤ 1.7 · Opt and
that this bound is the best possible for every single value of Opt. Thus we
have a complete understanding of the worst-case behavior of these algorithm.
In particular, we know that the asymptotic and absolute bounds coincide and
no additive term is needed. These results are based on new insights that also
make possible a simple proof and a slight generalization and strengthening of
the asymptotic bound for AAF algorithms.

Turning to other online algorithms, these new techniques can be also applied
to BBFk and simplify the proof that BBFk is asymptotic 1.7-approximation,
even though BBFk is not AnyFit algorithm [18].

It is easy to observe that no online algorithm has an absolute ratio less than
5/3 ≈ 1.666. Recently, again using the new techniques, we (G. Dósa, R. van
Stee and the author) have been able to find a matching algorithm (article in
preparation).

For First Fit Decreasing, it was shown that the additive constant is exactly
2/3 [6]. That is, 11

9 Opt + 2
3 bins are sufficient for First Fit Decreasing, but

this number of bins is actually also necessary for some instances for infinitely
many values of Opt. Thus for First Fit Decreasing, the asymptotic and absolute
approximation ratios are not equal. In fact, the results of [6] give the exact
value of the worst case for every value of Opt. In light of this result, it is
rather surprising that for BestFit and FirstFit the asymptotic and absolute
approximation ratios are equal and no additive term is needed.

1.4 This survey

We focus on the results connected to the recent optimal analysis of FirstFit
and BestFit. We start in Section 2 by sketching the lower bound, as it gives a
good intuition for the choices made in the remaining parts of the paper.



In the Section 3 we give a simple proof of the asymptotic upper bound of 1.7
for AAF algorithms, in fact, even for a slightly more generalized class of GAAF
algorithms (Generalized AAF algorithms). This proof uses the same insights as
the optimal analysis of FirstFit and BestFit, namely a combination of weight
functions and amortized analysis. In addition, to demonstrate that the equality
of the absolute and asymptotic bounds for FirstFit and BestFit is by far not
automatic, we show a GAAF packing with an absolute ratio strictly larger than
1.7.

Finally, in Section 4 we discuss a new measure for bounded space algorithm
introduced in [2].

2 The lower bound

Suppose for a moment that the algorithm is not allowed to pack a bin with
item sizes summing to exactly 1, while the optimum can. This model gives an
unfair advantage to the optimum, but we hope that lower bound examples in this
model can be later modified by changing the item sizes by very small amount
to provide a correct lower bound. This is a bold assumption that is not quite
true, however, this simplified model provides a very good high-level intuition in
a number of different bin packing scenarios.

In the simplified model, the lower bound instance for Opt = 10m is this:
Start by Opt items of size 1/6, continue by Opt items of size 1/3, and conclude
by Opt items of size 1/2. The optimum uses Opt = 10m bins by packing three
items of different sizes 1/6 + 1/3 + 1/2 = 1 in each bin. FirstFit uses 2m bins
with 5 items of size 1/6, 5m bins with 2 items of size 1/3 and 10m bins with a
single item of size 1/2. Total of 17m bins, giving a lower bound of 1.7.

To modify the instance to be valid in the real model, we modify the item sizes.
First, for all items 1/2 the size is changed into 1/2 + ε for a tiny ε > 0. The sizes
of items 1/3 is changed into carefully chosen 1/3+δi and 1/3−δi, for δi tiny and
exponentially decreasing to 0. This guarantees that the previous packing works if
we arrange the sequence so that FirstFit packs 1/3+δi and 1/3−δi−1 together.
Now, to allow the optimal packing, the remaining items have size 1/6 + δi − ε
and 1/6− δi− ε. We need to order them so that the FirstFit packing works as
we wish. Here we come to a point where the simplified model fails. We modify
the FirstFit packing so that the first bin contains 6 items instead of 5 and the
last bin of the first phase contains 4 items instead of 5. Of course, this needs to
be carefully checked, but the main idea why the construction works is that the
exponential decrease of δi guarantees that only the item with the largest δi in a
bin is relevant for its final size. Also, we need a proof for other residue classes
of Opt, but the case of Opt = 10m is tightest and easily modified to other
Opt = 10m+ i. We obtain

Theorem 2.1. For all values of Opt, there exists an instance I with such that
FF = b1.7 ·Optc.

Since FirstFit is equivalent to an arbitrary AnyFit algorithm on a subset
of instances, the lower bound holds for a general AnyFit algorithm.



