Q: How many perfect matchings does this graph have?



Determining whether a graph has a perfect matching:
@ in bipartite graphs: via maximum flow algorithms in
Oo(n'/2m)
@ in general graphs:

e Edmonds (blossom) algorithm in O(n?m)
e Micali-Vazirani algorithm in O(n'/?m)

Determining the number of matchings:
@ #P-hard

@ no polynomial-time algorithm unless P = NP.
e even for bipartite graphs

@ in planar graphs: in O(n?373)




Q: Define the sign of a permutation = of {1,..., n}.




Q: Define the sign of a permutation = of {1,..., n}.

sgn(mr) = (—1)"Hnumber of cycles of =

Example: The permutation 7 given by

x |1]2]8]4]5]6]7
nx) [3]2[4]1]5[7]6

3/4/5|6
411,57

has cycles (134), (2), (5), (67) and sign —1.




Determinant of an n x n matrix C:

det(C) =Y sen(m) [[ Cimii-

=1
Permanent of an n x n matrix C:
n
per(C) = > T Cini-
T j=1

Q: What is the determinant and the permanent of the following
matrix?

1
0
0
1

OO0 - -
o = =20




Determinant of an n x n matrix C:

det(C) =Y sen(m) [[ Cimii-

i=1
Permanent of an n x n matrix C:
n
per(C) = > T Cini-
T j=1
Q: What is the determinant and the permanent of the following

matrix?

det =0
per =2

1
0
0
1

OO0 - -
o = =20




For a bipartite graph G with parts A= {ay,...,an} and
B = {by,..., b}, the bipartite adjacency matrix C has

C . — 1 if a,-bje E(G)
710 otherwise

Example: The bipartite adjacency matrix of

QOO — —
o = =20

v
o~

. & b,

Observation

!

Number of matchings of G = per(C).



Theorem (Bregman-Minc inequality)

Let C be an n x n {0, 1}-matrix, where the i-th row contains r;
ones. Then

n
per(C) < H N/l
=1

Corollary
If G is a d-regular bipartite graph with parts of size n, then G

has at most
(Vd)" < (Vde-d/e)"
perfect matchings.

Q: Suppose nis divisible by d. Find a d-regular bipartite graph
with parts of size n that has (d!)"”“ perfect matchings.



A matrix is bistochastic if it is non-negative and all rows and
columns sum to 1.

Theorem (Van der Waerden inequality)

If C is an n x n bistochastic matrix, then

per(C) > n!/n".

Q: Which bistochastic n x n matrix satisfies per(C) = n!/n"?

Corollary

If G is a d-regular bipartite graph with parts of size n and C is
the bipartite adjacency matrix of G, then C/d is bistochastic,
and G has

per(C) = d"per(C/d) > d"n!/n" > (d/e)"
perfect matchings.



@ If Gis a 3-regular bipartite graph with parts of size n, then
the number m of perfect matchings of G satisfies

1.1"< m<2.23"

@ There exists ¢ > 1 such that every 3-regular
2-edge-connected graph with n vertices has at least c”
perfect matchings.




@ Even 2-factor: graph F whose components are even cycles

@ 2-cycles are allowed
@ ¢(F): number of components of F.
@ ¢y(F): number of 2-cycles of F.

@ For perfect matchings M; and Ms: their union My + M is
an even 2-factor.

o M(F) = {(M1,M2) F =M+ M2}

G o— » P




@ Even 2-factor: graph F whose components are even cycles
@ 2-cycles are allowed
@ ¢(F): number of components of F.
@ Cx(F): number of 2-cycles of F.
@ For perfect matchings M; and Ms: their union My + M is
an even 2-factor.

o M(F) = {(M1,M2) F =M+ M2}

Q: Express |M(F)| in terms of ¢(F) and cy(F).




@ Even 2-factor: graph F whose components are even cycles
@ 2-cycles are allowed
@ ¢(F): number of components of F.
@ Cx(F): number of 2-cycles of F.
@ For perfect matchings M; and Ms: their union My + M is
an even 2-factor.

o M(F) = {(M1,M2) F =M+ M2}

IM(F)| = 2¢(F)=c(F)




@ A permutation 7 is even-cycled if all its cycles have even
length.

@ For an even 2-factor F, I(F) = permutations with cycles F.
@ sgn(F) = sgn(n) for m € N(F) = (—1)°(F)

T F

& Q
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@ A permutation 7 is even-cycled if all its cycles have even
length.

