- 1. Prove that for every $k \geq 3$, every K_k -minor-free graph can be (not necessarily properly) colored using k 1 colors so that every color induces a subgraph of maximum degree less than 3k.
- 2. Prove that for all positive real numbers a and b < 2 and for every sufficiently large positive integer k, there exists a graph of chromatic number at least ak^b not containing K_k as a topological minor.
- 3. Prove that for every integer $k \geq 3$, there exists a graph G with at least $\frac{k^2}{16}|V(G)|$ edges not containing K_k as a topological minor (hint: consider complete bipartite graphs).
- 4. Let G be a 5-connected graph, and let u, v, x, y be distinct vertices of G. Does G necessarily contain vertex-disjoint paths from u to v and from x to y?
- 5. The $n \times n$ grid is the graph with vertex set $\{(i, j) : 1 \leq i, j \leq n\}$ where vertices (i, j) and (i', j') are adjacent iff i = i' and |j j'| = 1, or j = j' and |i i'| = 1. Prove that for every planar graph G, there exists n such that G is a minor of the $n \times n$ grid.