Snarks with a 4-cut – Isaacs' dot product

Let G, H be graphs, ab, cd edges of G, e an edge of H, let x, y be the other two neighbours of one end of e, u, v the other two neighbours of the other end. To form the Isaacs' dot product $G \cdot H$ of G and H we delete edges ab and cd from G, e with its end-vertices from H, and add edges ax, by, cu, dv.

Theorem 25 (Isaacs, 1975). If G and H are snarks then so is $G \cdot H$. If both G and H are cyclically 4-edge-connected and if the vertices a, b, c, d are all different, then $G \cdot H$ is also cyclically 4-edge-connected.

Proof. Suppose we have an edge 3-coloring f of $G \cdot H$. We distinguish two cases.

G je k-souvst (=> # C/ &U(G) |S(u)| > k18(a)/74 meso all-1 neso 1al-1 Gje interni le-sours) => # U Gje og hley h-sorus)- => Hu 18(de) ? 4 nesso G/UJ je les nesso G/UJ je les 2-socioss-3-socioss-neus 4-solls-pe interces/gld. 4-sociosgl. 5-sours

ghtad E-8040. deg (X) > 2.74 loslie 2 Hles mis > 2 losly

Let n be odd. To describe a graph J_n , we start with three copies of C_n , we denote its vertices by i_1 , i_2 , i_3 for i = 1, ..., n. Replace edges $n_2 1_2$ and $n_3 1_3$ by $n_2 1_3$ and $n_3 1_2$. Finally, for each i we add a new vertex i and join it by an edge to i_1 , i_2 , i_3 . On Figure ?? we can see J_5 (this particular graph is sometimes called the flower snark). and J_3 — is just a Y- Δ transformation of Pt (equivalently, it is $Pt \equiv K_4$).

Theorem 26 (Isaacs, 1975). If n is odd then J_n is a snark. If $n \geq 7$ then J_n is cyclically 6-edge-connected.

Proof. Suppose J_n can be edge-colored using three colors. Let B_i denote the subgraph induced by vertices i, i_1, i_2, i_3 and the incident edges (see Fig. ??). We divide the edges of this subgraph into three triples, Left, Right, and Top. (Of course the Right edges of B_i are the Left edges of B_{i+1} .) Clearly not all edges of of L can be of the same color, as then it is not possible to color T. Thus there are two possibilities.

- (1) Edges of L use one color twice. Say, they use colors 1, 1, and 2 in some order. It is easy to check that then edges of R use colors 2, 3, and 3, in some order. In the next block we will use 1, 1, 2 on the right, and so on. As n is odd, we get a contradiction.
- (2) Edges of L use all three colors. Again, it is simple to explore the two possibilities how to extend the coloring on R: both

Ceft Top

44

are obtained from the coloring of L by a cyclic shift (i.e., a permutation formed by one 3-cycle). In between the blocks B_n and B_1 we introduced a transposition by the construction of the graph. Thus if there is an edge 3-coloring, then we can write an identity as a composition of 3-cycles and one transposition, which is a contradiction.

TODO: cyclic connectivity?

spousta 6-vezü

of sneoks

Superposition construction (Kochol)

- \bullet G: a graph with all degrees 1 or 3
- a flow on G: a nowhere-zero \mathbb{Z}_2^2 -flow where we ignore Kirchhoff's condition at degree 1 vertices.
- Observation: let E_1 be the edges incident to degree 1 vertices, let φ be a flow. Then $\varphi(E_1) = 0$.
- (k_1, k_2, k_3) -supervertex: a graph as above, with E_1 split into three nonempty subsets of sizes k_1, k_2, k_3 .
- (k_1, k_2) -superedge: a graph as above, with E_1 split into two nonempty subsets of sizes k_1, k_2 .
- proper superedge: a superedge, where the sum over each of the two parts is nonzero.

dobort house 3-0 Sauceer (poreser Lace (0,1) (10), (11)

graph as above, with many subsets of sizes

de novele vocale et un x

p je hete vocale et un x

je he hete en 2

Kroch de de vocale et un x

p(S,) +0

(9(S₁)+pS₂)=0 9(S₁)=9(S₂)

Given:

- A snark G,
- a list of supervertices G_v for $v \in V(G)$
- a list of proper superedges G_e for $e \in E(G)$

Conclusion: The superposition is a snark.

Corollary: There is a family of <u>cyclically</u> 6-edge-connected snarks.

Corollary: There is a family of cyclically 5-edge-connected snarks with arbitrarily hig girth.

7 S V X

1) X = G -> Flower Searl jc apr. 6-5041.

