
Bijections

Definition

A function f : X → Y is bijective if f maps exactly one element
of X to every element of Y . That is, for every y ∈ Y there exists
exactly one x ∈ X such that f (x) = y .

Examples:
f : R→ R defined by f (x) = 2x is bijective, since only y/2
is mapped to y .
f : R→ R defined by f (x) = 2x is not bijective, since
nothing maps to −1.
f : R→ R defined by f (x) = x3 − x is not bijective, since
f (−1) = f (0) = f (1) = 0.



Inverse functions

Definition

Let f : X → Y be a bijective function. The inverse function
f−1 : Y → X is defined by f−1(y) = x if and only if f (x) = y .

For every x ∈ X ,
f−1(f (x)) = x .

For every y ∈ Y ,
f (f−1(y)) = y .



Permutations

Definition

For a finite set X , a bijective function π : X → X is a
permutation on X .

Example: A function defined by

π(1) = 1 π(2) = 3 π(3) = 2
π(4) = 6 π(5) = 4 π(6) = 5

is a permutation on {1,2,3,4,5,6}.



Representation of permutations

π(1) = 1 π(2) = 3 π(3) = 2
π(4) = 6 π(5) = 4 π(6) = 5

By a table of values:
x 1 2 3 4 5 6

π(x) 1 3 2 6 4 5
By an ordering of the elements (lower line of the table):

1,3,2,6,4,5



Representation of permutations

π(1) = 1 π(2) = 3 π(3) = 2
π(4) = 6 π(5) = 4 π(6) = 5

By its graph:

1 2 3 4 5 6

By a list of cycles of the permutation:

(1)(23)(465)

By a reduced list of cycles (excluding cycles of length 1):

(23)(465)



Composition of permutations

Definition

Permutation ρ on a set X is the composition of permutations π
and σ if ρ(x) = π(σ(x)) for every x ∈ X . We write

ρ = π ◦ σ.

Remark: sometimes the opposite notation (σ ◦ π) is used.



Example

x 1 2 3 4 5 6
σ(x) 2 1 4 3 6 5

x 1 2 3 4 5 6
π(x) 1 3 2 6 4 5

x 1 2 3 4 5 6
(π ◦ σ)(x) 3 1 6 2 5 4

π ◦ σ = (23)(465) ◦ (12)(34)(56) = (13642)(5)

Not commutative:

σ ◦ π = (12)(34)(56) ◦ (23)(465) = (12453)



Example
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Properties

Associative:
{σ ◦ π} ◦ ρ = σ ◦ {π ◦ ρ}

σ(π(ρ(x))) = {σ ◦ π}(ρ(x)) = [{σ ◦ π} ◦ ρ](x)
= σ({π ◦ ρ}(x)) = [σ ◦ {π ◦ ρ}](x)

Identity permutation:

id(x) = x for all x

id ◦ π = π ◦ id = π



Application: Puzzles

Initial state:

Requested final state:



Application: Puzzles

Permutation representing the state: n 7→ number at position n.

π0 = id π1 = (5,6)

Rotation of the middle piece: π 7→ π ◦ (1,4)(2,3)
Shifting the numbers: π 7→ π ◦ (1,2,3,4, . . . ,18,19)

Lemma

A position is solvable if and only if its permutation can be
expressed as a composition σ1 ◦ σ2 ◦ . . . ◦ σm, where each of σ1,
. . . , σm is either (1,4)(2,3) or (1,2,3,4, . . . ,18,19).



Inverse permutation

Definition

For a permutation π : X → X , we call π−1 the inverse
permutation.

π−1(y) = x if and only if π(x) = y

π−1 ◦ π = π ◦ π−1 = id

(π ◦ σ)−1 = σ−1 ◦ π−1



Example

x 1 2 3 4 5 6
π(x) 1 3 2 6 4 5

x 1 3 2 6 4 5
π−1(x) 1 2 3 4 5 6

π−1 = [(23)(465)]−1 = (32)(564) = (23)(456)
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Permutation matrices

Definition

For a permutation π : {1, . . . ,n} → {1, . . . ,n}, the permutation
matrix Pπ is the n × n matrix satisfying

Pπ


x1
x2
. . .
xn

 =


xπ(1)
xπ(2)
. . .

xπ(n)

 i.e. Pπek = eπ−1(k).

Pπ = (eπ(1)|eπ(2)| . . . |eπ(n))T = (eπ−1(1)|eπ−1(2)| . . . |eπ−1(n))

Product and composition (note the reversed order!)

