Home assignment 2

Probabilistic techniques 2

Submission deadline: Apr 11 before class for full credit, one week later with a penalty Discussion of solutions: Apr 18 after class (as scheduled)

Only problems marked with $\left(^{*}\right)$ are to be submitted. The rest are practice problems. To get credit you need 50% of the points.
$\left.\mathbf{1} \mathbf{(}^{*}\right)$. Let $G=(V, E)$ be the graph whose vertices are all 7^{n} vectors of length n over \mathbb{Z}_{7}, in which two vertices are adjacent iff they differ in precisely one coordínate. Let $U \subset V$ be a set of 7^{n-1} vertices of G, and let W be the set of all vertices of G whose distance from U exceeds $(c+2) \sqrt{n}$, where $c>0$ is a constant. Prove that $|W| \leq 7^{n} e^{-c^{2} / 2}$.
$\left.2 \mathbf{(}^{*}\right)$. Let $G=(V, E)$ be a graph with chromatic number $\chi(G)=1000$. Let $U \subset V$ be a random subset of V chosen uniformly among all $2^{|V|}$ subsets of V. Let $H=G[U]$ be the induced subgraph of G on U. Prove that

$$
\operatorname{Pr}[\chi(H)<400]<1 / 100 .
$$

$\mathbf{3}\left({ }^{*}\right)$. Prove that there is an absolute constant c such that for every $n>1$ there is an interval I_{n} of at most $c \sqrt{n} / \log n$ consecutive integers such that the probability that the chromatic number of $G(n, 0.5)$ lies in I_{n} is at least 0.99.
$4(*)$. Let $T(G)$ be the number of triangles in the graph G. For $G \sim G(n, p)$ find what concentration bound can be obtained by using each of: Azuma, Talagrand, Kim-Vu.
$5(*)$. For a permutation π, let $F(\pi)$ be the number of fixed points, i.e., number of x such that $\pi(x)=x$. Choose π uniformly at random from all permutations of $\{1, \ldots, n\}$. Find a concentration estimate for $F(\pi)$. Use Azuma and/or Talagrand. Preferably both, and compare.
6. In the proof of Talagrand we used the following estimate:

$$
e^{(1-\lambda)^{2} / 4} r^{-\lambda} \leq 2-r
$$

for all $r \in[0,1]$ and appropriate $\lambda=\lambda(r)$. Verify that this is true.
7. Two questions to think about regarding the proof of Talagrand:

- Why do we have $e^{-t^{2} / 4}$ in the bound and not the usual $e^{-t^{2} / 3}$?
- In the proof we defined the set $U(A, x)$ as the set of all $s \in\{0,1\}^{n}$ such that

$$
\exists y \in A: x_{i} \neq y_{i} \Longrightarrow s_{i}=1
$$

It would be more natural to have an equivalence here, as it would more directly correspond to the definition of $\varrho(A, x)$. Can you see, where it would fail?
8. Let X, A be sets. Let d_{a} for $a \in A$ be a metric. Then the function $d(x, y) \mapsto$ $\sup _{a \in A} d_{a}(x, y)$ is also a metric. (We used similar function to prove Talagrand inequality.)
9. - Azuma implies Chernoff (for $\operatorname{Bi}(n, p))$ when $p=1 / 2$ - but not in general.

- As does Talagrand but with worse constants.

10. For each martingale X_{0}, \ldots, X_{m} we have $\mathbb{E}\left[X_{j} \mid X_{i}\right]=X_{i}$ for every $j \geq i(*)$. The opposite direction is false: there is a sequence of random variables X_{0}, \ldots, X_{m}, which meets $(*)$, but does not constitute a martingale.
11. In the proof of Azuma we have used the following properties of conditional expectation (where we are conditioning on another random variable).

