Combinatorics and graph theory 3 - 2020/21Series 5

1. Show that every graph G has a tree decomposition of width tw(G) where no two parts are in inclusion.

Tree decomposition $(T, (V_t)_{t \in T})$ is smooth), if for some k

- $|V_t| = k + 1$ for all $t \in V(T)$ and
- $|V_s \cap V_t| = k$ for all edges $st \in E(T)$
- 2. Show that every graph G has a smooth tree decomposition of width tw(G).
- 3. If $(T, (V_t)_{t \in T})$ is a smooth tree decomposition then |V(T)| = |V(G)| k. In particular $|V(T)| \le |V(G)|$.

For a graph G with a given weight $w : V(G) \to \mathbb{R}+$, an (k, α) -separator is a set $X \subseteq V(G)$ such that $|X| \leq k$ and for each component K of G - X we have $w(K) \leq \alpha w(G)$.

Here $w(K) = \sum_{v \in V(K)} w(v)$. For unweighted graphs consider $w \equiv 1$.

- 4. Show that every weighted tree has a $(1, \frac{1}{2})$ -separator. Show how to find it.
- 5. Show that every graph of tree width k has $(k + 1, \frac{1}{2})$ -separator, and we can find it (given a tree decomposition) find it in linear time.
- 6. Given a graph G and its tree decomposition of width k. Decide if G is 3-colorable in time $O^*(3^k)$ a shortcut for $O(3^k|V(G)|^l)$ some constant l.
- 7. Given a graph G and its tree decomposition of width k. Find its minimal vertex cover in time $O^*(2^k)$.