Series 5

1. Show that every graph G has a tree decomposition of width $\operatorname{tw}(G)$ where no two parts are in inclusion.

Tree decomposition $\left(T,\left(V_{t}\right)_{t \in T}\right)$ is smooth), if for some k

- $\left|V_{t}\right|=k+1$ for all $t \in V(T)$ and
- $\left|V_{s} \cap V_{t}\right|=k$ for all edges $s t \in E(T)$

2. Show that every graph G has a smooth tree decomposition of width $t w(G)$.
3. If $\left(T,\left(V_{t}\right)_{t \in T}\right)$ is a smooth tree decomposition then $|V(T)|=|V(G)|-k$. In particular $|V(T)| \leq|V(G)|$.

For a graph G with a given weight $w: V(G) \rightarrow \mathbb{R}+$, an (k, α)-separator is a set $X \subseteq V(G)$ such that $|X| \leq k$ and for each component K of $G-X$ we have $w(K) \leq \alpha w(G)$.
Here $w(K)=\sum_{v \in V(K)} w(v)$. For unweighted graphs consider $w \equiv 1$.
4. Show that every weighted tree has a $\left(1, \frac{1}{2}\right)$-separator. Show how to find it.
5. Show that every graph of tree width k has $\left(k+1, \frac{1}{2}\right)$-separator, and we can find it (given a tree decomposition) find it in linear time.
6. Given a graph G and its tree decomposition of width k. Decide if G is 3 -colorable in time $O^{*}\left(3^{k}\right)$ - a shortcut for $O\left(3^{k}|V(G)|^{l}\right)$ some constant l.
7. Given a graph G and its tree decomposition of width k. Find its minimal vertex cover in time $O^{*}\left(2^{k}\right)$.

