
Tree decompositions
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Definition 1. A tree decomposition of a graph G is a pair (T, β), where

• T is a tree (we refer to the vertices of T as nodes, to make clear they
are different from the vertices of G),

• β is a function assigning to each node x of T a subset of V (G), called
the bag of x,

• for every vertex v of G, there exists a node x ∈ V (T ) such that v ∈ β(x),

• for every edge uv of G, there exists a node x ∈ V (T ) such that u, v ∈
β(x), and

• for every vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ β(x)} of nodes
whose bag contains v induces a connected subtree of T .

Lemma 1. Let (T, β) be a tree decomposition of a graph G and let H be a
subgraph of G. If H is connected, then the set

{x ∈ V (T ) : V (H) ∩ β(x) 6= ∅}

induces a connected subtree TH of T .

Proof. By induction on |V (H)|. The claim is true when |V (H)| = 1 by the
last condition from the definition of the tree decomposition. Suppose now
that |V (H)| > 1. There exists a vertex v ∈ V (H) such that the graph H−v is
connected; e.g., we can choose v as a leaf of any spanning tree of H. Let u be a
neighbor of v in H. By the induction hypothesis, TH−v is a connected subtree
of T . The last condition from the definition of the tree decomposition states
that Tv is a connected subtree. Moreover, TH−v ∩Tv 6= ∅, since uv is an edge
of G and consequently there exists a node x ∈ V (T ) such that u, v ∈ β(x).
It follows that the subgraph TH = TH−v ∪ Tv of T is connected.
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Lemma 2. Let (T, β) be a tree decomposition of a graph G. For every clique
K in G, there exists a node x ∈ V (T ) such that K ⊆ β(x).

Proof. By induction on |K|. If |K| ≤ 2, then the claim holds by the definition
of the tree decomposition. Hence, suppose that K = {v1, . . . , vk} for some
k ≥ 3. Let K1 = {v1, . . . , vk−1} and K2 = {v2, . . . , vk}. By the induction
hypothesis, there exist nodes x1, x2 ∈ V (T ) such that K1 ⊆ β(x1) and K2 ⊆
β(x2). Let x be the last node on the path from x1 to x2 in T such that
v1 ∈ β(x). The last condition from the definition of the tree decomposition
implies that K1 ∩ K2 = {v2, . . . , vk−1} ⊆ β(x). If vk 6∈ β(x), then observe
that T cannot contain any node y such that v1, vk ∈ β(y). This contradicts
the definition of a tree decomposition, since v1vk is an edge. It follows that
K ⊆ β(x).

1 Treewidth

Definition 2. The width of a tree decomposition (T, β) is max{|β(v)| : v ∈
V (T )} − 1. The treewidth tw(G) of G is the minimum width of its tree
decomposition.

Observation 3. A graph G has treewidth at most t if and only if G can be
obtained by clique-sums from graphs with at most t+ 1 vertices.

Lemma 4. If H is a minor G, then tw(H) ≤ tw(G).

Proof. Let (T, β) be a tree decomposition of G of width t = tw(G). Let ϕ
be a model of H in G. Let β′ be the function assigning subsets of V (H) to
nodes of T such that for each node x ∈ V (T ), a vertex v ∈ V (H) belongs to
the bag β′(x) ⊆ V (H) if and only if ϕ(v) ∩ β(x) 6= ∅. Then (T, β′) is a tree
decomposition of H of width at most t (the last condition from the definition
of the tree decomposition follows from Lemma 1).

Observation 5. tw(Kn) = n− 1.

Lemma 6. Let G be a graph. Then

• tw(G) = 0 iff E(G) = ∅, i.e., K2 is not a minor of G;

• tw(G) ≤ 1 iff G is a forest, i.e., K3 is not a minor of G; and

• tw(G) ≤ 2, iff K4 is not a minor of G.

Proof. The first two claims are easy; for the last one, use Lemma 4 from the
notes for the notes lesson15-5.pdf.
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Definition 3. A bramble B in a graph G is a set of non-empty subsets of
V (G) such that for all (not necessary distinct) sets X, Y ∈ B, the subgraph of
G induced by X ∪Y is connected (and in particular, every set X ∈ B induces
a connected subgraph). The order of the bramble B is the size of the smallest
subset Z ⊆ V (G) such that X ∩ Z 6= ∅ for every X ∈ B.

Lemma 7. Let (T, β) be a tree decomposition of a graph G. For every bram-
ble B in G, there exists a node x ∈ V (T ) such that the bag β(v) intersects all
sets of B.

Proof. For an edge xy ∈ E(T ), let Tx,y be the component of T−xy containing
y.

