Combinatorics and graph theory 3 - 2020/21Series 7

1. Show that

$$\lim_{n \to \infty} t_{r-1}(n) / \binom{n}{2} = \frac{r-2}{r-1}.$$

2. Assume Erdős-Stone theorem. Prove from it Erdős-Stone-Simonovits theorem:

$$\lim_{n \to \infty} ex(n, H) / \binom{n}{2} = 1 - \frac{1}{\chi(H) - 1}$$

3. * "common neighborhood" Let (A, B) be an ε -regular pair (in some graph) with d(A, B) = d, let s > 0 be an integer. For a tuple $\vec{a} = (a_1, \ldots, a_s) \in A^s$ we let $N(\vec{a}) = \bigcap_{i=1}^s N(a_i)$ be the common neighborhood of vertices in \vec{a} . Let the set $Y \subseteq B$ satisfy $(d - \varepsilon)^{s-1}|Y| \ge \varepsilon |B|$. Then

$$\left|\left\{\vec{a} \in A^s : |Y \cap N(\vec{a})| < (d - \varepsilon)^s |Y|\right\}\right| < s\varepsilon |A|^s.$$

4. Let |A| = |B| = |C| = n, let (A, B), (B, C), (C, A) be three ε -regular pairs, for some $\varepsilon \in (0, 1/2]$. Let t = t(A, B, C) the number of triangles with one vertex in A, another in B and the third in C. Then

$$|t - d(A, B)d(B, C)d(C, A)n^3| \le 13\varepsilon n^3.$$

- 5. Suppose G is a graph and (A, B) is an ε -regular pair in G for some $0 < \varepsilon \leq 1$. Let |A| = |B| = n and p = d(A, B). Show that the number of 4-cycles $v_1v_2v_3v_4 \vee G$ s.t. $v_1, v_3 \in A$ and $v_2, v_4 \in B$ is at least $p^4n^4 17\varepsilon n^4 2n^3$.
- 6. Show that for every p > 0 there are $c, \varepsilon > 0$ such that the following is true: Let G be a grpah and (A, B) an ε -regular pair in G. Assume |A| = |B| = n and $d(A, B) \ge p$. Let $A' \subseteq A$ and $B' \subseteq B$ be sets such that $|A'| = |B'| \ge (1 - \varepsilon)n$, every vertex of A'has at least $(p - 2\varepsilon)n$ neighbors in B' and every vertex of B' has at least $(p - 2\varepsilon)n$ neighbors in A'. Then the bipartite subgraph of G with parts A', B' has at least cnmutually edge disjoint perfect matchings.
- 7. Prove the following: for every $\alpha > 0$ there are $c, n_0 > 0$ such that each graph G with $n \ge n_0$ vertices and at least αn^2 edges has $\lceil cn \rceil$ -regular bipartite graph as a subgraph.
- 8. * Let $0 \le p \le 1$ be real. Show that if A_1, \ldots, A_4 are disjoint subsets of vertices of some graph G of the same size n, pairs (A_i, A_j) are ε -regular for $1 \le i < j \le 4$, $d(A_i, A_j) \ge p$ for $(i, j) \in \{(1, 2), (2, 3), (3, 4), (4, 1)\}$ and $d(A_i, A_j) \le p$ for $(i, j) \in \{(1, 3), (2, 4)\}$, then G has at least $p^4(1-p)^2n^4 100\varepsilon n^4$ induced 4-cycles.