Theorem (Vizing) For any simple graph G, $$\chi'(G) \leq \Delta(G) + 1$$. ### Corollary For any simple graph G, $$\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}.$$ A color c is missing at v if no edge incident with v has color c. #### Observation In an edge coloring by $\Delta(G) + 1$ colors, at least one color is missing at each vertex. A Kempe chain in colors $\{a, b\}$ is a maximal connected subgraph with edges colored by a or b. - Alternating path or cycle. - Path: one of $\{a, b\}$ is missing at each end. - Switching the chain: Exchanging colors a and b on its edges. - Missing colors stay the same, except for the ends of the chain. #### Lemma $\chi'(G) \leq \Delta(G) + 1$, $uv \notin E(G) \Rightarrow$ there exists an edge coloring by $\Delta(G) + 1$ colors s.t. the same color is missing at u and v. - c₁: A color missing at u. - b: A color missing at v. - WLOG c_1 is not missing at v, b is not missing at u. #### For i = 1, 2, ...: - $e_i = vx_i$ an edge of color c_i , $c_{i+1} = a$ color missing at x_i - If c_{i+1} is missing at v or $c_{i+1} \in \{c_1, ..., c_{i-1}\}$: - stop and let k = i. - (*) If c_{k+1} is missing at v: - For i = k, k 1, ..., 1, recolor e_i to c_{i+1} . - c_1 is missing at both u and v. Otherwise: $c_{k+1} = c_s$ for some $s \in \{1, \dots, k-1\}$. K: Kempe chain in colors $\{c_s, b\}$ containing x_k # Case 1: K ends at $z \notin \{u, v, x_{s-1}\}$ - Switch K to make b missing at x_k . - c_{i+1} still missing at x_i for i = 1, ..., k-1. - The case (\star) with $c_{k+1} = b$. ### Case 2: K ends at x_{s-1} - Switch K to make b missing at x_{s-1} . - The case (*) with k = s 1, $c_{k+1} = b$. #### Case 3: K ends at u - Switch *K* to make *b* missing at *u*. - b is missing at both u and v. #### Case 4: K ends at v - K ends by $e_s = vx_s$. - Switch K to make c_s missing at v. - The case (*) with k = s 1, $c_{k+1} = c_s$ # Theorem (Vizing) For any simple graph G, $$\chi'(G) \leq \Delta(G) + 1$$. By induction on |E(G)|: - $\chi'(G-uv) \leq \Delta(G-uv) + 1 \leq \Delta(G) + 1$. - An edge coloring by Δ(G) + 1 colors s.t. c is missing at u and v. - Color uv by c. #### Definition A graph is chordal if it does not contain any induced cycle of length at least four. Equivalently, every (≥ 4) -cycle has a chord. Hole = induced (≥ 4)-cycle; graph is chordal iff it has no hole. #### Definition A graph is chordal if it does not contain any induced cycle of length at least four. Q: Which of the following graphs are chordal? Example: Interval graphs are chordal. - V = a set of intervals - $I_1, I_2 \in V$ adjacent iff $I_1 \cap I_2 \neq \emptyset$. Minimal cut: G - Z not connected, G - X connected for every $X \subsetneq Z$ ### Lemma If G is chordal, then every minimal cut is a clique. A vertex is simplicial if its neighborhood is a clique. Q: Find simplicial vertices. #### Lemma G chordal, not a clique ⇒ contains two non-adjacent simplicial vertices. - G not a clique ⇒ contains a minimal cut. - Induction for the sides of the cut. # Corollary A graph G is chordal if and only if every induced subgraph of G contains a simplicial vertex. - Induced subgraphs of chordal graphs are chordal. - (≥4)-cycle does not have a simplicial vertex. If $v \in V(G)$ is simplicial, then - $\chi(G) = \max(\chi(G v), \deg v + 1)$ - $\omega(G) = \max(\omega(G v), \deg v + 1)$ - $\alpha(G) = \alpha(G N[V]) + 1$ # Corollary If G is chordal, then - $\chi(G) = \omega(G)$ - $\chi(G)$, $\omega(G)$ and $\alpha(G)$ can be computed in polynomial time. An elimination ordering is an ordering v_1, \ldots, v_n of vertices of G such that for $i = 1, \ldots, n$, $$\{v_i : j < i, v_i v_i \in E(G)\}$$ is a clique. Q: Show that every chordal graph has an elimination ordering. #### Lemma If G has an elimination ordering, then G is chordal. - Every induced subgraph of G has an elimination ordering. - The last vertex of an elimination ordering is simplicial. ### Corollary To test whether G is chordal, delete simplicial vertices in any order, until we obtain either - an elimination ordering of G, or - an induced subgraph with no simplicial vertex. ## Corollary A graph is chordal iff it is obtained from a single-vertex graph by repeatedly adding simplicial vertices.