Bijections

Definition
A function f : X — Y is bijective if f maps exactly one element

of X to every element of Y. That is, for every y € Y there exists
exactly one x € X such that f(x) = y.

Examples:
@ f: R — R defined by f(x) = 2x is bijective, since only y/2
is mapped to y.
@ f: R — R defined by f(x) = 2% is not bijective, since
nothing maps to —1.

e f: R — Rdefined by f(x) = x3 — x is not bijective, since
f(—1) =1(0) =f(1) =0.



Inverse functions

Let f: X — Y be a bijective function. The inverse function
f~1.Y — Xis defined by f~'(y) = x if and only if f(x) = y.

@ Forevery x € X,
f~1(f(x)) = x.

@ Foreveryy e,
f(F'(y) =y




Permutations

Definition

For a finite set X, a bijective function 7 : X — Xis a
permutation on X.

Example: A function defined by

I
o

(1) =1 m(2) =3 7(3)
m(4) =6 m(5) =4 7(6)

I
(&

is a permutation on {1,2,3,4,5,6}.




Representation of permutations

(1) =1 m(2) =3 7(3) =
m(4) =6 w(5) =4

@ By atable of values:

x |1 2 3 456
*x) |1 3 2 6 4 5

@ By an ordering of the elements (lower line of the table):

1,3,2,6,4,5




Representation of permutations

@ By its graph:

V' o o

@ By a list of cycles of the permutation:
(1)(23)(465)

@ By a reduced list of cycles (excluding cycles of length 1):

(23)(465)




Composition of permutations

Definition

Permutation p on a set X is the composition of permutations =
and o if p(x) = w(o(x)) for every x € X. We write

p=moo.

Remark: sometimes the opposite notation (o o 7) is used.
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X 1 2 3 45 86
o(x) |2 1 4 3 6 5
X 2 1 4 3 6 5
7x) |3 1 6 2 5 4
X 1 2 3 4 5 6
(roo)(x) |3 1 6 2 5 4

oo = (23)(465) o (12)(34)(56) = (13642)

Not commutative:

oom = (12)(34)(56) o (23)(465) = (12453)



@ Associative:
{oomtop=co{rop}

o(w(p(x))) = {o 0 T (p(x)) = [{o o 7} 0 p](x)
— o({m o p}(x)) = [0 {0 p}](X)

@ Identity permutation:

id(x) =x forall x

idor=moid=m




Application: Puzzles

Initial state:

Requested final state:




Application: Puzzles

Permutation representing the state: n — number at position n.

Rotation of the middle piece: 7 +— 7o (1,4)(2,3)
Shifting the numbers: 7 — 70 (1,2,3,4,...,18,19)

Lemma

A position is solvable if and only if its permutation can be
expressed as a composition oy o oo o ...0om, Where each of o4,
..., omIs either(1,4)(2,3) or(1,2,3,4,...,18,19).




Inverse permutation

For a permutation 7 : X — X, we call 7~ the inverse
permutation.

7 '(y) = xifand only if 7(x) = y

r lor=ronr'=id

(roo)y '=0""on™"
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Permutation matrices

For a permutation 7 : {1,...,n} — {1,..., n}, the permutation
matrix Py is the n x n matrix satisfying

X4 Xr(1)
P, X2 = Xﬂ-(z) i.e. Pﬂ‘ek = eﬂ.—1(k).
Xn X7r(n)

0 Pr = (er(t)|er(2)l - -€x(n)” = (&x-1(1)l€x-1(2)| - - |€1—1(n))
@ Product and composition (note the reversed order!)

PTI'OO':PO'Pﬂ'
o P =P 1=P]
e 4 4444
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Sign of a permutation

Definition

For a permutation = : X — X,

sgn(w) = (—1 )|X\—number of cycles of 7

The permutation = is even if sgn(w) = 1 and odd if
sgn(w) = —1.

