Series 12

1. Let \vec{C}_{n} denote the directed n-cycle, \vec{P}_{n} the directed path on n vertices, and \vec{K}_{n} the transitive tournament on n vertices. Define a gain of a cycle/path in a digraph as the difference between forward and backward edges (it is only defined upto changing a sign). Show that
(a) $G \operatorname{hom} \vec{C}_{n}$ iff the gain of every cycle in G is divisible by n
(b) G hom \vec{P}_{n} iff the gain of every cycle in G is 0 and the gain of every path is at most $n-1$
(c) G hom \vec{K}_{n} iff not $\vec{P}_{n+1} \rightarrow G$
2. Show that we can decide in polynomial time whether there is a homomorphism $G \rightarrow \vec{C}_{n}, G \rightarrow \vec{P}_{n}$, and $G \rightarrow \vec{K}_{n}$.
3. Let G be the graph on the picture. Show that $\operatorname{hom}(F, G)$ is the number of such sets of edges that cover every node.

4. Let G be the graph on the picture. Show that $\operatorname{hom}(F, G)$ is 1 if F is Eulerian and 0 otherwise.

5. Let K be the graph with a single note of weight 1 and a loop of weight $1 / 2$. For a random graph $G=G(n, 1 / 2)$ we have $\delta_{\square}(G, K)=o(1)$ with high probability.
6. Let G_{1}, G_{2} be two simple graphs with $\delta_{\square}\left(G_{1}, G_{2}\right)=0$. Show that there is a simple graph G and integers $n_{1}, n_{2} \geq 1$ such that $G_{i} \cong G\left(n_{i}\right)$.
7. Let H be the graph with two nonadjacent vertices with a loop at each of them. Show that $\hat{\delta}_{\square}\left(H, K_{2}\right)=1 / 4$, but $\delta_{\square}\left(H, K_{2}\right)=1 / 8$.
8. Show that if n is odd then $\hat{\delta}_{\square}\left(K_{n, n}, \bar{K}_{n, n}\right)>\delta_{\square}\left(K_{n, n}, \bar{K}_{n, n}\right)$.
