- 1. Formulate and prove the variant of the Removal lemma for K_4 .
- 2. Prove the following strengthening of the Erdős-Stone theorem: Let H be a graph of chromatic number $c \ge 2$. For every $\beta > 0$, there exists $\gamma > 0$ such that every graph G with n vertices and at least $\left(1 - \frac{1}{c-1} + \beta\right) \frac{n^2}{2}$ edges contains at least $\gamma n^{|V(H)|}$ subgraphs isomorphic to H.
- 3. Prove that for every p > 0 there exist $c, \varepsilon > 0$ such that the following claim holds. Let G be a graph and let (A, B) be an ε -regular pair in G such that $d(A, B) \ge p$. Let n = |A| = |B|. Suppose $A' \subseteq A$ and $B' \subseteq B$ satisfy $|A'| = |B'| \ge (1 \varepsilon)n$, every vertex of A' has at least $(p 2\varepsilon)n$ neighbors in B', and every vertex of B' has at least $(p 2\varepsilon)n$ neighbors in A'. Let H be the bipartite subgraph of G with vertex set $A' \cup B'$ whose edges are exactly the edges of G with one end in A' and the other end in B'. Then H has at least cn pairwise edge-disjoint perfect matchings.
- 4. Prove that for every $\alpha > 0$, there exist $c, n_0 > 0$ such that every graph G with $n \ge n_0$ vertices and at least αn^2 edges contains a $\lceil cn \rceil$ -regular bipartite graph as a subgraph.