Example:

x_|
7TX)‘

1 2 3 4 5 6
1 3 2 6 4 5
sgn((23)(465)) = sgn((1)(23)(465)) = (—1)873 = —1



Transposition

For distinct a,b € X, let 7, : X — X be defined by

a ifx=»b
Tap(X)=4qb ifx=a
x otherwise

We call such a permutation a transposition.

Tab — (ab)

has one cycle of length 2 and | X| — 2 cycles of length 1, and
thus
sgn(rap) = (~1)XX70 = 1.



Expressing permutations by transpositions

Lemma

Every permutation can be expressed as a composition of
transpositions.

Proof.

Every permutation is the composition of its cycles. For a cycle,
we have

(31 a... an) = (31 an) o (81 a,,_1) Do00® (81 33) o (31 32)

= Taj,an ©---°Tay,a3 © Taja




Sign and transpositions

Lemma

For any permutation = and transposition 7, p,, the permutations
m and m o T, , have opposite signs.

Proof.
(acicy...cpbdy ... dm) o (ab) = (ad ...dm)(bcicCo . .. Cp)

(acico...cn)(bdy ...dn)o (ab) = (ad; ...dmbciCo . . . Cp)

Hence, the number of cycles of w and 7 o 7, differs by 1. O

Corollary

A permutation  is even if and only if it can be expressed as a
product of even number of transpositions.



Sign and operations with permutations

@ sgn(id) =1
@ sgn(r—") = sgn(r)
@ sgn(m o o) = sgn(w)sgn(o)




Application: Puzzle solvability

mo = id m = (5,6)

Rotation of the middle piece: © — 7o (1,4)(2,3)
Shifting the numbers: 7 +— 70 (1,2,3,4,...,18,19)

sgn((1,4)(2,3)) =1 sgn((1,2,3,4,...,18,19)) =1

But sgn(mp) # sgn(m1) = no solution.



Consider the plane R2. An isometry is a function f : R> — R?
that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f(S) = S.

Y




Consider the plane R2. An isometry is a function f : R> — R?
that preserves distances (rotations, translations, reflections,
and their combinations) A symmetry of a set S'is an isometry f

such that (S
identity
id(x,y) = (x,y)



Consider the plane R2. An isometry is a function f : R> — R?
that preserves distances (rotations, translations, reflections,
and their combinations) A symmetry of a set S'is an isometry f
such that (S

.

rotation by 90°
roteo (X, y) = (¥, —X)
e 4 4444



Consider the plane R2. An isometry is a function f : R> — R?
that preserves distances (rotations, translations, reflections,
and their combinations) A symmetry of a set S'is an isometry f
such that (S

.

rotation by 180°
r0t180(X7.y) = (_Xa _y)
e 4 4444



Consider the plane R2. An isometry is a function f : R> — R?
that preserves distances (rotations, translations, reflections,
and their combinations) A symmetry of a set S'is an isometry f
such that (S

.

rotation by 270°
rotozo(X, ¥) = (=¥, X)
e 4 4444



Consider the plane R2. An isometry is a function f : R> — R?
that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f(S) = S.

) Y

reflection by x axis
refX(Xay) = (X7 _y)
e 4 4444



Consider the plane R2. An isometry is a function f : R> — R?
that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f(S) = S.

Yy : Yy

reflection by y axis
refy (x,y) = (=X, ¥)
e 4 4444



Consider the plane R2. An isometry is a function f : R> — R?
that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f(S) = S.

reflection by a diagonal
refd(X,y) = (y¢ X)
e 4 4444



Consider the plane R2. An isometry is a function f : R> — R?
that preserves distances (rotations, translations, reflections,
and their combinations). A symmetry of a set S is an isometry f
such that f(S) = S.

reflection by the other diagonal
refO(X>y) = (_y7 _X)



Properties of symmetries

Let f, g be symmetries of S.

@ Composition of symmetries is a symmetry:
(fog)(S) =f(9(5)) = f(S) = S.
@ rotgg o rotgy = rotygg, rotgg o refy = ref,, ...
@ The inverse of a symmetry is a symmetry: f~'(S) = S.

—1 —1
@ roty, = rotayo, ref,  =refy, ...




