- 1. Determine the treewidth of the cube and the octahedron graphs.
- 2. Prove that the treewidth of the $n \times n$ grid is at most n.
- 3. Prove that every graph G has a tree decomposition (T, β) of width $\operatorname{tw}(G)$ such that $|V(T)| \leq |V(G)|$.
- 4. A set W of 2k+1 vertices of G is k-breakable if there exists $X \subseteq V(G)$ of size at most k such that each component of G-X contains at most k vertices of W. Prove that if every set $W \subseteq V(G)$ of size 2k+1 is k-breakable, then $\mathrm{tw}(G) \leq 3k$ (hint: prove by induction on the number of vertices of H that for every $H \subseteq G$ and for every $W \subseteq V(H)$ of size at most 2k+1, there exists a tree decomposition (T_H, β_H) of H of width at most 3k such that $W \subseteq \beta_H(v)$ for some $v \in V(T_H)$.
- 5. Let W be a set of 2k + 1 vertices in a graph G. Let $\mathcal{B} = \{X \subseteq V(G) : G[X] \text{ is connected and } |X \cap W| \ge k + 1\}$. Prove that \mathcal{B} is a bramble in G. Furthermore, show that if W is not k-breakable, then \mathcal{B} has order at least k + 1.
- 6. Prove that if tw(G) > 3k, then G contains a bramble of order at least k+1.