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Definition 1. A tree decomposition of a graph G is a pair (T, ), where

e T is a tree (we refer to the vertices of T as nodes, to make clear they
are different from the vertices of G),

e [ is a function assigning to each node x of T a subset of V(G), called
the bag of x,

e for every vertexv of G, there exists a node x € V(T') such thatv € 5(z),

o for every edge uwv of G, there exists a node x € V(T) such that u,v €
B(x), and

e for every vertex v € V(G), the set {x € V(T) : v € B(x)} of nodes
whose bag contains v induces a connected subtree of T

Lemma 1. Let (T, ) be a tree decomposition of a graph G and let H be a
subgraph of G. If H s connected, then the set

{r e V(T): V(H)NB(x) # 0}
induces a connected subtree Ty of T

Proof. By induction on |V (H)|. The claim is true when |V(H)| = 1 by the
last condition from the definition of the tree decomposition. Suppose now
that |V (H)| > 1. There exists a vertex v € V(H) such that the graph H—wv is
connected; e.g., we can choose v as a leaf of any spanning tree of H. Let u be a
neighbor of v in H. By the induction hypothesis, Ty, is a connected subtree
of T'. The last condition from the definition of the tree decomposition states
that T, is a connected subtree. Moreover, Ty_, NT, # 0, since uv is an edge
of G and consequently there exists a node z € V(T) such that u,v € f(x).
It follows that the subgraph Ty = Ty _, U T, of T is connected. O



Lemma 2. Let (T, 3) be a tree decomposition of a graph G. For every clique
K in G, there exists a node x € V(T') such that K C (z).

Proof. By induction on |K|. If | K| < 2, then the claim holds by the definition
of the tree decomposition. Hence, suppose that K = {vy,..., v} for some
k> 3. Let K1 = {vy,...,v_1} and Ky = {vg,...,vx}. By the induction
hypothesis, there exist nodes x1, 25 € V(T') such that K; C 5(z;) and Ky C
B(z3). Let = be the last node on the path from x; to x5 in T such that
v1 € f(x). The last condition from the definition of the tree decomposition
implies that K1 N Ky = {vy,...,v51} C B(z). If vx & B(x), then observe
that 7" cannot contain any node y such that vy, vy € S(y). This contradicts
the definition of a tree decomposition, since vyv, is an edge. It follows that
K C B(z). O

1 Treewidth

Definition 2. The width of a tree decomposition (T, 3) is max{|B(v)| : v €
V(T)} — 1. The treewidth tw(G) of G is the minimum width of its tree
decomposition.

Observation 3. A graph G has treewidth at most t if and only if G can be
obtained by clique-sums from graphs with at most t + 1 vertices.

Lemma 4. If H is a minor G, then tw(H) < tw(G).

Proof. Let (T, ) be a tree decomposition of G of width ¢t = tw(G). Let ¢
be a model of H in G. Let ' be the function assigning subsets of V(H) to
nodes of T" such that for each node x € V(T), a vertex v € V(H) belongs to
the bag f'(z) C V(H) if and only if ¢(v) N B(x) # @. Then (T, ') is a tree
decomposition of H of width at most ¢ (the last condition from the definition
of the tree decomposition follows from Lemma 1). O

Observation 5. tw(K,) =n — 1.

Lemma 6. Let G be a graph. Then
o tw(G) =0 iff E(G) =0, i.e., Ky is not a minor of G;
o tw(G) < 1iff G is a forest, i.e., K3 is not a minor of G; and
o tw(G) <2, iff K4 is not a minor of G.

Proof. The first two claims are easy; for the last one, use Lemma 4 from the
notes for the notes lesson15-5.pdf. [



Definition 3. A bramble B in a graph G is a set of non-empty subsets of
V(G) such that for all (not necessary distinct) sets X,Y € B, the subgraph of
G induced by X UY is connected (and in particular, every set X € B induces
a connected subgraph). The order of the bramble B is the size of the smallest
subset Z C V(G) such that X N Z # () for every X € B.

Lemma 7. Let (T, ) be a tree decomposition of a graph G. For every bram-
ble B in G, there ezists a node x € V(T') such that the bag B(v) intersects all
sets of B.

Proof. For an edge xy € E(T), let T, be the component of T'—zy containing
Y.