Motivation for group theory

@ What other things can we say about symmetries?
@ What sets of isometries may be symmetries of a set in R?>?
@ What other mathematical objects behave in a similar way?




Definition of a monoid

Definition
A monoid is a pair (X, o), where

@ Xisasetando: X x X — Xis a total function,
satisfying the following axioms:

associativity (aob)oc=ao(boc)forall ab,ce X.
neutral element There exists e € X s.t. aoce=eoa= afor
every a € X.

Lemma

There exists only one neutral element.

Proof.

Ife;oa=aand ao e, = aforall a e X, then
€1 = 6106y = 6En. L]



Definition of a group

Definition
A group is a monoid (X, o) such that

inverse for every a € X there exists b € X such that
aob=boa=e.

The group is abelian if additionally

commutativity aob=boaforall a,be X.

Lemma
For every a € X, there exists only one inverse element.

Proof.

If byoa=eand ao by, = e, then
b1:b1Oe:b1O(aobg):(b1Oa)ObQZGObQZbg. [



Groups:

Z with addition (inverse=negation, neutral element 0)
Q with addition (inverse=negation, neutral element 0)
R with addition (inverse=negation, neutral element 0)

R\ {0} with multiplication (inverse to ais 1/a, neutral
element 1)

permutations on {1,..., n} with composition (inverse, id):
non-abelian
even permutations on {1, ..., n} with composition (inverse,

id): non-abelian

regular n x n matrices with multiplication (matrix inverse,
/): non-abelian

symmetries of a set in R? with composition (function
inverse, id): non-abelian



The following objects are not groups:
@ Set {—1,0, 1} with addition.
e 1+ 1isnotinthe set.
@ Z with subtraction
e not associative: (1 —1)—1#1—-(1-1)
@ positive integers with addition
@ no neutral element
@ n x n matrices with multiplication
e not all have inverse




@ The binary operation: o, + (for abelian groups).

@ The neutral element: e, 0 (for abelian groups), 1 (for
non-abelian groups).
@ The inverse element to a: a~', —a (for abelian groups).




Basic properties of groups

@ aox = b has exactly one soluton x =a "o b
@ x o a= b has exactly one solution x = bo a~"

° (:¢r1)_1 =a
@ (ao b)_1 =b'loag!




Subgroups

Definition
Let (X, o) be a group and let Y be a subset of X. If (Y,0) is a
group, we say it is a subgroup of (X, o).

Examples:
@ (Z,+) is a subgroup of (R, +).
@ even permutations form a subgroup of all permutations
(with composition).

@ odd permutations do not form a subgroup of all
permutations (with composition).

e composition of two odd permutations is even
Needed:
@ aobe YforalabeY,and
ea'levyforallacy.



Group isomorphism

Two groups are isomorphic if they differ only by “renaming” their
elements.

Definition

Let (X,0) and (Y, e) be groups. A bijection f: X — Y'is an
isomorphism if

f(ao b) = f(a) e f(b)

forall a,b € X.




Let G1 = ({id, rotgo, rotyso, rotzro, refy, ref, , refy, ref, }, o) be the group
of symmetries of the square.

Let

G» = ({id, (1234), (13)(24), (1432), (14)(23), (12)(34), (13), (24)}, 0)
be a group of permutations.

Y Y

Then the following function f is an isomorphism.

X id rotgg rotigg rotszg
f(x) id (1234) (13)(24) (1432)
X refy ref, refy ref,

f(x) | (14)(23) (12)(34) (13) (24)




Isomorphism properties

Let (X,0) and (Y, e) be groups with neutral elements ex and
€y.
@ If f: X — Yis an isomorphism, then f~1: Y — X is an
isomorphism.

e d] =1 [#(F7"(c)) o £(F7"(d)])
_ [f (f—1 (c)o (d))]
=f"1(c)o F1(d)

@ id: X — X is an isomorphism of (X, o) with itself.
@ If f: X — Y is an isomorphism, then

4] f(ex) = ey

o f(a=') = (f(a)) ' for every a € X.