3 The simplified and generalized asymptotic upper bound

We now present the simple proof of the asymptotic ratio 1.7. This proof holds
for a wide class of any-fit-type algorithms: Call an AnyFit algorithm a GAAF
algorithm, if it uses the bin with level at most 1/2 only when the item does not
fit into any previous bin. (It is easy to verify that there is always at most one
such bin, see Lemma 3.1(i).) The GAAF condition say that the AAF condition
holds whenever the smallest bin has level at most 1/2; thus any AAF algorithm
is a GAAF algorithm.

The asymptotic bound for AAF algorithms was proved in [13, 14]. Theo-
rem 3.3 improves the additive term and generalizes the bound to the slightly
less restrictive GAAF condition (although it seems that the original proof also
uses only the GAAF condition).

Let us fix an instance I with items a1, . . . , an and denote the number of bins
in the BestFit and optimal solutions by BF and Opt, respectively. We will
often identify an item and its size. For a set of items A, let s(A) =

∑
a∈A a, i.e.,

the total size of items in A and also for a set of bins A, let s(A) =
∑

A∈A s(A).
Furthermore, let S = s(I) be the total size of all items of I. Obviously S ≤ Opt.

We classify the items by their sizes: items a ≤ 1/6 are small, items a ∈
(1/6, 1/2] are medium, and items a > 1/2 are huge.

The bins in the BF packing are ordered by the time they are opened (i.e.,
when the first item is packed into them). Expressions like “before”, “after”, “first
bin”, “last bin” refer to this ordering. At any time during the packing, the level
of a bin is the total size of items currently packed in it, while by size of a bin
we always mean its final level.

Lemma 3.1. At any moment, in any GAAF packing the following holds:

(i) The sum of levels of any two bins is greater than 1. In particular, there is
at most one bin with level at most 1/2.

(ii) Any item a packed into a bin with level at most 1/2 (i.e., a new bin or the
single bin with level at most 1/2 guaranteed by (i)) does not fit into any
bin open at the time of its arrival, except for the bin where the item a is
packed.

(iii) If there are two bins B,B′ with level at most 2/3, in this order, then either
B′ contains a single item or the first item in B′ is huge.

Proof. (i): The first item in any bin does not fit in any open bin by the definition
of GAAF (in fact, the AnyFit condition is sufficient here), thus the sum of the
levels of the two bins is greater than 1 already at the time when the second bin
is opened.

(ii): If a is packed into a new bin, this follows by the GAAF (or AnyFit)
condition again. Otherwise Let x ≤ 1/2 be the level of the bin where a is packed,
just before a is packed there. By (i), there is at most one bin with level at most
1/2, thus at the time of packing of a all the other bins have level strictly greater
than x. By the definition of GAAF, a does not fit into any of these bins.



(iii): If B′ contains two items and the first one is not huge, then by (ii) the
first two items in B′ do not fit into B. Thus they are larger than 1/3 and the
level of B′ is greater than 2/3. ut

The short proof of the asymptotic ratio 1.7 for GAAF algorithms uses the
same weight function as the traditional analysis of BestFit and FirstFit. (In
some variants the weight of an item is capped to be at most 1, which makes
almost no difference in the analysis.)

The weight function assigns a weight to each item, depending on its size.
Intuitively, the weight measures how much space is needed to pack each item. For
small items, it should be proportional to its size, but large items may generate
empty space in some of the bins and their weight is accordingly larger. The
overall idea is to show that the weight of each optimal bin is at most 1.7 while the
average weight of each algorithm’s bin is at least 1. Looking at the lower bound
example with this outline in mind, it is easy to see that we should set w(0) = 0,
w(1/6) = 0.2, w(1/3) = 0.5, and w(1/2 + ε) ≥ 1. The weight function we define
below fits these values by a piecewise linear function, with a discontinuity at
1/2.

To use amortization, we split the weight of each item a into two parts, namely
its bonus w(a) and its scaled size w(a), defined as

w(a) =


0 if a ≤ 1

6 ,
3
5 (a− 1

6 ) if a ∈
(
1
6 ,

1
3

)
,

0.1 if a ∈
[
1
3 ,

1
2

]
,

0.4 if a > 1
2 .

For every item a we define w(a) = 6
5a and its weight is w(a) = w(a) +w(a). For

a set of items B, w(B) =
∑

a∈B w(a) denotes the total weight, similarly for w
and w.

It is easy to observe that the weight of any bin B, i.e., of any set with
s(B) ≤ 1, is at most 1.7: The scaled size of B is at most 1.2, so we only need to
check that w(B) ≤ 0.5. If B contains no huge item, there are at most 5 items
with non-zero w(a) and w(a) ≤ 0.1 for each of them. Otherwise the huge item
has bonus 0.4; there are at most two other medium items with non-zero bonus
and it is easy to check that their total bonus is at most 0.1. This implies that
the weight of the whole instance is at most 1.7 ·Opt.

