Series 8

1. Determine the choosability of the following graphs: complete graph without one edge, $K_{2,3}, K_{2,22}, K_{3,3}, K_{3,33}, C_{2 n}$.
2. * Determine the choosability of the graph $\Theta_{2,2,2 m}$ - two vertices connected by three paths of lengths 2,2 , and $2 m$ (for integer m).
3. Find the graph G tž. $\chi_{l}(G)>\chi(G)$ and $|V(G)|+|E(G)|$ is the smallest possible/as small as you can.
4. Show that $\chi_{l}\left(K_{n, n^{n}}\right)=n+1$.
5. Show that each planar triangle-free graph has a choosability of at most 4.
6. * Find a planar triange-free graph whose choosability is greater than 3 .
7. Let G be a connected graph of maximum degree Δ. If G is not a clique or an odd cycle, then $\chi_{l}(G) \leq \Delta$.
8. Show that $\chi_{l}(G)+\chi_{l}(\bar{G}) \leq n+1$ holds for any graph G with n vertices and its complement \bar{G}.
9. ${ }^{*}$ Let G be a connected graph of the minimum degree at least 2 . Show that G is 2-choosable if and only if G is either an even cycle or a union of three paths of even length with common ends such that at least two of these paths are of length 2.
10. Let G be a planar graph with the outer face bounded by the induced cycle K. If each vertex G has at most two neighbors in K, then each 5 -coloring of K can be extended to a 5 -coloring of G.

Hint for 4: one inequality was done in class.
Hint for 5: it suffices to use degeneratedness.
Hint for 6: it is possible to imitate the approach from class,

Hint for 7: follow the proof of Brooks' theorem: find a vertex v and its two nonadjacent neighbors u, w. Then find a spanning tree of the graph with root v, where u, w are leafs. Hint for 8: it suffices to use degeneratedness.
Hint for 10: use Thomassen's theorem in the stronger version.

