
Q: How many perfect matchings does this graph have?



Determining whether a graph has a perfect matching:
in bipartite graphs: via maximum flow algorithms in
O(n1/2m)

in general graphs:
Edmonds (blossom) algorithm in O(n2m)
Micali-Vazirani algorithm in O(n1/2m)

Determining the number of matchings:
#P-hard

no polynomial-time algorithm unless P = NP.
even for bipartite graphs

in planar graphs: in O(n2.373)



Q: Define the sign of a permutation π of {1, . . . ,n}.

sgn(π) = (−1)n+number of cycles of π

Example: The permutation π given by

x 1 2 3 4 5 6 7
π(x) 3 2 4 1 5 7 6

has cycles (134), (2), (5), (67) and sign −1.
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Determinant of an n × n matrix C:

det(C) =
∑
π

sgn(π)
n∏

i=1

Ci,π(i).

Permanent of an n × n matrix C:

per(C) =
∑
π

n∏
i=1

Ci,π(i).

Q: What is the determinant and the permanent of the following
matrix? 

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1



det = 0
per = 2
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For a bipartite graph G with parts A = {a1, . . . ,an} and
B = {b1, . . . ,bn}, the bipartite adjacency matrix C has

Ci,j =

{
1 if aibj ∈ E(G)

0 otherwise

Example: The bipartite adjacency matrix of

is


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

.

Observation

Number of matchings of G = per(C).



Theorem (Bregman-Minc inequality)

Let C be an n × n {0,1}-matrix, where the i-th row contains ri
ones. Then

per(C) ≤
n∏

i=1

ri
√

ri !.

Corollary

If G is a d-regular bipartite graph with parts of size n, then G
has at most ( d

√
d !
)n ≤

( d
√

de · d/e
)n

perfect matchings.

Q: Suppose n is divisible by d . Find a d-regular bipartite graph
with parts of size n that has

(
d !
)n/d perfect matchings.



A matrix is bistochastic if it is non-negative and all rows and
columns sum to 1.

Theorem (Van der Waerden inequality)

If C is an n × n bistochastic matrix, then

per(C) ≥ n!/nn.

Q: Which bistochastic n × n matrix satisfies per(C) = n!/nn?

Corollary

If G is a d-regular bipartite graph with parts of size n and C is
the bipartite adjacency matrix of G, then C/d is bistochastic,
and G has

per(C) = dnper(C/d) ≥ dnn!/nn ≥ (d/e)n

perfect matchings.



If G is a 3-regular bipartite graph with parts of size n, then
the number m of perfect matchings of G satisfies

1.1n ≤ m ≤ 2.23n.

There exists c > 1 such that every 3-regular
2-edge-connected graph with n vertices has at least cn

perfect matchings.



Even 2-factor: graph F whose components are even cycles
2-cycles are allowed
c(F ): number of components of F .
c2(F ): number of 2-cycles of F .

For perfect matchings M1 and M2: their union M1 + M2 is
an even 2-factor.
M(F ) = {(M1,M2) : F = M1 + M2}.
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Q: Express |M(F )| in terms of c(F ) and c2(F ).
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A permutation π is even-cycled if all its cycles have even
length.
For an even 2-factor F , Π(F ) = permutations with cycles F .
sgn(F ) = sgn(π) for π ∈ Π(F ) = (−1)c(F )
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A permutation π is even-cycled if all its cycles have even
length.
For an even 2-factor F , Π(F ) = permutations with cycles F .
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Let C be the adjacency matrix of a graph G with vertex set
{1, . . . ,n}.

∑
π even-cycled

n∏
i=1

Ci,π(i) =
∑

F even 2-factor in G

2c(F )−c2(F )

=
∑

M1,M2 perfect matchings in G

1

=
(
number of perfect matchings in G

)2
.



λ(x , y) = 1 if x < y and −1 if x > y

For a matching M with vertices {1, . . . ,n}:
Let σ be a permutation such that
σ(1)σ(2), σ(3)σ(4), . . . ∈ E(M).

sgn(M) = sgn(σ)

n/2∏
i=1

λ(σ(2i − 1), σ(2i)).

Note: sgn(M) is the same for all choices of Σ.

sgn(M) = sgn(σ) · λ(1,2) · λ(5,3) · λ(4,6)

= 1 · 1 · (−1) · 1 = −1.
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Q: What is the sign of this matching?

σ = 1324 ∼ (1)(23)(4), sgn = sgn(σ) · λ(1,3) · λ(2,4) = −1
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C = v1 . . . vt even cycle:
λ(C) = λ(v1, v2) · λ(v2, v3) · · ·λ(vt , v1).
F even 2-factor: λ(F ) =

∏
C cycle of F λ(C).

Q: Determine λ(F ).
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Lemma

sgn(M1)sgn(M2) = sgn(M1 + M2)λ(M1 + M2)

For π =permutation with cycles M1 + M2:

sgn(M1 + M2) = sgn(π) = sgn(σ−1
1 σ2) = sgn(M1)sgn(M2)

n∏
i=1

λ(i , π(i))

= sgn(M1)sgn(M2)λ(M1 + M2)



For b : E(G)→ R, the Pfaffian of (G,b) is

Pf(G,b) =
∑

M perfect matching of G

sgn(M)
∏

e∈E(M)

b(e).

Example:



For b : E(G)→ R, the Pfaffian of (G,b) is

Pf(G,b) =
∑

M perfect matching of G

sgn(M)
∏

e∈E(M)

b(e).

Pfaffian function: b : E(G)→ {−1,1} such that

sgn(M) ·
∏

e∈E(M)

b(e)

is the same for every perfect matching M of G.

Observation

If b is a Pfaffian function, then

|Pf(G,b)| = number of perfect matchings in G.



Lemma

For any graph G and a function b : E(G)→ Z, |Pf(G,b)| can be
computed in polynomial time.

Theorem (Kasteleyn)

For every planar graph G, we can find a Pfaffian function b in
polynomial time.

Corollary

Polynomial-time algorithm to find the number of perfect
matchings in a planar graph G.