@ For an even 2-factor F, I(F) = permutations with cycles F.
@ sgn(F) = sgn(n) for m € N(F) = (—1)°(F)

Q: Express |[N(F)| in terms of ¢(F) and cx(F)..




@ A permutation 7 is even-cycled if all its cycles have even
length.

@ For an even 2-factor F, I(F) = permutations with cycles F.
@ sgn(F) = sgn(n) for m € N(F) = (—1)°(F)

IN(F)| = 2°(F)=c(F)




Let C be the adjacency matrix of a graph G with vertex set

{1,...,n}.
> ewn- ¥ 200

 even-cycled i=1 F even 2-factor in G

= > 1

M, ,M, perfect matchings in G

— (number of perfect matchings in G)?.




Ax,y)=1ifx<yand -1ifx >y
For a matching M with vertices {1,..., n}:
@ Let o be a permutation such that
o(1)o(2),0(3)0(4),... € E(M).

(]
n/2

sen(M) = sgn(o) [ [ Mo (2i — 1), 0(21)).
i=1

@ Note: sgn(M) is the same for all choices of ¥.

! 12 365 ¢
M=, N esididld
-2 J=3 -6
5 b4 S\ Q¢
¢ 215,
4 |fL9

an(o) - A(1,2) - A(5,3) - \(4,6)
A (=1) 1= 1.

I
-



Ax,y)=1itx<yand —-1ifx >y
For a matching M with vertices {1,..., n}:
@ Let o be a permutation such that
a(1)o(2),0(3)c(4),... € E(M).

(]
n/2

sen(M) = sgn(o) [ [ Mo (2i — 1), 0(21)).
i=1

@ Note: sgn(M) is the same for all choices of ¥.
Q: What is the sign of this matching?

! (4




Ax,y)=1itx<yand —-1ifx >y
For a matching M with vertices {1,..., n}:
@ Let o be a permutation such that
a(1)o(2),0(3)c(4),... € E(M).

(]
n/2

sen(M) = sgn(o) [ [ Mo (2i — 1), 0(21)).
i=1

@ Note: sgn(M) is the same for all choices of ¥.
Q: What is the sign of this matching?

! (4

4 3

o =1324 ~ (1)(23)(4), sgn = sgn(o) - A(1,3) - \(2,4) = —1




@ C=vy...v;evencycle:
AMC) = A(va, v2) - A(V2, V3) - - - A(V, ).
@ F even 2-factor: A(F) = []¢ ¢ycie of F AM(C)-

F = %
6
: 2 O
4 ‘e
5
"7.

Q: Determine A\(F).



@ C=vy...v;evencycle:
AMC) = A(va, v2) - A(V2, V3) - - - A(V, ).
@ F even 2-factor: A(F) = []¢ ¢ycie of F AM(C)-

F= 3
¢
! 2
(a7
4 g
5
* C,

AF) = MC1) - MC) = (—1) - (—1) = 1
Q: Determine A(F).



Lemma
sgn(My)sgn(Mz) = sgn(My + Ma)A(My + Mp)

For T _permutation with cycles My + Mo:
RS S¢ 8

%= 2567 4-3 -
O r23yy5cas N=0 °0
S 325-631 g-s

n

sen(My + Mp) = sgn(r) = sgn(o; '02) = sgn(My)sgn(Mg) [ AGi, (i)
i=1

= sgn(My)sgn(M2)A(My + M)




For b: E(G) — R, the Pfaffian of (G, b) is

Pf(G, b) = > sen(M) ] b(e).

M perfect matching of G ecE(M)

Example:

Pc ‘)‘Sgh :.// o € 4

$gnli \).,.{-1)_—_
-1 4 (-7) = -7




For b: E(G) — R, the Pfaffian of (G, b) is

Pf(G, b) = > sen(M) ] b(e).

M perfect matching of G ecE(M)

Pfaffian function: b: E(G) — {—1,1} such that

sen(M) - [] b(e)

ecE(M)

is the same for every perfect matching M of G.

Observation
If b is a Pfaffian function, then

|Pf(G, b)| = number of perfect matchings in G.



Lemma

For any graph G and a function b : E(G) — Z, |Pf(G, b)| can be
computed in polynomial time.

Theorem (Kasteleyn)

For every planar graph G, we can find a Pfaffian function b in
polynomial time.

Corollary

Polynomial-time algorithm to find the number of perfect
matchings in a planar graph G.



