Combinatorics and graph theory 3 - 2020/21Series 6

- 1. Every two disjoint set of vertices of a graph form a 1-regular pair.
- 2. Suppose sets A, B are disjoint and for every $X \subseteq A, Y \subseteq B, X, Y \neq \emptyset$ we have

$$|d(X,Y) - d(A,B)| \le 0$$

(something like 0-regularity). What can you say about the graph induced by $A \cup B$?

- 3. Suppose $\varepsilon_1 > \varepsilon_2 > 0$. Which property is stronger: ε_1 -regularity or ε_2 -regularity?
- 4. Show that ε -regular partition of a graph G is also ε -regular partition of the complement, \overline{G} .
- 5. Let $n(\varepsilon, m)$ be any function. Suppose the following version of regularity lemma holds: For every $\varepsilon > 0$ and every m there is M such that every graph with $n \ge n(\varepsilon, m)$ vertices has ε -regular partition with k parts, where $m \le k \le M$.

Show that this implies the usual regularity lemma.

- 6. Let (G_n) be a sequence of graphs such that $|G_n| = n$ and $||G_n|| = o(n^2)$. Show that regularity lemma holds for (G_n) that is the weaker version is true, where we can only choose graphs from the sequence (G_n) .
- 7. Let (A, B) be ε -regular pair with d(A, B) = d and |A| = |B| = n. Then there is $X \subseteq A, Y \subseteq B$, for which
 - $|X| = |Y| \ge (1 \varepsilon)n$,
 - every vertex in X has at least $(d-2\varepsilon)|B|$ neighbors in Y, and
 - every vertex in Y has at least $(d 2\varepsilon)|A|$ neighbors in X.
- 8. "Restriction of a regular pair" Let (A, B) be an ε -regular pair (in some graph) with d(A, B) = d. Suppose further $\alpha > \varepsilon$ and let $X \subseteq A, Y \subseteq B$ satisfy $|X| \ge \alpha |A|$, $|Y| \ge \alpha |B|$. Then (X, Y) is ε' -regular pair, where $\varepsilon' = \max\{\varepsilon/\alpha, 2\varepsilon\}$ and d(X, Y) = d', while $|d d'| \le \varepsilon$.
- 9. * "common neighborhood" Let (A, B) be an ε -regular pair (in some graph) with d(A, B) = d, let s > 0 be an integer. For a tuple $\vec{a} = (a_1, \ldots, a_s) \in A^s$ we let $N(\vec{a}) = \bigcap_{i=1}^s N(a_i)$ be the common neighborhood of vertices in \vec{a} . Let the set $Y \subseteq B$ satisfy $(d \varepsilon)^{s-1}|Y| \ge \varepsilon |B|$. Then

$$|\{\vec{a} \in A^s : |Y \cap N(\vec{a})| < (d - \varepsilon)^s |Y|\}| < s\varepsilon |A|^s.$$

10. Let |A| = |B| = |C| = n, let (A, B), (B, C), (C, A) be three ε -regular pairs, for some $\varepsilon \in (0, 1/2]$. Let t = t(A, B, C) the number of triangles with one vertex in A, another in B and the third in C. Then

$$|t - d(A, B)d(B, C)d(C, A)n^3| \le 13\varepsilon n^3.$$

Hint for 4: Choose sufficiently large M.

Hint for 5: We can choose any partition into not too many parts. If n is large enough, and thus $||G_n||/n^2$ small enough, then for every tested pairs $X \subseteq A$, $Y \subseteq B$ we have $d(X,Y) \leq \varepsilon$, and thus (A,B) is an ε -regular pair.

Hint for 6: Use twice the lemma from class.

Hint for 8: Use induction over s, for s = 1 we proved it in class.

Hint for 9: According to a theorem from class, majority of vertices in A has a typical number of neighbors in B and in C. For them use the definition of regular pair for (B, C).