The key part is to show that, on average, the weight of each BF-bin is at
least 1. Lemma 3.2 together with Lemma 3.1 implies that for almost all bins
with two or more items, its scaled size plus the bonus of the following such bin
is at least 1.

Lemma 3.2. Let B be a bin such that s(B) ≥ 2/3 and let c, c′ be two items that
do not fit into B, i.e., c, c′ > 1− s(B). Then w(B) + w(c) + w(c′) ≥ 1.

Proof. If s(B) ≥ 5/6, then w(B) ≥ 1 and we are done. Otherwise let x = 5/6−
s(B). We have 0 < x ≤ 1/6 and thus c, c′ > 1/6 + x implies w(c), w(c′) > 3

5x.
We get w(B) + w(c) + w(c′) > 6

5 ( 5
6 − x) + 3

5x+ 3
5x = 1. ut



Any GAAF-bin (i.e., a bin of the GAAF algorithm) D with a huge item has
w(D) ≥ 0.4 and 6

5s(D) > 0.6, thus w(D) > 1.
For the amortization, consider all GAAF-bins B with two or more items,

size s(B) ≥ 2/3, and no huge item. For any such bin except for the last one
choose C as the next bin with the same properties. Since C has no huge item,
its first two items c, c′ have level at most 1/2 and by Lemma 3.1(ii) they do not
fit into B. Lemma 3.2 implies w(B) + w(C) ≥ w(B) + w(c) + w(c′) ≥ 1.

Summing all these inequalities (note that each bin is used at most once as
B and at most once as C) and w(D) > 1 for the bins with huge items we
get w(I) ≥ BF − 3. The additive constant 3 comes from the fact that we are
missing an inequality for at most three BF-bins: the last one from the amorti-
zation sequence, possibly one bin B with two or more items and s(B) < 2/3 (cf.
Lemma 3.1(iii)) and possibly one bin B with a single item and s(B) < 1/2 (cf.
Lemma 3.1(i)). Combining this with the previous bound on the total weight, we
obtain GAAF−3 ≤ w(I) ≤ 1.7 ·Opt, where GAAFdenotes the number of bins
of the GAAF algorithm, and the asymptotic bound follows.

This simple proof of the asymptotic ratio can be tightened so that the additive
constant is smaller. We save one of the three bins by noticing that we do not
need to do amortization for bins that are after the bin of size smaller than 2/3.
The remaining two bins have total size larger than 1, which brings the additive
constant further down to 0.7.

Theorem 3.3. For any GAAF algorithm and any instance of bin packing we
have GAAF ≤ b1.7 ·Opt + 0.7c.

Proof. Any GAAF-bin D with a huge item has w(D) ≥ 0.4 and 6
5s(D) > 0.6,

thus w(D) > 1. Similarly, any GAAF-bin with two items larger than 1/3 has
w(D) ≥ 0.2 and 6

5s(D) > 0.8, thus w(D) > 1.
For the amortization, consider all the GAAF-bins B, with (i) two or more

items, (ii) no huge item, and (iii) no pair of items both larger than 1/3. For
any such bin except for the last one choose C as the next bin with the same
properties. Since C has no huge item, its first two items c, c′ have level at most
1/2 and by the GAAF condition they do not fit into B. Since C has no pair
of items larger than 1/3, we have c ≤ 1/3 or c′ ≤ 1/3 and thus s(B) ≥ 2/3.
Lemma 3.2 now implies w(B) + w(C) ≥ w(B) + w(c) + w(c′) ≥ 1.

Let C be the last bin used in the amortization, if it exists, and D be the
single bin with s(D) ≤ 1/2, if it exists.

If C and D both exist, we have s(C) + s(D) > 1 by Lemma 3.1(i) and thus
w(C) + w(D) > 1.2. Summing this, all the amortization inequalities (note that
each bin is used at most once as B or C and at most once as C) and w(D) > 1 for
the bins with huge items or two items larger than 1/3 we get w(I) > GAAF−0.8.
Combining this with the previous bound w(I) ≤ 1.7 ·Opt on the total weight,
we obtain GAAF < w(I) + 0.8 ≤ 1.7 ·Opt + 0.8 and the theorem follows from
the integrality of GAAF and Opt.

If C exists but D does not, we have s(C) > 1/2 and thus w(C) > 0.6.
Summing this and again both all the amortization inequalities and w(D) > 1



for the bins with huge items or two items larger than 1/3 we get w(I) ≥ A− 0.4
and the theorem follows again.

