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We consider graph classes that can be described by excluding some fixed
configurations. Let us give some examples.

Theorem 1 (Kuratowski). A graph G is planar if and only if it contains
neither K5 nor K3,3 as a topological minor (i.e., does not contain a subgraph
isomorphic to a subdivision of K5 or K3,3).

Theorem 2. A graph G is bipartite if and only if it does not contain any
odd cycle as a subgraph.

Let us give a few definitions. We consider the following partial orders on
graphs:

• induced subgraph H v G

• subgraph H ⊆ G

• topological minor H ≤t G (a subdivision of H is a subgraph of G)

• minor H ≤m G (H can be obtained from a subgraph of G by contract-
ing edges)

Note that H v G⇒ H ⊆ G⇒ H ≤t G⇒ H ≤m G.
Let � be any of these orders. We say that a class G of graphs is �-closed

(subgraph-closed, minor-closed, . . . ) if for all graphs H and G, if H � G
and G ∈ G, then H ∈ G.

Examples:

• The class of all planar graphs is minor-closed (and thus it also is
topological-minor-closed, subgraph-closed and induced-subgraph-closed).
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• The class of all bipartite graphs is subgraph-closed, but not topological-
minor-closed.

• The class of all graphs whose connected components are cliques is
induced-subgraph-closed, but not subgraph-closed.

For a set F of graphs, let Forb�(F) = {G : (∀F ∈ F)F 6� G} denote the
class of graphs that do not “contain” any element of F in the sense defined
by �.

Examples:

• Forb≤t(K5, K3,3) = planar graphs.

• Forb⊆(C3, C5, C7, . . .) = bipartite graphs.

• Forbv(K1,2) = graphs whose connected components are cliques.

A graph F is a �-obstruction for a graph class G if F 6∈ G, but F ′ ∈ G
for all F ′ ≺ F . Let Obst�(G) be the set of all �-obstructions for G.

Examples:

• K5 is a topological-minor-obstruction for planar graphs, since K5 is not
planar, but all proper topological minors of K5 are planar.

• K6 is not a topological-minor-obstruction for planar graphs, sinceK5 <t

K6 and K5 is not planar.

We say that a partial order � on graphs is locally finite if {H : H � G}
is finite for every graph G.

Lemma 3. Let G be a class of graphs, and let � be a locally finite order.
The following claims are equivalent.

(a) G is �-closed

(b) G = Forb�(F) for some set F

(c) G = Forb�(Obst�(G))

Proof.

(a)⇒ (c) First, suppose that G ∈ G. Since G is �-closed, every H � G sat-
isfies H ∈ G, and thus H is not a �-obstruction for G. Hence, G ∈
Forb�(Obst�(G)).

Consider now any graph G 6∈ G. The set S = {H � G : H 6∈ G}
is finite, and thus it contains a �-minimal element F . Then F 6∈ G,
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but F ′ ∈ G for every F ′ ≺ F , i.e., F is a �-obstruction for G. Hence
G 6∈ Forb�(Obst�(G)).

Therefore, G = Forb�(Obst�(G)).

(c)⇒ (b) Trivial, let F = Obst�(G).

(b)⇒ (a) Consider any G ∈ G. Since G = Forb�(F), we have F 6� G for every
F ∈ F . Consequently, if H � G, then also F 6� H. Therefore,
H ∈ Forb�(F) = G. Since this holds for every G ∈ G and every
H � G, the class G is �-closed.

1 Subgraph-closed classes

Let Pn denote a path with n vertices, and let tK2 denote the matching of
size t. Simple examples:

• Forb⊆(C3, C4, C5, . . .) = forests

• Forb⊆(C3, C5, C7, . . .) = bipartite graphs

• Forb⊆(P2) = isolated vertices

• Forb⊆(P3) = isolated vertices and edges

• Forb⊆(K1,n) = maximum degree at most n− 1

• Forb⊆(2K2) = isolated vertices, or a star plus isolated vertices, or a
triangle plus isolated vertices.

Forb⊆(tK2) is the class of graphs with maximum matching of size at most
t−1, which can be described explicitly using Tutte’s theorem. The following
approximate description is often more useful. A set X ⊆ V (G) is a vertex
cover if every edge of G is incident with a vertex of X, i.e., G − X has no
edges.