Suppose for a contradiction that for every node x ∈ V (T ), there exists a
set X ∈ B disjoint from β(x). Since G[X] is connected, {z : β(z) ∩X 6= ∅}
induces a connected subtree TX of T by Lemma 1. Therefore, there exists a
unique neighbor y of the node x in T such that TX ⊆ Tx,y. Let π(x) := y
and X(x) := X.

Since T is a tree, there exists an edge xy ∈ E(T ) such that π(x) = y and
π(y) = x. Since the set X(x) ∪ X(y) induces a connected subgraph of G,
there exist vertices u ∈ X(x) and v ∈ X(y) such that u = v or uv ∈ E(G).
By the definition of the tree decomposition, it follows that there exists a
node z ∈ V (T ) such that u, v ∈ β(z), and thus the subtrees TX(x) and TX(y)

intersect in z. However, by the definition of π we have TX(x) ⊆ Tx,y and
TX(y) ⊆ Ty,x, which is a contradiction.

Corollary 8. If (T, β) is a tree decomposition of a graph G and B is a
bramble in G of order k, then the tree decomposition (T, β) has width at least
k − 1.

Remark: It is actually true (but not easy to prove) that tw(G) + 1 =
maximum order of a bramble in G.

The n×m grid is the graph with vertex set {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
such that two vertices (i1, j1) and (i2, j2) are adjacent iff |i2−i1|+|j2−j1| = 1.

Lemma 9. The n× n grid has treewidth at least n.

Proof. Let S be the last column of the grid. Let R be the last row except
for its last vertex. Let Ri be the i-th row except for the last vertex, and let
Sj be the j-th column except for the last vertex. Let B = {R, S}∪{Ri∪Sj :
1 ≤ i, j ≤ n− 1}. Then B is a bramble of order n.

Corollary 10. There exist K5-minor-free graphs of arbitrarily large treewidth.
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2 Brambles and minors

Lemma 11. Let B be a bramble in a graph G. There exists a path P in G
intersecting all sets in B.

Proof. Let us construct P by gradually extending it, always choosing it so
that there exists a set X ∈ B intersecting P exactly in an end x of P (initially,
P consists of a single vertex contained in a set of the bramble). If there exists
a set X ′ ∈ B disjoint from P , we extend P by adding a shortest path from
x to a vertex of X ′ inside G[X ∪ X ′]. This ensures that the resulting path
intersects X ′ only in its end, as required. We keep extending the path in this
way until it intersects all sets in B.

Observation 12. Let B be a bramble in a graph G of order k, and let B1
and B2 be subsets of B such that B = B1 ∪B2. Then B1 and B2 are brambles
and the sum of their orders is at least k.

Lemma 13. Let B be a bramble of order at least 2t in a graph G and let
P be a path in G intersecting all sets in B. Then there exist vertex-disjoint
subpaths P1 and P2 of P such that G contains t pairwise vertex-disjoint paths
from P1 to P2.

Proof. Let P1 be the shortest initial segment of P such that the bramble
B1 = {B ∈ B : B ∩ V (P ) 6= ∅} has order at least t. Let v be the last vertex
of P . The subbramble B′1 = {B ∈ B : B ∩ V (P − v) 6= ∅} has order at
most t− 1, and B1 is obtained from B′1 by adding sets intersected by a single
vertex v, and thus B1 has order exactly t. By Observation 12, the bramble
B2 = B \ B1 has order at least t. Let P2 = P − V (P1) and note that since P
intersects all sets in B, P2 intersects all sets in B2.

Consider any set X ⊆ V (G) separating P1 from P2; we claim that |X| ≥ t.
Indeed, if |X| < t, then there exist sets B1 ∈ B1 and B2 ∈ B2 disjoint from
X and G[B1 ∪B2] contains a path from P1 to P2. By Menger’s theorem, the
graph G contains t pairwise vertex-disjoint paths from P1 to P2.

The ladder Zk is the graph consisting of the paths u1 . . . uk and v1 . . . vk
and edges uivi for i = 1, . . . , k. I.e., Zk is the 2× k grid.

Lemma 14. Let B be a bramble in a graph G. If B has order at least 2k2,
then G contains Zk as a topological minor.

Proof. Lemmas 11 and 13 imply that there exist vertex-disjoint paths P1 and
P2 and k2 pairwise vertex-disjoint paths Q1, . . . , Qk2 from P1 to P2, without
loss of generality intersecting P1 and P2 only in their ends. Let x1, . . . , xk2
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and y1, . . . , yk2 be the ends of Q1, . . . , Qk2 on P1 and P2, respectively, in order
along the paths P1 and P2. Let π be the permutation such that for every i,
the path Qi has ends xi and yπ(i). The sequence π(1), . . . , π(k2) contains an
increasing or a decreasing subset of length k. Then P1, P2, and the paths
corresponding to this subsequence form a subdivision of Zk.
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