- $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$
- $\mathbb{E}[\mathbb{E}[X \mid Y, Z] \mid Z]=\mathbb{E}[X \mid Z]$
- $\mathbb{E}[\mathbb{E}[f(X) g(X, Y) \mid X]]=\mathbb{E}[f(X) \mathbb{E}[g(X, Y) \mid X)]]$

For reference

- Azuma's inequality Let X_{0}, \ldots, X_{m} be a martingale s.t. $\left|X_{k+1}-X_{k}\right| \leq c_{k}$. Then for every $t>0$

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{m} \leq X_{0}-t\right]<e^{-\frac{t^{2}}{2 \sum_{k=0}^{n-1} c_{k}^{2}}} \\
& \operatorname{Pr}\left[X_{m} \geq X_{0}+t\right]<e^{-\frac{t^{2}}{2 \sum_{k=0}^{n-1} c_{k}^{2}}}
\end{aligned}
$$

- Azuma's inequality - corollary Let X be c-Lipschitz on $\Omega=\prod_{i=1}^{n} \Omega_{i}$. Then for every $t>0$

$$
\begin{aligned}
& \operatorname{Pr}[X \leq \mathbb{E}[X]-t \sqrt{n}]<e^{-t^{2} /\left(2 c^{2}\right)} \\
& \operatorname{Pr}[X \geq \mathbb{E}[X]+t \sqrt{n}]<e^{-t^{2} /\left(2 c^{2}\right)}
\end{aligned}
$$

- Talagrand's inequality I Let A be a subset of the product probability space $\Omega=$ $\prod_{i} \Omega_{i}$. Then $\operatorname{Pr}[X \in A] \operatorname{Pr}\left[X \notin A_{t}\right] \leq e^{-t^{2} / 4}$, where A_{t} is the set of such x that $\rho(x, A) \leq t$, and ρ is supremum over all unit vectors α of $\inf _{y \in A} \sum_{i: x_{i} \neq y_{i}} \alpha_{i}$.
- Talagrand's inequality II Let X be c-Lipschitz and f-certifiable. Then for any b, t (where $t \geq 0$)

$$
\operatorname{Pr}[X \leq b-t \sqrt{f(b)}] \operatorname{Pr}[X \geq b] \leq \exp \left(-\frac{t^{2}}{2 c^{2}}\right)
$$

- Talagrand's inequality III Let X be c-Lipschitz and r-certifiable. (This means f-certifiable for $f(s)=r s$.) Then for any $0 \leq t \leq \operatorname{Med}[X]$

$$
\operatorname{Pr}[|X-\operatorname{Med}[X]|>t] \leq 4 \exp \left(-\frac{t^{2}}{8 c^{2} r \operatorname{Med}[X]}\right)
$$

- Talagrand's inequality IV Let X be c-Lipschitz and r-certifiable. (This means f-certifiable for $f(s)=r s$.) Then for any $0 \leq t \leq \mathbb{E}[X]$

$$
\operatorname{Pr}[|X-\mathbb{E}[X]|>t+60 c \sqrt{r \mathbb{E}[X]}] \leq 4 \exp \left(-\frac{t^{2}}{8 c^{2} r \mathbb{E}[X]}\right)
$$

- Kim-Vu inequality Let H be a hypergraph, $w: E(H) \rightarrow[0, \infty), t_{i} \sim \operatorname{Bern}\left(p_{i}\right)$ for $i \in V(H)$. Put

$$
\begin{array}{rlr}
Y & =\sum_{e \in E(H)} w_{e} \prod_{i \in e} t_{i} & \text { and } \\
Y_{A} & =\sum_{e \in E(H): e \supseteq A} w_{e} \prod_{i \in e-A} t_{i} & \text { for } A \subseteq V(H)
\end{array}
$$

Let $E_{i}=\max \left\{\mathbb{E}\left[Y_{A}|:|A|=i\}\right.\right.$. (Note, that $E_{0}=\mathbb{E}[Y]$.) Further, let $E^{\prime}=\max \left\{E_{i}\right.$: $1 \leq i \leq k\}$ and $E=\max \left\{E_{i}: 0 \leq i \leq k\right\}$. Then for any $\lambda>1$ we have

$$
\operatorname{Pr}\left[|Y-\mathbb{E}[Y]|>a_{k} \sqrt{E E^{\prime}} \lambda^{k}\right]<d_{k} e^{-\lambda} n^{k-1}
$$

where $a_{k}=8^{k} \sqrt{k!}$ and $d_{k}=2 e^{2}$.

