## Combinatorics and Graph Theory III - 2020/21

Take-home variant of the exam

1. Let $G$ be a graph with $n$ vertices such that the edges of $G$ are covered by matchings $M_{1}, M_{2}, \ldots, M_{n}$. Suppose there is no $1 \leq i, j \leq n$ and pairwise distinct vertices $a, b, c, d$ for which $a b \in M_{i}, b c \in M_{j}, c d \in M_{i}$. Show that $\|G\|=o\left(n^{2}\right)$.
2. Let $G$ be 2-degenerated, $v_{0} \in V(G), L$ a list assignments such that $|L(v)| \geq 3$ for $v \in V(G) \backslash\left\{v_{0}\right\}$ and $\left|L\left(v_{0}\right)\right|=1$. Show that $G$ is $L$-colorable.
3. Show that if a graph has tree-width more than $3 k$ then it has a bramble of order at least $k+1$. Don't use the duality theorem, the purpose of this problem is to give an easier proof of a weaker version. You may proceed as you wish, but a suggested approach is as follows:

- Let $W \subseteq V(G)$ be a set of size $2 k+1$. We say that $W$ is $k$-breakable if there is $X \subseteq V(G)$ of size at most $k$ such that every component of $G-X$ has at most $k$ vertices of $W$. Show that if $t w(G) \leq k-1$ then every $W$ of size $2 k+1$ is $k$-breakable.
- Let $W \subseteq V(G)$ be a set of size $2 k+1$. Put

$$
\mathcal{B}=\{X \subseteq V(G): G[X] \text { is connected and }|X \cap W| \geq k+1\} .
$$

Show that $\mathcal{B}$ is a bramble and that if $W$ is not $k$-breakable, then the order of $\mathcal{B}$ is at least $k+1$.

- Let $G$ be a graph such that every set of $2 k+1$ vertices is $k$-breakable. Show that $t w(G) \leq 3 k$.