Pπ◦σ = PσPπ

Pπ−1 = P−1
π = PT

π



Example

x 1 2 3 4 5 6
π(x) 1 3 2 6 4 5

Pπ = (e1|e3|e2|e6|e4|e5)
T

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0





1
2
3
4
5
6

 =



1
3
2
6
4
5





Sign of a permutation

Definition

For a permutation π : X → X ,

sgn(π) = (−1)|X |−number of cycles of π

The permutation π is even if sgn(π) = 1 and odd if
sgn(π) = −1.

Example:

x 1 2 3 4 5 6
π(x) 1 3 2 6 4 5

sgn((23)(465)) = sgn((1)(23)(465)) = (−1)6−3 = −1



Transposition

Definition

For distinct a,b ∈ X , let τa,b : X → X be defined by

τa,b(x) =


a if x = b
b if x = a
x otherwise

.

We call such a permutation a transposition.

τa,b = (ab)

has one cycle of length 2 and |X | − 2 cycles of length 1, and
thus

sgn(τa,b) = (−1)|X |−(|X |−1) = −1.



Expressing permutations by transpositions

Lemma

Every permutation can be expressed as a composition of
transpositions.

Proof.

Every permutation is the composition of its cycles. For a cycle,
we have

(a1a2 . . . an) = (a1an) ◦ (a1an−1) ◦ . . . ◦ (a1a3) ◦ (a1a2)

= τa1,an ◦ . . . ◦ τa1,a3 ◦ τa1a2



Sign and transpositions

Lemma

For any permutation π and transposition τa,b, the permutations
π and π ◦ τa,b have opposite signs.

Proof.

(ac1c2 . . . cnbd1 . . . dm) ◦ (ab) = (ad1 . . . dm)(bc1c2 . . . cn)

(ac1c2 . . . cn)(bd1 . . . dm) ◦ (ab) = (ad1 . . . dmbc1c2 . . . cn)

Hence, the number of cycles of π and π ◦ τa,b differs by 1.

Corollary

A permutation π is even if and only if it can be expressed as a
product of even number of transpositions.



Sign and operations with permutations

sgn(id) = 1
sgn(π−1) = sgn(π)
sgn(π ◦ σ) = sgn(π)sgn(σ)



Application: Puzzle solvability

π0 = id π1 = (5,6)

Rotation of the middle piece: π 7→ π ◦ (1,4)(2,3)
Shifting the numbers: π 7→ π ◦ (1,2,3,4, . . . ,18,19)

sgn((1,4)(2,3)) = 1 sgn((1,2,3,4, . . . ,18,19)) = 1

But sgn(π0) 6= sgn(π1)⇒ no solution.



Symmetries

Consider the plane R2. An isometry is a function f : R2 → R2

that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f (S) = S.

x

y



Symmetries

Consider the plane R2. An isometry is a function f : R2 → R2

that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f (S) = S.

x

y

x

y

identity

id(x , y) = (x , y)



Symmetries

Consider the plane R2. An isometry is a function f : R2 → R2

that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f (S) = S.

x

y

x

y

rotation by 90◦

rot90(x , y) = (y ,−x)



Symmetries

Consider the plane R2. An isometry is a function f : R2 → R2

that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f (S) = S.

x

y

x

y

rotation by 180◦

rot180(x , y) = (−x ,−y)



Symmetries

Consider the plane R2. An isometry is a function f : R2 → R2

that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f (S) = S.

x

y

x

y

rotation by 270◦

rot270(x , y) = (−y , x)



Symmetries

Consider the plane R2. An isometry is a function f : R2 → R2

that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f (S) = S.

x

y

x

y

reflection by x axis

refx(x , y) = (x ,−y)



Symmetries

Consider the plane R2. An isometry is a function f : R2 → R2

that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f (S) = S.

x

y

x

y

reflection by y axis

refy (x , y) = (−x , y)



Symmetries

Consider the plane R2. An isometry is a function f : R2 → R2

that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f (S) = S.

x

y

x

y

reflection by a diagonal

refd(x , y) = (y , x)



Symmetries

Consider the plane R2. An isometry is a function f : R2 → R2

that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f (S) = S.

x

y

x

y

reflection by the other diagonal

refo(x , y) = (−y ,−x)



Properties of symmetries

Let f , g be symmetries of S.

Composition of symmetries is a symmetry:
(f ◦ g)(S) = f (g(S)) = f (S) = S.

rot90 ◦ rot90 = rot180, rot90 ◦ refx = refo, . . .
The inverse of a symmetry is a symmetry: f−1(S) = S.

rot−1
90 = rot270, ref−1

x = refx , . . .



