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A graph G is chordal if it does not contain any induced cycle of length
at least four; i.e., any (≥ 4)-cycle in G has a chord (an edge between non-
consecutive vertices of the cycle).

Exercise 1. Let S be a finite set of closed intervals of real numbers, and
let G be the graph with vertex set S such that the intervals I1, I2 ∈ S are
adjacent iff they intersect (we say that G is the intersection graph of S; the
intersection graphs of intervals are called interval graphs). Show that G is
chordal.

We now give a number of alternate characterizations of chordal graphs.
For a connected graph G, a set Z ⊆ V (G) is a minimal cut if G − Z is not
connected but for every X ( Z, G−X is connected.

Lemma 2. Let G be a connected graph. If G is chordal, then every minimal
cut in G induces a clique.

Proof. Let Z be a minimal cut in G. If G[Z] were not a clique, then there
would exist non-adjacent vertices u, v ∈ Z. Let A and B be components of
G − Z. We claim that u and v have neighbors in both A and B. Indeed,
if say u had no neighbor in A, then Z \ {u} would still separate A from B,
contradicting the minimality of Z. Hence, there exists a path PA in G from
u to v with all internal vertices in A, and a path PB in G from u to v with
all internal vertices in B. By choosing shortest such paths, we can assume
PA and PB are induced paths in G. Moreover, since uv 6∈ E(G), both of
these paths have length at least two. Consequently, PA ∪ PB is an induced
(≥4)-cycle in G, which is a contradiction.

A vertex v ∈ V (G) is simplicial if the neighborhood of v induces a clique
in G.

Lemma 3. A graph G is chordal if and only if every induced subgraph of G
has a simplicial vertex.
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Proof. Note that a (≥ 4)-cycle does not have a simplicial vertex; hence, if
every induced subgraph of G has a simplicial vertex, then G is chordal.

Conversely, we will show by induction on the number of vertices that if G
is chordal, then either G is a clique, or G contains at least two non-adjacent
simplicial vertices. Without loss of generality, we can assume that G is con-
nected, as otherwise the claim follows by applying the induction hypothesis
to the components of G (if all components are cliques, then every vertex is
simplicial, and we can choose two vertices from different components). The
claim is also clear if G is a clique, and thus there exists a set Z ⊆ V (G) such
that G − Z is not connected (e.g., this is true for the complement of two
non-adjacent vertices); let us choose Z to be the a smallest such set. Then Z
is a minimal cut, and thus by Lemma 2, G[Z] is a clique. Let G = G1 ∪G2,
where G1 and G2 are proper induced subgraphs of G intersecting in Z. By
the induction hypothesis, G1 contains a simplicial vertex v1 not belonging
to Z (if G1 is a clique, we can choose v1 ∈ V (G1) \ Z arbitrarily; otherwise,
G1 contains two non-adjacent simplicial vertices, and at most one of them
belongs to the clique Z). Similarly, G2 contains a simplicial vertex v2 not
belonging to Z. Then v1 and v2 are non-adjacent simplicial vertices of G.

Hence, if G is chordal, then it contains a simplicial vertex. Moreover,
every induced subgraph of G is also chordal, and thus the same argument
shows it has a simplicial vertex.

An elimination ordering in a graph G is an ordering v1, . . . , vn of the
vertices of G with the property that for each m, the set {vi : i < m, vivm ∈
E(G)} induces a clique.

Corollary 4. A graph G is chordal if and only if G has an elimination
ordering.

Proof. Suppose G has an elimination ordering, and consider any (≥4)-cycle
K in G. Let v be the last vertex of K in the elimination ordering. Then
the neihbors of v in K belong to the clique induced by the neighbors of v
preceding it in the ordering, and thus they are adjacent. Consequently, K
has a chord. Therefore, G is chordal.

Suppose now G is a chordal graph. Let Gn = G, and for i = n, . . . , 1, let vi
be a simplicial vertex in Gi (which exists by Lemma 3) and let Gi−1 = Gi−vi.
Then v1, . . . , vn is an elimination ordering in G.

This gives us a way to test in polynomial time whether a graph is formal:
Repeatedly find a simplicial vertex (this can be easily done in a polynomial
time) and construct an ordering as described in the proof of Corollary 4. If
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we finish with an elimination ordering, then the graph is chordal. If the con-
struction fails (the currently considered subgraph does not have a simplicial
vertex), then the graph is not chordal by Lemma 3.

Moreover, using the elimination ordering, we can also compute three
graph invariants of a chordal graph that are hard to compute for a general
graph: Its chromatic number, clique number, and independence number.

Lemma 5. Let v1, . . . , vn be an elimination ordering of a chordal graph G,
and for i ∈ {1, . . . , n}, let Gi = G − {vi+1, . . . , vn}. Then χ(G) = ω(G) =
max{degGi

vi : i ∈ {1, . . . , n}}+ 1.

Proof. Let D = max{degGi
vi : i ∈ {1, . . . , n}} + 1. Let us color vertices

v1, . . . , vn in order by colors in {1, 2, . . .}, giving vi the smallest color not
appearing on the neighbors of vi that precede it in the ordering. Clearly, the
color of vi ends up being smaller or equal to degGi

(vi) + 1 ≤ D, and thus we
obtain a proper D-coloring of G. Hence, χ(G) ≤ D.

Moreover, by the definition of the elimination ordering, the neighborhood
of vi in Gi induces a clique, and thus G contains a clique of size degGi

(vi)+1.
The largest of these cliques has size D, implying ω(G) ≥ D.

Finally, note that we need at least ω(G) colors to properly color G. Hence,

D ≤ ω(D) ≤ χ(G) ≤ D.

The graphs with this property (the chromatic number of each induced
subgraph is equal to its clique number) are called perfect ; we will speak more
about them in the next lecture.

Lemma 6. If a graph G is chordal, then there exist cliques K1, . . . , Kα(G)

such that V (G) = K1 ∪ . . . ∪Kα(G).

Proof. We prove the claim by induction on the number of vertices of G. If
G is a clique, then α(G) = 1 and we can take K1 = V (G). Hence, suppose
that G is not a clique. Since G is chordal, Lemma 3 implies it contains a
simplicial vertex v. Let K be the clique induced by v and the neighbors of
v, and let G′ = G−K. By the induction hypothesis, there exist cliques K1,
. . . , Kα(G′) covering the vertex set of G′. Then the cliques K1, . . . , Kα(G′),
K cover V (G), and thus it suffices to show that α(G) = α(G′) + 1.

Note that it is not possible to cover vertices of G by fewer than α(G)
cliques, since every clique contains at most one vertex of the largest inde-
pendent set of G; hence, α(G) ≤ α(G′) + 1. On the other hand, let A′ be
an independent set in G′ of size α(G′); then A ∪ {v} is an independent set
in G of size α(G′) + 1, and thus α(G) ≥ α(G′) + 1. Therefore, we have
α(G) = α(G′) + 1, as required.
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Exercise 7. What is the time complexity of the algorithms to determine the
chromatic, clique, and independence number of chordal graphs following from
Lemmas 5 and 6?
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