Kombinatorika a grafy III - 2020/21

1.série

1. Describe the following graphs

- Forb $_{\subseteq}\left(C_{3}, C_{4}, C_{5}, \ldots\right)$
- Forb $_{\subseteq}\left(C_{3}, C_{5}, C_{7}, \ldots\right)$
- $\operatorname{Forb}_{\subseteq}\left(P_{2}\right)$
- Forb $_{\subseteq}\left(P_{3}\right)$
- Forb $_{\subseteq}\left(K_{1, n}\right)$
- Forb $_{\subseteq}\left(2 K_{2}\right)$

2. Describe the following graphs

- Forb ${ }_{\underline{\square}}\left(C_{3}, C_{4}, C_{5}, \ldots\right)$
- Forb $_{\sqsubseteq}\left(C_{3}, C_{5}, C_{7}, \ldots\right)$
- Forb ${ }_{\sqsubseteq}\left(P_{2}\right)$
- Forb $_{\sqsubseteq}\left(P_{3}\right)$

3. (\star) Let \mathcal{G} be a \preceq-closed class of graphs, where \preceq is a locally finite order. Show that $\operatorname{Obst}_{\preceq}(\mathcal{G}) \subseteq \mathcal{F}$ for every set \mathcal{F} such that $\mathcal{G}=\operatorname{Forb}_{\preceq}(\mathcal{F})$.
4. (\star) Describe the graphs in Forb $_{\subseteq}\left(P_{4}\right)$.
5. (\star) Prove that Forb $\sqsubseteq\left(C_{3}, C_{5}, C_{7}, \ldots\right)=$ bipartite.
6. ($\star \star *$) Describe the graphs in Forb $_{\sqsubseteq}\left(2 K_{2}, C_{3}, C_{5}, C_{7}, \ldots\right)$, that is bipartite graphs without induced matching of size 2 .
7. The exact description of Forb $_{\sqsubseteq}\left(2 K_{2}\right)$ is not known.
8. The description of Forb $_{\sqsubseteq}\left(K_{1,3}\right)$ (claw-free graphs) is known, but it is extremely complicated.
9. For integers a, b we define $\mathcal{G}_{a, b}$ as the class of all graphs having at most a vertices of degree at least b. For which a, b is this class minor-closed?
10. Describe $\mathcal{G}_{1,3}$ by forbidden minors.
11. Let G be a connected graph with no $K_{1, k}$-minor. Show that G has at most $10 k$ vertices of degree more than 2 .