Theorem 4. Every graph in Forb⊆(tK2) has a vertex cover of size at most
2(t− 1). Conversely, every graph with vertex cover of size at most t belongs
to Forb⊆((t+ 1)K2).
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Proof. Suppose that tK2 6⊆ G. Let M ⊆ G be a maximum matching,
|E(M)| ≤ t − 1. Then G − V (M) has no edges, i.e., V (M) is a vertex
cover for G of size at most 2(t− 1).

Conversely, if X is a vertex-cover of G of size at most t, then every edge
of a matching in G intersects X, and thus such a matching has at most |X|
edges. Consequently, (t+ 1)K2 6⊆ G.

We can also obtain a similar approximate characterization for Forb⊆(Pn).
The tree-depth of a graph G is the smallest d ≥ 1 for that there exists a rooted
forest T of depth at most d with vertex set V (G), such that every edge of G
joins a vertex with its ancestor or descendant in T . Examples:

• Graphs of tree-depth 1 consist of isolated vertices.

• Graphs of tree-depth at most 2 consist of stars.

• The path P2n−1 has tree-depth n, the path P2n has tree-depth n+ 1.

Theorem 5. If Pn 6⊆ G, then G has tree-depth at most n − 1. Conversely,
if G has tree-depth at most n, then P2n 6⊆ G.

Proof. Suppose that Pn 6⊆ G. We can assume that G is connected, as oth-
erwise we consider each component separately. Run depth-first search from
any vertex of G, and let T be the resulting tree. Then T ⊆ G, hence Pn 6⊆ T ,
and thus T has depth at most n− 1. Observe also that every edge of G joins
a vertex with its ancestor or descendant in T .

Conversely, if P2n ⊆ G, then G has at least as large tree-depth as P2n ,
which is n+ 1.

2 Induced-subgraph-closed classes

For a graph H, let H denote the complement of H, that is the graph with
the same vertex set in that two distinct vertices are adjacent if and only if
they are not adjacent in H.

Let us mention a famous recent result. A graph G is perfect if ω(H) =
χ(H) for every H v G. Perfect graphs are interesting, since we can determine
their chromatic number as well as the size of maximum clique in polynomial
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time. A hole is a cycle of length at least 4. An anti-hole is a complement
of a hole. The following characterization of perfect graphs was proposed by
Berge in 1961, and finally proved by Chudnovsky, Robertson, Seymour, and
Thomas in 2002.

Theorem 6. A graph is perfect if and only if it contains neither odd hole nor
an odd anti-hole as an induced subgraph. That is, Forbv(C5, C7, C7, C9, C9, . . .) =
perfect graphs.

Another well-known result concerns line-graphs. A graph G is a line-
graph of H if V (G) = E(H), and two vertices of G are adjacent if and only
if the corresponding edges of H are incident with the same vertex.

Theorem 7. A graph G is a line-graph of some graph if and only if it does
not contain any of the following graphs as an induced subgraph:

Further examples:

• Forbv(C3, C4, C5, . . .) = forests

• Forbv(C3, C5, C7, . . .) = bipartite graphs

• Forbv(P2) = isolated vertices

• Forbv(P3) = all components are cliques

• Because C4 is equal to 2K2, Forbv(2K2) contains exactly the comple-
ments of graphs in Forbv(C4), and in particular complements of all
graphs without cycles of length at most 4. The exact description of
Forbv(2K2) is not known. See homework exercises for some partial
results.

• The description of Forbv(K1,3) (claw-free graphs) is known, but it is
extremely complicated.
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3 Exercises

1. (?) Let G be a �-closed class of graphs, where � is a locally finite order.
Show that Obst�(G) ⊆ F for every set F such that G = Forb�(F).

2. (?) Describe the graphs in Forb⊆(P4).

3. (??) Prove that P2n has tree-depth n+ 1.

4. (?) Prove that Forbv(C3, C5, C7, . . .) = bipartite.

5. (? ? ?) Describe the graphs in Forbv(2K2, C3, C5, C7, . . .), that is bipar-
tite graphs without induced matching of size 2.
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