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792 Rationality

V2 can sometimes make things rational:

-
(ﬁf) N SO 2.33)

Tronically,

Hence, by the principle of the ezcluded middle,

V2 V2
cither V2 €Qor V2'TéQ.
In either case, we can deduce that there are irrational numbers & and (8
with ¢ rational. But how do we know which ones? This is not an adequate
proof for an Iptuitionist nor & Constructivist. 1t js entirely ineffective,
and we may build a \/\_vhole mathematical philosophy project around such
] .
issues. Actually, V2 s transcendental by the Gelfond-Schnelder theorem

(Exercise 27), but proofs of this are hard and usually suffer from the same
fiaws.

It is instructive to compare this result with the
and 8 = 21082(3) yield o =3 as Mathematica confirms. This illustrates
nicely that verification is often easier than discovery. Similarly, the fact that
multiplication is easier than factorization is at the base of secure encryption

schemes for e-commerce.
Indeed, there are eight poss

ing examples of all cases is now & good €
much can be taught about computation with rational numbers, approxi-

mation to irrationals, rates of convergence, etc. from these simple pieces.
We close the section with 8 description of the meeting between the
inventor of logarithms {John Napier) and the scientist who made them

into technology {Henry Briggs) [279}:
[Wihere almost one quarter hour was spent, each beholding the other

with sdmiration before one word was spoken: at last Mr. Briggs
n this long journey purposely to

it or ingenuity you first
p unte Astronomy, ViZ. the
found out, I wonder nobody
nown it appears 50 ensy.”

assertion that & = NG

ible rational/ jrrational triples: af =, find-
cercise (Exercise 28). Note how

see your persom,
came {0 think of th
Logprithms: but my
else found it out pefore,

is most excellent hel
Lord, being by you
when now being k

tional Examples
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of? Use Fermat's last theorem to
n=2 Ceneralize.

1. The hardest possible pro
g1/ is irrational for integer

prove
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2. The final digi
git of a sum. Pr
_ 5 . Problem: D i
o = Y0 k. (Taken from [158)) etermine the final digit £,, of
Solution: C ] T
odulo 20"2"1Pllta_tlonal experimentation shows the patt
s lypop = £ mod 20 is easily proven from o s
n+20 = On +

Yk

3. The 3z +1
) prablem. This is a classi
looking, but highly intractable probltfrln. sic egample of an innocent

For intege
even. Tﬁergz,_.-l_e: T{m.) = (3$ -+ 1}/2 for z odd and z/2 f
integer +1 conjecture is that starting from o
, repeated iteration of T eventually retur anty ]iOSltwe
ns to 1.

This problem is b

: est described in the i i

curias at bitplf e interactive article b

S el e
i : pi/fwww.i ~

This conjecture has been “checked” to :gvléztt:algg/ 2t5(3(')5/3x+1-htm1.

4. Limit of a si
s : :
R —— wiltll?ile iteratlon. Establish the limit of the it i
a3_,)/3,forn > 10 3 O’GI, = 1/2 and iterates a — eration
vary. ' . Determine what happens as alnilai_s gl] . aé' :
= owed to

5. Putnam problem 1985-B5. Evaluate
K f -
— t-l/'.) ~1985(t+17"
A e Lt

Answer: K = -397

. — T ()]

and in SUbSeq“\e{:tech /+/1985. The Putnam problems listed |

lematic to evaluate apters are taken from [185]. Hint: This 5 le[l;f

o numerically as stated, si . : is pro

con ed, 51 . e e

(o sider instead K{a) = f[)m t—1/2g=a(t+t™") ;CG its value is tiny. So
r general) constant a. t for some other specific

6. Putnam
problem 1987-A6
az(n) be th . Let n be & positive i
A wle' rllumbe.ar. of zeroes in the ternary exPanz‘ integer and let
—— mlli 1213051It1ve x the series 300, 293(n) /3 fon of n. Deter-
e . In the b-ar "= converges. An-
if and only if z < b® = b+ 1. y analogue, 3 o, 29" /nb converges

7. Putnam problem 1987-B1. Evaluate

f’ Vg 0=2)
» Vg0 + /g B

(=1).
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1-A5. Find ghe supremuin of

8. Putnam problem 199
¥ \/’/
[ e

0

< 1. Hint: Plot the function.

em 1092-A2. Evaluate
1992

1
ciey -1 3 W
L (-y );y”y

992 in the Maclaurin expansion of

for 0% Yy

g, Putnam prob!

coefficient of !

where C{a) i8 the
1992.

(1+x)° Answer:

10. Putnam problem 1992
erated by ap = & 21

_B3. Consider the dynamical system gen-

a 2
Yy~ +an
antl = 9 ¥

Determine the region in the plane for whi
What is its area? Hint Try computing some values and
£ generality z,y > 0 the

Its. Assuming without loss ©
= y?. Thus the region defined is the convex

(&1,0). Answer: T+ 4

ch the jteration

forn=0.
converges.
plot the rest
limit must satisfy

hull of unit circles centered at

11. Random projections- Consider a arbitrary point inside & triangle.
Determine what happens asymptotically when the point is projected
to successive sides of the triangle, where the side is selected either in

cyclical order of pseudo-mndomly. Hint: Consider first what happens

in an obtuse triangle.
ple expression for

5-B4. Determine 2 sim

12. Putnam problem 199

mal place ac
hen use the 18
ecognize U

his limit to 19 deci
nary double-precision arithmetic. T

“integer relation algorithm” option, o T
simple algebraic number. The result can be pro
o8 = 2207 - 1/0®, so that ot 4o~ =47, Answer: (3 4+ V5)/2:

Hunt: Calculate ©

(2.34)

curacy, using ordi-
C tool, with the
he constant 8s 8
ved by noting that
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13. Berkele
y problem 1.1.35. Find the derivative at z = 0 of
=00
cos(T) 2
. et tetdt,
sin{z)

Hint: Plot it. A

: . Answer = (e—3)/2
and }/2. Th

in subsequent chapters are taken (}rlzil‘[‘il;’é problems listed here

14, Berkele
y problem 7.6
.6. Compute A°° and A~7 for

A=[ 3/2 1/2
-1/2 172 |’

H. N AI }7

7 t' l S Y t’ t ﬂ l [ t l 4 [ A ¥S t n
C ¥ t

Tl e atftemaiica or apie to evaluate Or various in egerS .

