Kombinatorika a grafy III – 2020/211. série

- 1. Describe the following graphs
 - Forb_{\subset}(C_3, C_4, C_5, \ldots)
 - Forb \subset (C_3, C_5, C_7, \ldots)
 - Forb $\subset (P_2)$
 - Forb $\subset (P_3)$
 - Forb $\subset (K_{1.n})$
 - Forb \subseteq (2 K_2)
- 2. Describe the following graphs
 - Forb_ $(C_3, C_4, C_5, ...)$
 - Forb $\subset (C_3, C_5, C_7, \ldots)$
 - Forb $\sqsubset(P_2)$
 - Forb $\sqsubseteq(P_3)$
- 3. (*) Let \mathcal{G} be a \leq -closed class of graphs, where \leq is a locally finite order. Show that $\text{Obst}_{\leq}(\mathcal{G}) \subseteq \mathcal{F}$ for every set \mathcal{F} such that $\mathcal{G} = \text{Forb}_{\leq}(\mathcal{F})$.
- 4. (*) Describe the graphs in $Forb_{\subset}(P_4)$.
- 5. (*) Prove that $Forb_{\sqsubseteq}(C_3, C_5, C_7, \ldots) = bipartite.$
- 6. $(\star\star\star)$ Describe the graphs in Forb_{\sqsubseteq} $(2K_2, C_3, C_5, C_7, \ldots)$, that is bipartite graphs without induced matching of size 2.
- 7. The exact description of Forb $(2K_2)$ is not known.
- 8. The description of $Forb_{\sqsubseteq}(K_{1,3})$ (*claw-free graphs*) is known, but it is extremely complicated.
- 9. For integers a, b we define $\mathcal{G}_{a,b}$ as the class of all graphs having at most a vertices of degree at least b. For which a, b is this class minor-closed?
- 10. Describe $\mathcal{G}_{1,3}$ by forbidden minors.
- 11. Let G be a connected graph with no $K_{1,k}$ -minor. Show that G has at most 10k vertices of degree more than 2.