Motivation for group theory

What other things can we say about symmetries?
What sets of isometries may be symmetries of a set in R2?
What other mathematical objects behave in a similar way?



Definition of a monoid

Definition

A monoid is a pair (X , ◦), where
X is a set and ◦ : X × X → X is a total function,

satisfying the following axioms:

associativity (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a,b, c ∈ X .
neutral element There exists e ∈ X s.t. a ◦ e = e ◦ a = a for

every a ∈ X .

Lemma

There exists only one neutral element.

Proof.

If e1 ◦ a = a and a ◦ e2 = a for all a ∈ X , then
e1 = e1 ◦ e2 = e2.



Definition of a group

Definition

A group is a monoid (X , ◦) such that

inverse for every a ∈ X there exists b ∈ X such that
a ◦ b = b ◦ a = e.

The group is abelian if additionally

commutativity a ◦ b = b ◦ a for all a,b ∈ X .

Lemma

For every a ∈ X, there exists only one inverse element.

Proof.

If b1 ◦ a = e and a ◦ b2 = e, then
b1 = b1 ◦ e = b1 ◦ (a ◦ b2) = (b1 ◦ a) ◦ b2 = e ◦ b2 = b2.



Examples

Groups:
Z with addition (inverse≡negation, neutral element 0)
Q with addition (inverse≡negation, neutral element 0)
R with addition (inverse≡negation, neutral element 0)
R \ {0} with multiplication (inverse to a is 1/a, neutral
element 1)
permutations on {1, . . . ,n} with composition (inverse, id):
non-abelian
even permutations on {1, . . . ,n} with composition (inverse,
id): non-abelian
regular n × n matrices with multiplication (matrix inverse,
I): non-abelian
symmetries of a set in R2 with composition (function
inverse, id): non-abelian



Examples

The following objects are not groups:
Set {−1,0,1} with addition.

1 + 1 is not in the set.
Z with subtraction

not associative: (1− 1)− 1 6= 1− (1− 1)
positive integers with addition

no neutral element
n × n matrices with multiplication

not all have inverse



Notation

The binary operation: ◦, + (for abelian groups).
The neutral element: e, 0 (for abelian groups), 1 (for
non-abelian groups).
The inverse element to a: a−1, −a (for abelian groups).



Basic properties of groups

a ◦ x = b has exactly one solution x = a−1 ◦ b
x ◦ a = b has exactly one solution x = b ◦ a−1(
a−1)−1

= a
(a ◦ b)−1 = b−1 ◦ a−1



Subgroups

Definition

Let (X , ◦) be a group and let Y be a subset of X . If (Y , ◦) is a
group, we say it is a subgroup of (X , ◦).

Examples:
(Z,+) is a subgroup of (R,+).
even permutations form a subgroup of all permutations
(with composition).
odd permutations do not form a subgroup of all
permutations (with composition).

composition of two odd permutations is even

Needed:
a ◦ b ∈ Y for all a,b ∈ Y , and
a−1 ∈ Y for all a ∈ Y .



Group isomorphism

Two groups are isomorphic if they differ only by “renaming” their
elements.

Definition

Let (X , ◦) and (Y , •) be groups. A bijection f : X → Y is an
isomorphism if

f (a ◦ b) = f (a) • f (b)

for all a,b ∈ X .



Example
Let G1 = ({id, rot90, rot180, rot270, refx , refy , refd , refo}, ◦) be the group
of symmetries of the square.
Let
G2 = ({id, (1234), (13)(24), (1432), (14)(23), (12)(34), (13), (24)}, ◦)
be a group of permutations.

x

y

1 2

34

x

y

Then the following function f is an isomorphism.

x id rot90 rot180 rot270

f (x) id (1234) (13)(24) (1432)
x refx refy refd refo

f (x) (14)(23) (12)(34) (13) (24)



Isomorphism properties

Let (X , ◦) and (Y , •) be groups with neutral elements eX and
eY .

If f : X → Y is an isomorphism, then f−1 : Y → X is an
isomorphism.

f−1[c • d ] = f−1
[
f (f−1(c)) • f (f−1(d)]

)
= f−1

[
f
(

f−1(c) ◦ f−1(d)
)]

= f−1(c) ◦ f−1(d)

id : X → X is an isomorphism of (X , ◦) with itself.
If f : X → Y is an isomorphism, then

f (eX ) = eY

f (a−1) = (f (a))−1 for every a ∈ X .


