
1. Let v1, . . . , vn be an ordering of vertices of a graph G such that v1v2 ∈
E(G) and for every i ≥ 3, the vertex vi has exactly two neighbors in
{v1, . . . , vi−1}. Let

pG =
∏

vivj∈E(G),i<j

(xj − xi)

be the graph polynomial of G. For any function f : [n] → N, let

us define c(f,G) as the coefficient at x
2−f(1)
1 x

2−f(2)
2 . . . x

2−f(n)
n in the

polynomial pG (if f(i) > 2 for some i, then c(f,G) = 0). Let ei : [n]→
N be the function such that ei(i) = 1 and ei(j) = 0 pro j 6= i. Let us
define c̃(f,G) = c(f + e2, G)− c(f + e1, G).

Prove by induction that for n ≥ 2, if f satisfies
∑n

i=1 f(i) = 2, then
c̃(f,G) ≡ 1 (mod 3).

2. Let G be a 2-degenerate graph, let z be a vertex of G and let L be a
list assignment for G such that |L(v)| ≥ 3 for every v ∈ V (G)\{z} and
|L(z)| = 1. Using the previous exercise, prove that G is colorable from
the lists L.

3. Suppose p is a prime. Prove that if G is a multigraph of average degree
greater than 2p − 2, then G has a non-empty submultigraph in which
the degrees of all vertices are divisible by p.

4. We say that a graph G is almost d-regular if all its vertices have degree
d or d+1. Prove that if G is almost d-regular and the vertices of degree
d+ 1 form an independent set, then G contains a matching that covers
all vertices of degree d + 1.

5. Using the previous exercise, prove that if G is almost d-regular, then
G has a spanning subgraph that is almost (d − 1)-regular, but not
(d− 1)-regular.

6. Using the previous exercise, prove that if G is almost d-regular for d ≥ 4
and G is not 4-regular, then G has a 3-regular subgraph.

7. Let p and p1 be polynomials in variables x1, . . . , xn. Let L be a finite
set of complex numbers and let q be the polynomial

∏
r∈L(x1− r), and

let a be the polynomial p−p1q. Show that a(x1, . . . , xn) = p(x1, . . . , xn)
holds for all complex numbers x1, . . . , xn such that x1 ∈ L.

8. Let p be a polynomial in variables x1, . . . , xn. For i = 1, . . . , n, let
Li be a finite set of complex numbers and let di = |Li| − 1. Suppose

1



that the degree of p is d1 + . . . + dn. Using the previous exercise,
prove there exists a polynomial a in variables x1, . . . , xn such that
a(x1, . . . , xn) = p(x1, . . . , xn) for every x1 ∈ L1, . . . , xn ∈ Ln, every
variable xi appears in a in degree at most di, and a and p have the
same coefficient at xd1

1 · · · xdn
n .

9. Let a be a non-zero polynomial in variables x1, . . . , xn. For i = 1, . . . , n,
let Li be a finite set of complex numbers and let di = |Li|−1. Suppose
every variable xi appears in a in degree at most di. Prove there exist
x1 ∈ L1, . . . , xn ∈ Ln such that a(x1, . . . , xn) 6= 0. (Hint: use the fact
that every non-zero polynomial of degree d in one variable has at most
d roots).

10. Let p be a polynomial in variables x1, . . . , xn. For i = 1, . . . , n, let Li

be a finite set of complex numbers and let di = |Li| − 1. Suppose that
the degree of p is d1 + . . . + dn and the coefficient of p at xd1

1 · · ·xdn
n is

non-zero. Using the previous exercises, prove that there exist x1 ∈ L1,
. . . , xn ∈ Ln such that p(x1, . . . , xn) 6= 0.

11. Use the previous exercises to prove the Alon-Tarsi theorem on list-
coloring.
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