Suppose for a contradiction that for every node x € V(T'), there exists a
set X € B disjoint from S(z). Since G[X] is connected, {z : f(z) N X # 0}
induces a connected subtree T'x of T' by Lemma 1. Therefore, there exists a
unique neighbor y of the node x in 7" such that Tx C T, ,. Let 7(z) =y
and X (z) = X.

Since T is a tree, there exists an edge xy € E(T) such that 7(z) = y and
7(y) = . Since the set X (x) U X(y) induces a connected subgraph of G,
there exist vertices u € X (x) and v € X (y) such that u = v or wv € E(G).
By the definition of the tree decomposition, it follows that there exists a
node z € V(T') such that u,v € 3(z), and thus the subtrees T'x () and Tx )
intersect in z. However, by the definition of 7 we have Tx(,) C T, and
Tx(y) € Ty, which is a contradiction. O

Corollary 8. If (T,3) is a tree decomposition of a graph G and B is a
bramble in G of order k, then the tree decomposition (T, 5) has width at least
k—1.

Remark: It is actually true (but not easy to prove) that tw(G) + 1 =
maximum order of a bramble in G.

The nxm grid is the graph with vertex set {(i,7) : 1 <i <n,1 <j <m}
such that two vertices (i1, j1) and (ia, j2) are adjacent iff |io—i1|+|j2—j1| = 1.

Lemma 9. The n X n grid has treewidth at least n.

Proof. Let S be the last column of the grid. Let R be the last row except
for its last vertex. Let R; be the i-th row except for the last vertex, and let
S; be the j-th column except for the last vertex. Let B = {R, S} U{R;US; :
1<i,7 <n—1}. Then B is a bramble of order n. O

Corollary 10. There exist Ks-minor-free graphs of arbitrarily large treewidth.



2 Brambles and minors

Lemma 11. Let B be a bramble in a graph G. There exists a path P in G
intersecting all sets in B.

Proof. Let us construct P by gradually extending it, always choosing it so
that there exists a set X € B intersecting P exactly in an end z of P (initially,
P consists of a single vertex contained in a set of the bramble). If there exists
a set X' € B disjoint from P, we extend P by adding a shortest path from
x to a vertex of X’ inside G[X U X’|. This ensures that the resulting path
intersects X’ only in its end, as required. We keep extending the path in this
way until it intersects all sets in B. O

Observation 12. Let B be a bramble in a graph G of order k, and let By

and By be subsets of B such that B = By U By. Then By and By are brambles
and the sum of their orders is at least k.

Lemma 13. Let B be a bramble of order at least 2t in a graph G and let
P be a path in G intersecting all sets in B. Then there exist vertex-disjoint
subpaths Py and Py of P such that G contains t pairwise vertex-disjoint paths
from Py to Ps.

Proof. Let P, be the shortest initial segment of P such that the bramble
By ={Be€B:BNV(P)+# 0} has order at least t. Let v be the last vertex
of P. The subbramble B] = {B € B: BN V(P —v) # (0} has order at
most ¢t — 1, and B; is obtained from B} by adding sets intersected by a single
vertex v, and thus B; has order exactly t. By Observation 12, the bramble
By = B\ B; has order at least t. Let P, = P — V(P;) and note that since P
intersects all sets in B, P, intersects all sets in Bs.

Consider any set X C V(G) separating P from P»; we claim that | X| > t.
Indeed, if | X| < ¢, then there exist sets By € By and By € By disjoint from
X and G[B; U By] contains a path from P; to P,. By Menger’s theorem, the
graph G contains t pairwise vertex-disjoint paths from P, to Ps. O

The ladder Z is the graph consisting of the paths uq...u, and vy ... v,
and edges w;v; for i = 1,... k. Le., Zy is the 2 x k grid.

Lemma 14. Let B be a bramble in a graph G. If B has order at least 2k?,
then G contains Zj as a topological minor.

Proof. Lemmas 11 and 13 imply that there exist vertex-disjoint paths P, and
P, and k? pairwise vertex-disjoint paths Q1, ..., Q2 from P; to P, without
loss of generality intersecting P, and P, only in their ends. Let xq,..., 72



and y, ...,y be the ends of @y, ..., Q2 on P, and P,, respectively, in order
along the paths P, and P;. Let 7 be the permutation such that for every i,
the path @; has ends x; and y,;). The sequence 7(1),...,m(k*) contains an
increasing or a decreasing subset of length k. Then P;, P, and the paths
corresponding to this subsequence form a subdivision of Zj. O



