Series 10

1. Let $A=\left(a_{i, j}\right)$ be an $n \times n$ matrix over a field F and suppose its permanent nonzero (over F). Then for any vector $b=\left(b_{1}, \ldots, b_{n}\right) \in F^{n}$ and for any family of sets S_{1}, \ldots, S_{n} of F, each of cardinality 2 , there is a vector $x \in S_{1} \times \cdots \times S_{n}$, such that $A x$ differs from b in every coordinate.
2. Find a connected graph G with an orientation with all in-degrees 2, coefficient of $x_{1}^{2} x_{2}^{2} \ldots x_{n}^{2}$ in its polynomial is 0 , but still G is 3 -choosable.
3. Let v_{1}, \ldots, v_{n} be an ordering of vertices of G such that $v_{1} v_{2} \in E(G)$ and for $i \geq 3$ vertex v_{i} has exactly two neighbors among $\left\{v_{1}, \ldots, v_{i-1}\right\}$ Let

$$
p_{G}=\prod_{v_{i} v_{j} \in E(G), i<j}\left(x_{j}-x_{i}\right)
$$

be the graph polynomial of G in variables x_{1}, \ldots, x_{n}. For any function $f:[n] \rightarrow N$ let $c(f, g)$ be the coefficient of $x_{1}^{2-f(1)} x_{2}^{2-f(2)} \ldots x_{n}^{2-f(n)}$ in p_{G}. (If $f(x)>2$ for some $x \in[n]$ then $c(f, G)=0$.) Let $e_{i}:[n] \rightarrow N$ be a function such that $e_{i}(i)=1$ and $e_{i}(x)=0$ for $x \in[n] \backslash\{i\}$. Write $\widetilde{c}(f, G)=c\left(f+e_{2}, G\right)-c\left(f+e_{1}, G\right)$.
Show by induction over $n \geq 2$, that if f satisfies $\sum_{x \in[n]} f(x)=2$, then $\widetilde{c}(f, G) \equiv 1$ $(\bmod 3)$.
4. Let G be 2-degenerated, $v_{0} \in V(G), L$ a list assignments such that $|L(v)| \geq 3$ for $v \in V(G) \backslash\left\{v_{0}\right\}$ and $\left|L\left(v_{0}\right)\right|=1$. Show that G is L-colorable.
5. Let G be a graph with a Hamilton cycle K such that $G-E(K)$ is a collection of vertex-disjoint triangles. Show that G is 3 -choosable.

