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A graph G is chordal if it does not contain any induced cycle of length
at least four; i.e., any (>4)-cycle in G has a chord (an edge between non-
consecutive vertices of the cycle).

Exercise 1. Let S be a finite set of closed intervals of real numbers, and
let G be the graph with vertex set S such that the intervals I, I € S are
adjacent iff they intersect (we say that G is the intersection graph of S; the
intersection graphs of intervals are called interval graphs). Show that G is
chordal.

We now give a number of alternate characterizations of chordal graphs.
For a connected graph G, a set Z C V(G) is a minimal cut if G — Z is not
connected but for every X C Z, G — X is connected.

Lemma 2. Let G be a connected graph. If G is chordal, then every minimal
cut in G induces a clique.

Proof. Let Z be a minimal cut in G. If G[Z] were not a clique, then there
would exist non-adjacent vertices u,v € Z. Let A and B be components of
G — Z. We claim that v and v have neighbors in both A and B. Indeed,
if say v had no neighbor in A, then Z \ {u} would still separate A from B,
contradicting the minimality of Z. Hence, there exists a path P4 in G from
u to v with all internal vertices in A, and a path Pg in GG from u to v with
all internal vertices in B. By choosing shortest such paths, we can assume
P, and Pp are induced paths in G. Moreover, since uv ¢ FE(G), both of
these paths have length at least two. Consequently, P4 U Pp is an induced
(>4)-cycle in G, which is a contradiction. O

A vertex v € V(G) is simplicial if the neighborhood of v induces a clique

in G.

Lemma 3. A graph G is chordal if and only if every induced subgraph of G
has a simplicial vertex.



Proof. Note that a (> 4)-cycle does not have a simplicial vertex; hence, if
every induced subgraph of G has a simplicial vertex, then G is chordal.
Conversely, we will show by induction on the number of vertices that if G
is chordal, then either G is a clique, or G contains at least two non-adjacent
simplicial vertices. Without loss of generality, we can assume that G is con-
nected, as otherwise the claim follows by applying the induction hypothesis
to the components of G (if all components are cliques, then every vertex is
simplicial, and we can choose two vertices from different components). The
claim is also clear if G is a clique, and thus there exists a set Z C V(G) such
that G — Z is not connected (e.g., this is true for the complement of two
non-adjacent vertices); let us choose Z to be the a smallest such set. Then Z
is a minimal cut, and thus by Lemma 2, G[Z] is a clique. Let G = G7 U Ga,
where G; and (G5 are proper induced subgraphs of G intersecting in Z. By
the induction hypothesis, G; contains a simplicial vertex v; not belonging
to Z (if G is a clique, we can choose v; € V(G1) \ Z arbitrarily; otherwise,
(G1 contains two non-adjacent simplicial vertices, and at most one of them
belongs to the clique Z). Similarly, G5 contains a simplicial vertex vy not
belonging to Z. Then v; and v, are non-adjacent simplicial vertices of G.
Hence, if G is chordal, then it contains a simplicial vertex. Moreover,
every induced subgraph of G is also chordal, and thus the same argument
shows it has a simplicial vertex. O]

An elimination ordering in a graph G is an ordering vy, ..., v, of the
vertices of G with the property that for each m, the set {v; : i < m,v;v,, €
E(G)} induces a clique.

Corollary 4. A graph G is chordal if and only if G has an elimination
ordering.

Proof. Suppose G has an elimination ordering, and consider any (>4)-cycle
K in G. Let v be the last vertex of K in the elimination ordering. Then
the neihbors of v in K belong to the clique induced by the neighbors of v
preceding it in the ordering, and thus they are adjacent. Consequently, K
has a chord. Therefore, G is chordal.

Suppose now G is a chordal graph. Let G,, = G, and fort =n, ..., 1, let v;
be a simplicial vertex in GG; (which exists by Lemma 3) and let G;,_; = G;—v;.
Then vy, ..., v, is an elimination ordering in G. O

This gives us a way to test in polynomial time whether a graph is formal:
Repeatedly find a simplicial vertex (this can be easily done in a polynomial
time) and construct an ordering as described in the proof of Corollary 4. If



we finish with an elimination ordering, then the graph is chordal. If the con-
struction fails (the currently considered subgraph does not have a simplicial
vertex), then the graph is not chordal by Lemma 3.

Moreover, using the elimination ordering, we can also compute three
graph invariants of a chordal graph that are hard to compute for a general
graph: Its chromatic number, clique number, and independence number.

Lemma 5. Let vy, ..., v, be an elimination ordering of a chordal graph G,
and fori € {1,...,n}, let G; = G — {viy1,...,v.}. Then x(G) = w(G) =
max{degg v; ;i € {1,...,n}} + 1.

Proof. Let D = max{degg, v; : i € {1,...,n}} + 1. Let us color vertices
v1, ..., U, in order by colors in {1,2,...}, giving v; the smallest color not
appearing on the neighbors of v; that precede it in the ordering. Clearly, the
color of v; ends up being smaller or equal to degg, (v;) +1 < D, and thus we
obtain a proper D-coloring of G. Hence, x(G) < D.

Moreover, by the definition of the elimination ordering, the neighborhood
of v; in G induces a clique, and thus G contains a clique of size degg (v;)+1.
The largest of these cliques has size D, implying w(G) > D.

Finally, note that we need at least w(G) colors to properly color G. Hence,

D <w(D) < x(G) < D.
]

The graphs with this property (the chromatic number of each induced
subgraph is equal to its clique number) are called perfect; we will speak more
about them in the next lecture.

Lemma 6. If a graph G is chordal, then there exist cliques Ky, ..., Kyq)
such that V(G) = K1 U...UKyq).

Proof. We prove the claim by induction on the number of vertices of G. If
G is a clique, then a(G) = 1 and we can take K; = V(G). Hence, suppose
that G is not a clique. Since G is chordal, Lemma 3 implies it contains a
simplicial vertex v. Let K be the clique induced by v and the neighbors of
v, and let G’ = G — K. By the induction hypothesis, there exist cliques K7,
..., Koy covering the vertex set of G'. Then the cliques K, ..., Ky,
K cover V(G), and thus it suffices to show that a(G) = a(G") + 1.

Note that it is not possible to cover vertices of G by fewer than o(G)
cliques, since every clique contains at most one vertex of the largest inde-
pendent set of G; hence, a(G) < a(G’) + 1. On the other hand, let A’ be
an independent set in G’ of size «(G’); then AU {v} is an independent set
in G of size a(G’) + 1, and thus a(G) > «(G’) + 1. Therefore, we have
a(G) = a(G") + 1, as required. O



Exercise 7. What is the time complexity of the algorithms to determine the
chromatic, clique, and independence number of chordal graphs following from
Lemmas 5 and 67



