Series 7

1. Show that

$$
\lim _{n \rightarrow \infty} t_{r-1}(n) /\binom{n}{2}=\frac{r-2}{r-1} .
$$

2. Assume Erdős-Stone theorem. Prove from it Erdős-Stone-Simonovits theorem:

$$
\lim _{n \rightarrow \infty} e x(n, H) /\binom{n}{2}=1-\frac{1}{\chi(H)-1} .
$$

3. * "common neighborhood" Let (A, B) be an ε-regular pair (in some graph) with $d(A, B)=d$, let $s>0$ be an integer. For a tuple $\vec{a}=\left(a_{1}, \ldots, a_{s}\right) \in A^{s}$ we let $N(\vec{a})=\cap_{i=1}^{s} N\left(a_{i}\right)$ be the common neighborhood of vertices in \vec{a}. Let the set $Y \subseteq B$ satisfy $(d-\varepsilon)^{s-1}|Y| \geq \varepsilon|B|$. Then

$$
\left|\left\{\vec{a} \in A^{s}:|Y \cap N(\vec{a})|<(d-\varepsilon)^{s}|Y|\right\}\right|<s \varepsilon|A|^{s} .
$$

4. Let $|A|=|B|=|C|=n$, let $(A, B),(B, C),(C, A)$ be three ε-regular pairs, for some $\varepsilon \in(0,1 / 2]$. Let $t=t(A, B, C)$ the number of triangles with one vertex in A, another in B and the third in C. Then

$$
\left|t-d(A, B) d(B, C) d(C, A) n^{3}\right| \leq 13 \varepsilon n^{3} .
$$

5. Suppose G is a graph and (A, B) is an ε-regular pair in G for some $0<\varepsilon \leq 1$. Let $|A|=|B|=n$ and $p=d(A, B)$. Show that the number of 4 -cycles $v_{1} v_{2} v_{3} v_{4} \mathrm{v} G$ s.t. $v_{1}, v_{3} \in A$ and $v_{2}, v_{4} \in B$ is at least $p^{4} n^{4}-17 \varepsilon n^{4}-2 n^{3}$.
6. Show that for every $p>0$ there are $c, \varepsilon>0$ such that the following is true: Let G be a grpah and (A, B) an ε-regular pair in G. Assume $|A|=|B|=n$ and $d(A, B) \geq p$. Let $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ be sets such that $\left|A^{\prime}\right|=\left|B^{\prime}\right| \geq(1-\varepsilon) n$, every vertex of A^{\prime} has at least $(p-2 \varepsilon) n$ neighbors in B^{\prime} and every vertex of B^{\prime} has at least $(p-2 \varepsilon) n$ neighbors in A^{\prime}. Then the bipartite subgraph of G with parts A^{\prime}, B^{\prime} has at least $c n$ mutually edge disjoint pefect matchings.
7. Prove the following: for every $\alpha>0$ there are $c, n_{0}>0$ such that each graph G with $n \geq n_{0}$ vertices and at least αn^{2} edges has $\lceil c n\rceil$-regular bipartite graph as a subgraph.
8. * Let $0 \leq p \leq 1$ be real. Show that if A_{1}, \ldots, A_{4} are disjoint subsets of vertices of some graph G of the same size n, pairs $\left(A_{i}, A_{j}\right)$ are ε-regular for $1 \leq i<j \leq 4$, $d\left(A_{i}, A_{j}\right) \geq p$ for $(i, j) \in\{(1,2),(2,3),(3,4),(4,1)\}$ and $d\left(A_{i}, A_{j}\right) \leq p$ for $(i, j) \in$ $\{(1,3),(2,4)\}$, then G has at least $p^{4}(1-p)^{2} n^{4}-100 \varepsilon n^{4}$ induced 4 -cycles.
