1. Let v_1, \ldots, v_n be an ordering of vertices of a graph G such that $v_1v_2 \in E(G)$ and for every $i \geq 3$, the vertex v_i has exactly two neighbors in $\{v_1, \ldots, v_{i-1}\}$. Let

$$p_G = \prod_{v_i v_j \in E(G), i < j} (x_j - x_i)$$

be the graph polynomial of G. For any function $f : [n] \to \mathbb{N}$, let us define c(f,G) as the coefficient at $x_1^{2-f(1)}x_2^{2-f(2)}\dots x_n^{2-f(n)}$ in the polynomial p_G (if f(i) > 2 for some i, then c(f,G) = 0). Let $e_i : [n] \to \mathbb{N}$ be the function such that $e_i(i) = 1$ and $e_i(j) = 0$ pro $j \neq i$. Let us define $\tilde{c}(f,G) = c(f+e_2,G) - c(f+e_1,G)$.

Prove by induction that for $n \ge 2$, if f satisfies $\sum_{i=1}^{n} f(i) = 2$, then $\tilde{c}(f, G) \equiv 1 \pmod{3}$.

- 2. Let G be a 2-degenerate graph, let z be a vertex of G and let L be a list assignment for G such that $|L(v)| \ge 3$ for every $v \in V(G) \setminus \{z\}$ and |L(z)| = 1. Using the previous exercise, prove that G is colorable from the lists L.
- 3. Suppose p is a prime. Prove that if G is a multigraph of average degree greater than 2p 2, then G has a non-empty submultigraph in which the degrees of all vertices are divisible by p.
- 4. We say that a graph G is almost d-regular if all its vertices have degree d or d+1. Prove that if G is almost d-regular and the vertices of degree d+1 form an independent set, then G contains a matching that covers all vertices of degree d+1.
- 5. Using the previous exercise, prove that if G is almost d-regular, then G has a spanning subgraph that is almost (d-1)-regular, but not (d-1)-regular.
- 6. Using the previous exercise, prove that if G is almost d-regular for $d \ge 4$ and G is not 4-regular, then G has a 3-regular subgraph.
- 7. Let p and p_1 be polynomials in variables x_1, \ldots, x_n . Let L be a finite set of complex numbers and let q be the polynomial $\prod_{r \in L} (x_1 - r)$, and let a be the polynomial $p-p_1q$. Show that $a(x_1, \ldots, x_n) = p(x_1, \ldots, x_n)$ holds for all complex numbers x_1, \ldots, x_n such that $x_1 \in L$.
- 8. Let p be a polynomial in variables x_1, \ldots, x_n . For $i = 1, \ldots, n$, let L_i be a finite set of complex numbers and let $d_i = |L_i| 1$. Suppose

that the degree of p is $d_1 + \ldots + d_n$. Using the previous exercise, prove there exists a polynomial a in variables x_1, \ldots, x_n such that $a(x_1, \ldots, x_n) = p(x_1, \ldots, x_n)$ for every $x_1 \in L_1, \ldots, x_n \in L_n$, every variable x_i appears in a in degree at most d_i , and a and p have the same coefficient at $x_1^{d_1} \cdots x_n^{d_n}$.

- 9. Let *a* be a non-zero polynomial in variables x_1, \ldots, x_n . For $i = 1, \ldots, n$, let L_i be a finite set of complex numbers and let $d_i = |L_i| 1$. Suppose every variable x_i appears in *a* in degree at most d_i . Prove there exist $x_1 \in L_1, \ldots, x_n \in L_n$ such that $a(x_1, \ldots, x_n) \neq 0$. (Hint: use the fact that every non-zero polynomial of degree *d* in one variable has at most *d* roots).
- 10. Let p be a polynomial in variables x_1, \ldots, x_n . For $i = 1, \ldots, n$, let L_i be a finite set of complex numbers and let $d_i = |L_i| 1$. Suppose that the degree of p is $d_1 + \ldots + d_n$ and the coefficient of p at $x_1^{d_1} \cdots x_n^{d_n}$ is non-zero. Using the previous exercises, prove that there exist $x_1 \in L_1$, $\ldots, x_n \in L_n$ such that $p(x_1, \ldots, x_n) \neq 0$.
- 11. Use the previous exercises to prove the Alon-Tarsi theorem on listcoloring.