Another proof of Seymour's 6-flow theorem

Matt DeVos Edita Rollová Robert Šámal

For every $k \geq 1$ we define $\mathbb{Z}_{k}=\mathbb{Z} / k \mathbb{Z}$. If $G=(V, E)$ is an oriented graph and $v \in V$ then we let $\delta^{+}(v)\left(\delta^{-}(v)\right)$ denote the set of edges with tail (head) v and we put $\delta(v)=\delta^{-}(v) \cup \delta^{+}(v)$. For a function $\phi: E \rightarrow \mathbb{Z}_{k}$, the boundary of ϕ is the function $\partial \phi: V \rightarrow \mathbb{Z}_{k}$ given by the rule

$$
\partial \phi(v)=\sum_{e \in \delta^{+}(v)} \phi(e)-\sum_{e \in \delta^{-}(v)} \phi(e) .
$$

Every such function satisfies the zero-sum rule: $\sum_{v \in V} \partial \phi(v)=0$ since (after expanding) each edge e contributes $\phi(e)-\phi(e)=0$ to the total. We call ϕ nowhere-zero if if $\phi^{-1}(0)=\emptyset$ and we call it a flow or a \mathbb{Z}_{k}-flow if $\partial \phi=0$. Our goal here is to prove the following.

Theorem 1 (Seymour). Every oriented 2-edge-connected graph has a nowhere-zero \mathbb{Z}_{6}-flow.
Our proof relies upon the following lemma. Here $V_{t}(G)$ denotes the set of vertices of degree t in the graph G, and we call G sub-cubic if $V_{t}(G)=0$ for all $t>3$.

Lemma 2. Let G be an orientation of a 2-edge-connected sub-cubic graph and let $\mu: V(G) \rightarrow$ \mathbb{Z}_{3}. Let $u \in V_{2}(G)$ be a distinguished root vertex, for $k=2,3$ let $\phi_{k}^{u}: \delta(u) \rightarrow \mathbb{Z}_{k}$, and suppose
i. $\sum_{v \in V} \mu(v)=0$, and
ii. $\operatorname{supp}(\mu) \subseteq V_{2}(G)$, and
iii. $\partial \phi_{3}^{u}(u)=\mu(u)$, and
iv. $\partial \phi_{2}^{u}(u)=0$ if $\mu(u)=0$.

Then there exist flows $\phi_{k}: E \rightarrow \mathbb{Z}_{k}$ for $k=2,3$ satisfying

1. $\left.\phi_{k}\right|_{\delta(u)}=\phi_{k}^{u}$ for $k=2,3$, and
2. $\partial \phi_{3}=\mu$, and
3. $\operatorname{supp}\left(\partial \phi_{2}\right) \subseteq \operatorname{supp}(\mu)$, and
4. $\left(\phi_{2}(e), \phi_{3}(e)\right) \neq(0,0)$ for every $e \in E(G) \backslash \delta(u)$.

Proof. We proceed by induction on $|E(G)|$. Our base cases will be when G is an orientation of a cycle of length two or three. If G is a cycle of length two with vertex set $\{u, v\}$ then the functions $\phi_{2}^{u}, \phi_{3}^{u}$ already satisfy the conclusion (to see this, note that the zero-sum rule gives $\partial \phi_{k}^{u}(v)=-\partial \phi_{k}^{u}(u)$ and assumption (i) implies $\left.\mu(v)=-\mu(u)\right)$. Next suppose G is a cycle of length three with vertex set $\left\{u, v, v^{\prime}\right\}$. If $\mu(v)=0$ or $\mu\left(v^{\prime}\right)=0$ then the result follows by contracting $v v^{\prime}$ and applying the previous argument. Otherwise, we extend ϕ_{2}^{u} to the function $\phi_{2}: E(G) \rightarrow \mathbb{Z}_{2}$ by defining $\phi_{2}\left(v v^{\prime}\right)=1$. Similarly, we extend ϕ_{3}^{u} to $\phi_{3}: E(G) \rightarrow \mathbb{Z}_{3}$ by choosing $\phi_{3}\left(v v^{\prime}\right)$ so that $\partial \phi_{3}=\mu$ (this is possible by assumptions (i) and (iii) and the zero-sum rule). The resulting functions yield the result.

