Combinatorics and graph theory 3 - 2020/21

Series 2

1. Consider $k=0,1,2$, and 3 . Is the k-sum of two planar graphs a planar graph?
2. Let G be a connected graph with no $K_{1, k}$-minor. Show that G has at most $10 k$ vertices of degree more than 2 .
3. Show that if a graph G has $n \geq 4$ vertices and at least $2 n-2$ edges, than G contains K_{4} as a minor.
4. Show that if a graph G has $n \geq 4$ vertices and at least $3 n-5$ edges, than G contains K_{5} as a minor.
5. Show that if G is a 3-connected graph containing K_{5} as a topological minor, then either $G \cong K_{5}$ or G contains $K_{3,3}$ as a topological minor.
6. Using the statement of the previous exercise and Kuratowski's theorem show, that G has no $K_{3,3}$ minor if and only if G is a (≤ 2)-sum of planar graphs and copies of K_{5}.
7. Using the statement of the previous exercise show, that every graph of minimal degree at least 6 has a $K_{3,3}$ minor.

Hint 2: consider a spanning tree of G with maximal number of leaves.
Hint 5: let H be a subdivision of K_{5} containing path $x v_{1} \ldots v_{t} y$, where $\operatorname{deg}(x)=\operatorname{deg}(y)=4, \operatorname{deg}\left(v_{1}\right)=\ldots=\operatorname{deg}\left(v_{t}\right)=2$ and $t \geq 1$. If H is a G, than as $\{x, y\}$ is not a cut in G, G must have a path P from $\left\{v_{1}, \ldots, v_{t}\right\}$ to the rest of H. Then $H \cup P$ contains a subdivision of $K_{3,3}$.

