Snarks with a 4-cut — Isaacs’ dot prod-
uct

Let G, H be graphs, ab, cd edges of G, e an
edge of H, let x, y be the other two neighbours
of one end of e, u, v the other two neighbours
of the other end. To form the Isaacs’ dot
product G- H of G and H we delete edges ab

and cd from G, e with its end-vertices from

H, and add edges ax, by, cu, dv.

Theorem 25 (Isaacs, 1975). If G and H
are snarks then so is G - H. If both G and
H are cyclically 4-edge-connected and if the
vertices a, b, ¢, d are all different, then G- H

15 also cyclically 4-edge-connected.

Proof. Suppose we have an edge 3-coloring f
_

of G - H. We distinguish two cases.
(1) flax) = f(by) (2) flax) # f(by)
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Let n be odd. To describe a graph J,,, we
start with three copies of C),, we denote its
vertices by i1, 49, 13 for ¢ = 1,...,n. Re-
place edges ngls and n3ls by nols and nslo.
Finally, for each ¢ we add a new vertex 2 and
join it by an edge to 21, 9, 23. On Figure 77 we
can see Jy (this particular graph is sometimes
called the flower snark). and J3 — is just a
Y-A transformation of Pt (equivalently, it is
Pt=K},). -
Theorem 26 (Isaacs, 1975). If n is odd then
Jn is a snark. Ifn > 7 then J,, is cyclically

6-edge-connected.
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Proof. Suppose Jy, can be edge-colored using
three colors. Let B; denote the subgraph in-
duced by vertices i, 11, 19,23 and the incident
edges (see Fig. ?77). We divide the edges of
this subgraph into three triples, Left, Right,
and Top. (Of course the Right edges of B; are
the Left edges of B;,1.) Clearly not all edges
of of L can be of the same color, as then it is
not possible to color 7'. Thus there are two
possibilitics.

(1) Edges of L use one color twice.
Say, they use colors 1, 1, and 2 in some order.
It is easy to check that then edges of R use
colors 2, 3, and 3, in some order. In the next
block we will use 1, 1, 2 on the right, and so
on. As n is odd, we get a contradiction.

(2) Edges of L use all three colors.
Again, it is simple to explore the two possi-
bilities how to extend the coloring on R: both

14

a



are obtained from the coloring of L by a cyclic
shift (i.e., a permutation formed by one 3-
cycle). In between the blocks By, and By we
introduced a transposition by the construc-
tion of the graph. Thus if there is an edge
3-coloring, then we can write an identity as a
composition of 3-cycles and one transposition,
which is a contradiction.

TODO: cyclic connectivity?
A , ,
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Superposition construction (Kochol)

e (. a graph with all degrees 1 or 3

a flow on (G: a nowhere-zero Z%—ﬂow where
f . . s L
/, we ignore Kirchhoft’s condition at degree 1

vertices.

e Observation: let £; be the edges incident
to degree 1 vertices, let ¢ be a flow. Then

e(E) = 0.

)_. (K1, ko, k3)-supervertex: a graph as above,

I

with E7 split into three nonempty subsets
of sizes kq, ko, ks.

® (k1, ko)-superedge: a graph as above, with
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E split into two nonempty subsets of s qlzeqi”\
ki, ko. if}

e proper superedge: a superedge, where the

sum over each of the two parts is nonzero.
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Given:

e a list of supervertices G, for v € V(G)

e a list of proper superedges G fore € E(G)

Conclusion: The superposition is a snm

Corollary: There is a family of cyclically

6-edge-connected snarks———— N

Corollary: There is a family of cyclicalm

5-edge-connected snarks with arbitrarily hig
2-edgc )

e — ,
girth. ,\_/




1
/ | _,
LI ol past prper A1
I pl=o ()= O

I









	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