15. Two radical
expressions. (From [1
) 67, pg. 81, 84)). E
, 84]). Express

o) o) - )
) =G~

as radicals. Hint: C

: : Calculate to hi -
t o high
o find the polynomial they satisfi precision, then use the ISC tool

Answers: /1(5 -3¢
3(6—3Y7) and {/3 ¥9-3/2.

16. Some simpl .
P rorpee(zo_n;.;n;eq’ fractions. Compute the simpl i

! /2, €2, log(2), log(10), 31/2,21/3 wp (;;‘)nilnued

! y Wy T2y €74 and

.n.c

17. Crandall’
. s continued fracti
the continued fraction for ion. Compute, then guess and prove
v
eV +1
evi_1’

which fraction i ;
- s manifestly not periodi
is irrational. Ri periodic, proving in thi 5
A perhapcsharri'l C.Jrandall informs us that fhis (?1151‘;” that V2
only interesting thing he ever proved allﬁbS) ;ovas the
y himself.

18, Putnam
probl
““_mbErs with ye;n Olgﬁ(sl—BZ Prove or disprove: If z and
Hint: Plotit. Yy + 1) < (z+ 12 then y(y _yl?riregl
<z
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lem 1089-A3. ghow that all roots of

19. Putnam prob
1120+ 104z° + 101

,—-11=0
solved explicitly using Meple,

Jie on the unit circle.
Mathematice, ot & custom-written root-finding program that employs
A detailed discussion of polynomial root-finding
second volume.

Newton iterations.

techniques can pe foun

920. Putnam problem 1992-A3. For a given P
all triples (n,ﬂ:,y) of positive integers with (1,
™ = (@Y n_ Hint: Using 8 symbolic math progré
solutions for various integer i y. Answer: The on

(m+ 1,2’"/2,2“‘/2) for m even.

91. Berkeley problem 6.
Use Maple of Mathematico 10 find t

constant.
end problem is to find, for

99. The happ¥ end problem- The happy
n > 3, the smallest positive integer N {n) such that any set of N (n)
must contain 7 points that

points, 1O three of which are collinear,
n. 1t is 80 called because Ester Klein,

ices of a convex n-go
keres shortly after he and

Hint: This can be

ositive integer m find

m) = 1 solving (= +
m, try finding
ly solution is

11.5. Prove that V2+ iis irrational. Hint:
he minimui polynomial of this

are the vert
who posed the problem, married George Sze
Paul Erdos proved the first bounds on the problem {205}. 1t is still
open [205}.
93. The Mann iteration. Forany continuous function f (0,1}~ 0,1},
the iteration To =¥ e 10,1} and
1 n=1
rn == o, flEk)
n
k=0
fixed point of f. One can

the function

(the Césaro average) always converges to &
real-variable

study many ability method

other sumin
can be highly obstreperous, this 15 largely 2 th
jteration, albeit 8 les will convince one ¢

beautiful one- Easy examp
how painfully slow e. This is especially

or unstable convergence can b
understandable in light of
Sharkovsky).

s a periodic pot

ous self-mapping of the
f will possess e
the following

Ife continy
nt of order ™, then

Theorem 2.1 (
ly when 0 follows T in

reals, f, possesst
periodic poin
ordering of the ™

3,5, T, 2.3,2:5,27,"

t of order 1, precise
atural numbers!
9% 272,2,1

.923,2°5,2°T, 3
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In particular this i
this includ
offe : es the fam :
¢t that “period three implies Chzl;z :esult of Li and Yorke to the

24. Findin

. g coefficients of .
identification of an integer pol X
met . polynomial. .
know a pT‘iOri thalsz,ds'descrled here work espec;zlll Tl"lE numerical
combination of givenggjn lgtf?gral, sum or other cogst‘;;ztl g he? you
precise integer coeffici antities, and you wi U ERE

. effici wish only t .
integer N > 0, ents. For example, if you are tg’ld (;hf:;ti;m the
, 1Or any

i (n+N)

evaluates to a .
for any given S‘:ﬁg{‘%ﬂml of. degree N in e, then it is
say, you can di » to pick off the inte LR
an discover that gers. Indeed, for N < 10
1

On = i nte " B N (=1)F-1ek
(n+N)! ,;(N—k)!ik (2.35)

n=0

is a rational numbe
Continuing in thi r. The first four are —1, -
th ’ 1 4 —
g is manner, you can ultimately{ ciisc:){rioii —97/6912
r that

N

on = 3L SE
2 i ;_%F (2.36)

k=1

This relies
on replacing ex
summation y exp(—n) by its seri .
, and then discovering and derivifg’tﬁic'l::langmg order of
identity

Zﬂ:(_l)kkn N+n N
= Nap) = EOT RN N
- ( +L) ;k -v* I(Nt:) (2.37)

or equivalently,
A+N

S - M+N
k=0 ) ( k ) =0 (2.38)

for all M, N
N> .
Ty 0. This in turn follows (using the binomial
mial theorem)

é(—nk km (I:) _— .

k=0



