- 1. Prove that every k-linked graph is (2k 1)-connected.
- 2. We say that G is k-edge-linked if for every sequence of pairwise distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$, there exist pairwise edge disjoint paths P_1, \ldots, P_k in G, where P_i connects s_i with t_i for $i = 1, \ldots, k$. Prove that every 2k-edge-connected graph is k-edge-linked.
- 3. Let $k \geq 2$ be an even integer and let M_k be the cycle on 2k vertices where every edge has multiplicity k/2. Prove that M_k is k-edge-connected but not k-edge-linked.
- 4. Let G be a graph, let $K \subseteq G$ be a subdivision of a clique, let Q be the set of branch vertices of K, and let S be a set of m vertices of G. Let \mathcal{P} be a system of m pairwise vertex-disjoint paths from S to Q and let $e_K(\mathcal{P})$ be the number of edges of paths in \mathcal{P} not belonging to E(K); i.e., $e_K(\mathcal{P}) = \left| \left(\bigcup_{P \in \mathcal{P}} E(P) \right) \setminus E(K) \right|$. Choose \mathcal{P} so that $e_K(\mathcal{P})$ is minimum. Prove that if $q \in Q_1$ is not contained in any path of \mathcal{P} , $q_2 \in Q$ is contained in a path $P \in \mathcal{P}$, and R is the path of K between q_1 and q_2 , then P is the only path from \mathcal{P} that intersects R.
- 5. Prove using the result from the previous exercise that every 2k-connected graph containing K_{3k} as a topological minor is k-linked.
- 6. Find as small integer k as you can for which you can prove that every non-planar k-connected graph is 2-linked.