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For every k ≥ 1 we define Zk = Z/kZ. If G = (V,E) is an oriented graph and v ∈ V then

we let δ+(v) (δ−(v)) denote the set of edges with tail (head) v and we put δ(v) = δ−(v)∪δ+(v).

For a function φ : E → Zk, the boundary of φ is the function ∂φ : V → Zk given by the rule

∂φ(v) =
∑

e∈δ+(v)

φ(e)−
∑

e∈δ−(v)

φ(e).

Every such function satisfies the zero-sum rule:
∑

v∈V ∂φ(v) = 0 since (after expanding)

each edge e contributes φ(e)− φ(e) = 0 to the total. We call φ nowhere-zero if if φ−1(0) = ∅
and we call it a flow or a Zk-flow if ∂φ = 0. Our goal here is to prove the following.

Theorem 1 (Seymour). Every oriented 2-edge-connected graph has a nowhere-zero Z6-flow.

Our proof relies upon the following lemma. Here Vt(G) denotes the set of vertices of

degree t in the graph G, and we call G sub-cubic if Vt(G) = 0 for all t > 3.

Lemma 2. Let G be an orientation of a 2-edge-connected sub-cubic graph and let µ : V (G)→
Z3. Let u ∈ V2(G) be a distinguished root vertex, for k = 2, 3 let φuk : δ(u)→ Zk, and suppose

i.
∑

v∈V µ(v) = 0, and

ii. supp(µ) ⊆ V2(G), and

iii. ∂φu3(u) = µ(u), and

iv. ∂φu2(u) = 0 if µ(u) = 0.

Then there exist flows φk : E → Zk for k = 2, 3 satisfying

1. φk|δ(u) = φuk for k = 2, 3, and

2. ∂φ3 = µ, and

3. supp(∂φ2) ⊆ supp(µ), and

4. (φ2(e), φ3(e)) 6= (0, 0) for every e ∈ E(G) \ δ(u).
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Proof. We proceed by induction on |E(G)|. Our base cases will be when G is an orientation

of a cycle of length two or three. If G is a cycle of length two with vertex set {u, v} then the

functions φu2 , φ
u
3 already satisfy the conclusion (to see this, note that the zero-sum rule gives

∂φuk(v) = −∂φuk(u) and assumption (i) implies µ(v) = −µ(u)). Next suppose G is a cycle of

length three with vertex set {u, v, v′}. If µ(v) = 0 or µ(v′) = 0 then the result follows by

contracting vv′ and applying the previous argument. Otherwise, we extend φu2 to the function

φ2 : E(G) → Z2 by defining φ2(vv
′) = 1. Similarly, we extend φu3 to φ3 : E(G) → Z3 by

choosing φ3(vv
′) so that ∂φ3 = µ (this is possible by assumptions (i) and (iii) and the

zero-sum rule). The resulting functions yield the result.

Next suppose that G has an edge-cut of size two which separates the vertices into X1, X2

where |X1|, |X2| ≥ 2. Assume (without loss) that u ∈ X1 and for i = 1, 2 let Gi be the graph

obtained from G by identifying Xi to a new vertex xi (and deleting any resulting loops). For

i = 1, 2 define µi : V (Gi)→ Z3 by the rule

µi(v) =

{
µ(v) if v 6= xi∑
x∈Xi

µ(x) if v = xi

Apply induction to G2 together with µ2, φu2 , φu3 to obtain φ2
2, φ

2
3. Now for k = 2, 3 let

ψx1k : δG1(x1) → Zk be obtained by restricting φk to these edges. Apply induction to the

graph G1 with the root vertex x1 and µ1, φ
x1
2 , φx13 to obtain φ1

2 and φ1
3. Now merging the

functions φ1
k and φ2

k for k = 2, 3 yields the desired solution.

Next suppose there exists a vertex v ∈ supp(µ) \ {u} and let w1, w2 be its neighbours.

Choose a nowhere-zero function ψ : {vw1, vw2} → Z3 so that ∂ψ(v) = µ(v). Then define

µ′ : V (G − v) → Z3 by the rule µ′(wi) = µ(wi) − ∂ψ(wi) for i = 1, 2 and otherwise

µ′(w) = µ(w). It follows from (i) and the zero-sum rule for ψ that
∑

w∈V \{v} µ
′(v) = 0. So,

we may apply induction to G− v together with µ′, φu2 , and φu3 to obtain φ′2 and φ′3. Extend

φ′3 to a function φ3 : E(G) → Z3 by defining φ3(vwi) = ψ(vwi) for i = 1, 2. Extend φ′2 to a

function φ2 : E(G)→ Z2 by defining φ2(vwi) = ∂φ′2(wi). Now φ2, φ3 give a solution.

In the only remaining case µ = 0 and we choose an edge vw with v, w 6= u. Define

µ′ : V (G) → Z3 by µ′(v) = 1, µ′(w) = −1 and µ′(x) = 0 for all x ∈ V (G) \ {v, w}. Now

we may apply induction to G− vw together with µ, φu2 , and φu3 and (by the zero-sum rule)

extend the resulting functions to the desired flows in G.

Proof of Theorem 1. If G is an (oriented) 2-edge-connected graph with a vertex v of degree

at least four, then we may choose distinct edges vw, vw′ which are contained in a common

cycle (not nec. directed) and uncontract an edge at v (i.e. the reverse of contracting an

edge to form v) so that each newly formed vertex has degree at least three and is incident to

one of vw, vw′. Orient this new edge arbitrarily, and note that by our choice the underlying

graph will still be 2-edge-connected. Repeat this process to obtain a sub-cubic oriented 2-

edge-connected graph G∗. It follows from the previous lemma that G∗ has a nowhere-zero

Z6-flow, and by contracting edges, the graph G inherits such a flow.
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