- 1. Let G be a graph and let (A, B) be a (δ, ε) -regular pair in G, where $0 < \delta, \varepsilon \leq 1$. Let n = |A| = |B| and p = d(A, B). Prove that G contains at least $p^4n^4 (2\delta + 15\varepsilon)n^4 2n^3$ 4-cycles $v_1v_2v_3v_4$ such that $v_1, v_3 \in A$ and $v_2, v_4 \in B$.
- 2. Let G be a graph and let (A, B), (B, C) and (A, C) be (δ, ε) -regular pairs in G, where $0 < \delta, \varepsilon \leq 1$. Let n = |A| = |B| = |C|. Prove that G contains at most $d(A, B)d(B, C)d(A, C)n^3 + (\delta\delta + 7\varepsilon)n^3$ triangles $v_1v_2v_3$ such that $v_1 \in A, v_2 \in B$ and $v_3 \in C$.
- 3. Let $m_0, c, \kappa, \varepsilon, \delta > 0$ be real numbers. Prove that there exists n_0 such that the following holds. Let G be a graph with $n \ge n_0$ vertices and with at most $cn^{2-\kappa}$ edges, and let A and B be disjoint subsets of V(G). If $|A|, |B| \ge n/m_0$, then (A, B) is a (δ, ε) -regular pair in G.
- 4. Let G be a graph and let (A, B) be a (δ, ε) -regular pair in G, where $0 < \delta, \varepsilon \leq 1$. Let n = |A| = |B| and p = d(A, B). Prove that there exist sets $A' \subseteq A$ and $B' \subseteq B$ such that $|A'| = |B'| \geq (1 \delta)n$, every vertex of A' has at least $(p \delta \varepsilon)n$ neighbors in B' and every vertex of B' has at least $(p \delta \varepsilon)n$ neighbors in A'.
- 5. Let G be a graph and let (A, B) be a (δ, ε) -regular pair in G, where $0 < \delta, \varepsilon \leq 1$. Let n = |A| = |B|, let $\beta > \delta$ be a real number, and suppose $A' \subseteq A$ and $B' \subseteq B$ are sets of size at least βn . Prove that (A', B') is a $(\delta/\beta, 2\varepsilon)$ -regular pair in G.