If C does not exist but D does, let C be an arbitrary bin other than D (if none
exists, GAAF = 1 = Opt and the theorem is trivial). We have s(C) + s(D) > 1
and thus w(C) +w(D) > 1.2. Summing this and w(D) > 1 for all the remaining
bins, we get w(I) > GAAF− 0.8 and the theorem follows as above.

Finally, if neither C nor D exists, we have w(D) > 1 for all the GAAF-bins,
thus w(I) > A and the theorem follows as well. ut

Next we give an example showing that GAAF algorithms do not have an
absolute approximation ratio 1.7. In particular, we give an instance with Opt =
7 and GAAF packing with 12 bins.

We first describe the GAAF packing; the input sequence contains items in
the order of the bins, i.e., it starts by all the items from the first bin, then
continues by items from the second bin, etc. The first bin contains 6 items of
size 0.12, total of 0.72. The next three bins contain each 2 items of size 0.34;
note that these do not fit into any previous bin. The fifth bin has items 0.52 and
0.01; the item 0.01 fits into the previous bins, but it is packed at a level larger
than 0.5, so this satisfies the GAAF condition. The sixth bin contains a single
item of size 0.48 and the remaining six bins contain each an item of size 0.53;
again, these items do not fit into any previous bin.

Opt contains a bin with two items of sizes 0.52 and 0.48. The remaining
6 bins contain each three items of sizes 0.53, 0.34, and 0.12, total of 0.99; in
addition one of them contains also the item 0.01. This packs all the items in the
7 bins and completes the example.

Thus removing the additive constant completely is impossible for GAAF
algorithms, and thus it needs to use additional properties of the algorithm. We
are able to do this for FirstFit and BestFit, using additional ideas [7, 8].
It remains an interesting open problem whether this is possible for all AAF
algorithms.

4 Bounded space algorithms

The lower bound constructions in [16] is a variant of the FirstFit lower bound
which we have presented above. In its first approximation, giving a lower bound
of 5/3 ≈ 1.666, we give the algorithm the same number of items of sizes 1/7 +
ε, 1/3 + ε, and 1/2 + ε. The optimal packing uses almost full bins with one
item of each size. The full construction repeatedly prepends this sequence by
another group of same-size items, the size is set to 1/t + ε for the smallest
integer so that this item fits into the optimal bin (for a tiny ε > 0). On any such
sequence, any k-bounded-space algorithm uses bins grouping items of the same
size, with a constant number of exceptions. This shows that every bounded-space
algorithm has asymptotic worst case ratio at least h∞ ≈ 1.69103; the number
h∞ is defined from the sequence of reciprocals 1/2, 1/3, 1/7, 1/43, . . ., which we
described above.



The optimal packing above can be achieved only by an algorithm which
keeps many bins open even if the whole sequence is known in advance. Or, from
another viewpoint, we are allowed the optimal algorithm to reorder sequence.
It is natural to ask how much inefficiency is caused by not knowing the future,
i.e., by the fact that the algorithm is online. For this purpose, we restrict the
offline algorithms so that they can also have only k bins open. For a given
instance I, let Optk = Optk(I) be the smallest possible number of bins used
in a packing produced by a k-bounded-space bin packing algorithm that know
the whole instance I before it starts serving it. We say that the algorithm A it
is an asymptotic R-approximation algorithm w.r.t. the k-bounded-space
optimum if for every instance I

A ≤ R ·Optk + f(Optk),

where f(n) ∈ o(n); again, typically f(n) is a global constant. The smallest such
R is called the k-bounded-space ratio of algorithm A in [2], where it was
introduced.

On the lower-bound instances described above, BBFk is an asymptotic 1-
approximation w.r.t. the k-bounded-space optimum, so there is no inefficiency
caused by the online environment. It is not hard to construct instances showing
that the 2-bounded-space ratio of BBF2 is at least 1.5, see [2]. However, the
best upper bound on the 2-bounded-space ratio of BBF2 or any other bounded-
space algorithm is 1.7 and closing this gap is an interesting question. Levin and
Epstein (private communication) have shown that the 2-bounded-space ratio of
any online algorithm is at least 1.5, which leaves open the possibility that BBF2

is the best possible algorithm. The case of k > 2 is widely open.
One of the difficulties of studying the k-bounded-space ratio is that it seems

non-trivial to understand Optk. Unlike Opt, for which we have an asymptotic
approximation scheme, Optk is hard to approximate. In [2], it is shown that the
2-bounded-space ratio of any polynomial algorithm is at least 5/4. There exists a
(3/2 + ε)-approximation algorithm for Optk, based on a partial enumeration of
the solutions [2]. We are missing a deeper insight in the structure of the solutions
and also nothing is known for k > 3.
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