Series 6

1. Every two disjoint set of vertices of a graph form a 1-regular pair.
2. Suppose sets A, B are disjoint and for every $X \subseteq A, Y \subseteq B, X, Y \neq \emptyset$ we have

$$
|d(X, Y)-d(A, B)| \leq 0
$$

(something like 0-regularity). What can you say about the graph induced by $A \cup B$?
3. Suppose $\varepsilon_{1}>\varepsilon_{2}>0$. Which property is stronger: ε_{1}-regularity or ε_{2}-regularity?
4. Show that ε-regular partition of a graph G is also ε-regular partition of the complement, \bar{G}.
5. Let $n(\varepsilon, m)$ be any function. Suppose the following version of regularity lemma holds: For every $\varepsilon>0$ and every m there is M such that every graph with $n \geq$ $n(\varepsilon, m)$ vertices has ε-regular partition with k parts, where $m \leq k \leq M$.
Show that this implies the usual regularity lemma.
6. Let $\left(G_{n}\right)$ be a sequence of graphs such that $\left|G_{n}\right|=n$ and $\left\|G_{n}\right\|=o\left(n^{2}\right)$. Show that regularity lemma holds for $\left(G_{n}\right)$ - that is the weaker version is true, where we can only choose graphs from the sequence $\left(G_{n}\right)$.
7. Let (A, B) be ε-regular pair with $d(A, B)=d$ and $|A|=|B|=n$. Then there is $X \subseteq A, Y \subseteq B$, for which

- $|X|=|Y| \geq(1-\varepsilon) n$,
- every vertex in X has at least $(d-2 \varepsilon)|B|$ neighbors in Y, and
- every vertex in Y has at least $(d-2 \varepsilon)|A|$ neighbors in X.

8. "Restriction of a regular pair" Let (A, B) be an ε-regular pair (in some graph) with $d(A, B)=d$. Suppose further $\alpha>\varepsilon$ and let $X \subseteq A, Y \subseteq B$ satisfy $|X| \geq \alpha|A|$, $|Y| \geq \alpha|B|$. Then (X, Y) is ε^{\prime}-regular pair, where $\varepsilon^{\prime}=\max \{\varepsilon / \alpha, 2 \varepsilon\}$ and $d(X, Y)=$ d^{\prime}, while $\left|d-d^{\prime}\right| \leq \varepsilon$.
9. * "common neighborhood" Let (A, B) be an ε-regular pair (in some graph) with $d(A, B)=d$, let $s>0$ be an integer. For a tuple $\vec{a}=\left(a_{1}, \ldots, a_{s}\right) \in A^{s}$ we let $N(\vec{a})=\cap_{i=1}^{s} N\left(a_{i}\right)$ be the common neighborhood of vertices in \vec{a}. Let the set $Y \subseteq B$ satisfy $(d-\varepsilon)^{s-1}|Y| \geq \varepsilon|B|$. Then

$$
\left|\left\{\vec{a} \in A^{s}:|Y \cap N(\vec{a})|<(d-\varepsilon)^{s}|Y|\right\}\right|<s \varepsilon|A|^{s} .
$$

10. Let $|A|=|B|=|C|=n$, let $(A, B),(B, C),(C, A)$ be three ε-regular pairs, for some $\varepsilon \in(0,1 / 2]$. Let $t=t(A, B, C)$ the number of triangles with one vertex in A, another in B and the third in C. Then

$$
\left|t-d(A, B) d(B, C) d(C, A) n^{3}\right| \leq 13 \varepsilon n^{3} .
$$

Hint for 4: Choose sufficiently large M.
Hint for 5: We can choose any partition into not too many parts. If n is large enough, and thus $\left\|G_{n}\right\| / n^{2}$ small enough, then for every tested pairs $X \subseteq A, Y \subseteq B$ we have $d(X, Y) \leq \varepsilon$, and thus $(A, B))$ is an ε-regular pair.

Hint for 6: Use twice the lemma from class.
Hint for 8: Use induction over s, for $s=1$ we proved it in class.
Hint for 9: According to a theorem from class, majority of vertices in A has a typical number of neighbors in B and in C. For them use the definition of regular pair for (B, C).

