Flows and cycles in graphs - Exercise 2

1. Prove that every bridgeless graph has a NZF in every large-enough group. (Do not try to optimize the size - but also do not use the result about 8-NZF proved in class.)
2. Prove that the Flower snark (in the figure) is not 3-edge-colorable (so it is indeed a snark). We did it in class, but with some details skipped.

3. When proving that the Petersen graph does not have some property (in the previous set of exercises we discussed edge 3-coloring, resp. NZ \mathbb{Z}_{2}^{2}-flow) it is helpful, that the graph is extremely symmetric. Proving these symmetries is the topic of this exercise. First few ad-hoc definitions:

We say that graph G is H-transitive, if whenever H_{1}, H_{2} are subgraphs of G, both isomorphic to H, there is an automorphism of G which maps H_{1} to H_{2}.

We say that graph G is ordered H-transitive, if whenever H_{1}, H_{2} are subgraphs of G, both isomorphic to H, and $f: H_{1} \rightarrow H_{2}$ is an isomorphism, then there is an automorphism of G which extends f.
(a) Kneser graph $K(n, k)$ is a graph which has k-subsets of an n-set as vertices, and two vertices are adjacent iff the corresponding sets are disjoint. Show that the Petersen graph is isomorphic with $K(5,2)$.
(b) The Petersen graph is K_{1}-transitive (or vertex-transitive).
(c) The Petersen graph is K_{2}-transitive (or edge-transitive).
(d) The Petersen graph is ordered K_{2}-transitive (or arc-transitive).
(e) The Petersen graph is ordered H-transitive where H is the following tree:

(f) The Petersen graph is M-transitive, where M is a matching with 5 edges.
4. Let G be a directed graph with edges colored by red, blue, yellow, and green. Let x, y be two vertices of G. We are looking for a path from x to y that may use blue edges in the forward direction, yellow in the backward direction, green in both directions and red in neither. Characterize graphs in which there exists such a path (and prove the characterization).