Next suppose that G has an edge-cut of size two which separates the vertices into X_{1}, X_{2} where $\left|X_{1}\right|,\left|X_{2}\right| \geq 2$. Assume (without loss) that $u \in X_{1}$ and for $i=1,2$ let G_{i} be the graph obtained from G by identifying X_{i} to a new vertex x_{i} (and deleting any resulting loops). For $i=1,2$ define $\mu^{i}: V\left(G_{i}\right) \rightarrow \mathbb{Z}_{3}$ by the rule

$$
\mu^{i}(v)=\left\{\begin{array}{cc}
\mu(v) & \text { if } v \neq x_{i} \\
\sum_{x \in X_{i}} \mu(x) & \text { if } v=x_{i}
\end{array}\right.
$$

Apply induction to G_{2} together with $\mu^{2}, \phi_{2}^{u}, \phi_{3}^{u}$ to obtain $\phi_{2}^{2}, \phi_{3}^{2}$. Now for $k=2,3$ let $\psi_{k}^{x_{1}}: \delta_{G_{1}}\left(x_{1}\right) \rightarrow \mathbb{Z}_{k}$ be obtained by restricting ϕ_{k} to these edges. Apply induction to the graph G_{1} with the root vertex x_{1} and $\mu_{1}, \phi_{2}^{x_{1}}, \phi_{3}^{x_{1}}$ to obtain ϕ_{2}^{1} and ϕ_{3}^{1}. Now merging the functions ϕ_{k}^{1} and ϕ_{k}^{2} for $k=2,3$ yields the desired solution.

Next suppose there exists a vertex $v \in \operatorname{supp}(\mu) \backslash\{u\}$ and let w_{1}, w_{2} be its neighbours. Choose a nowhere-zero function $\psi:\left\{v w_{1}, v w_{2}\right\} \rightarrow \mathbb{Z}_{3}$ so that $\partial \psi(v)=\mu(v)$. Then define $\mu^{\prime}: V(G-v) \rightarrow \mathbb{Z}_{3}$ by the rule $\mu^{\prime}\left(w_{i}\right)=\mu\left(w_{i}\right)-\partial \psi\left(w_{i}\right)$ for $i=1,2$ and otherwise $\mu^{\prime}(w)=\mu(w)$. It follows from (i) and the zero-sum rule for ψ that $\sum_{w \in V \backslash\{v\}} \mu^{\prime}(v)=0$. So, we may apply induction to $G-v$ together with $\mu^{\prime}, \phi_{2}^{u}$, and ϕ_{3}^{u} to obtain ϕ_{2}^{\prime} and ϕ_{3}^{\prime}. Extend ϕ_{3}^{\prime} to a function $\phi_{3}: E(G) \rightarrow \mathbb{Z}_{3}$ by defining $\phi_{3}\left(v w_{i}\right)=\psi\left(v w_{i}\right)$ for $i=1,2$. Extend ϕ_{2}^{\prime} to a function $\phi_{2}: E(G) \rightarrow \mathbb{Z}_{2}$ by defining $\phi_{2}\left(v w_{i}\right)=\partial \phi_{2}^{\prime}\left(w_{i}\right)$. Now ϕ_{2}, ϕ_{3} give a solution.

In the only remaining case $\mu=0$ and we choose an edge $v w$ with $v, w \neq u$. Define $\mu^{\prime}: V(G) \rightarrow \mathbb{Z}_{3}$ by $\mu^{\prime}(v)=1, \mu^{\prime}(w)=-1$ and $\mu^{\prime}(x)=0$ for all $x \in V(G) \backslash\{v, w\}$. Now we may apply induction to $G-v w$ together with μ, ϕ_{2}^{u}, and ϕ_{3}^{u} and (by the zero-sum rule) extend the resulting functions to the desired flows in G.

Proof of Theorem 1. If G is an (oriented) 2-edge-connected graph with a vertex v of degree at least four, then we may choose distinct edges $v w, v w^{\prime}$ which are contained in a common cycle (not nec. directed) and uncontract an edge at v (i.e. the reverse of contracting an edge to form v) so that each newly formed vertex has degree at least three and is incident to one of $v w, v w^{\prime}$. Orient this new edge arbitrarily, and note that by our choice the underlying graph will still be 2-edge-connected. Repeat this process to obtain a sub-cubic oriented 2-edge-connected graph G^{*}. It follows from the previous lemma that G^{*} has a nowhere-zero \mathbb{Z}_{6}-flow, and by contracting edges, the graph G inherits such a flow.

