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In this lecture, we allow the graphs to have loops and parallel edges. In
addition to the plane (or the sphere), we can draw the graphs on the surface
of the torus or on more complicated surfaces.

Definition 1. A surface is a compact connected 2-dimensional manifold with-
out boundary.

Intuitive explanation:

• 2-dimensional manifold without boundary: Each point has a neighbor-
hood homeomorphic to an open disk, i.e., “locally, the surface looks at
every point the same as the plane.”

• compact: “The surface can be covered by a finite number of such neigh-
borhoods.”

• connected: “The surface has just one piece.”

Examples:

• The sphere and the torus are surfaces.

• The plane is not a surface, since it is not compact.

• The closed disk is not a surface, since it has a boundary.

From the combinatorial perspective, it does not make sense to distinguish
between some of the surfaces; the same graphs can be drawn on the torus
and on a deformed torus (e.g., a coffee mug with a handle). For us, two
surfaces will be equivalent if they only differ by a homeomorphism; a function
f : Σ1 → Σ2 between two surfaces is a homeomorphism if f is a bijection,
continuous, and the inverse f−1 is continuous as well. In particular, this
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implies that f maps simple continuous curves to simple continuous curves,
and thus it maps a drawing of a graph in Σ1 to a drawing of the same graph
in Σ2. Hence, exactly the same graphs can be drawn in two homeomorphic
surfaces.

Since a surface is compact, it can be cut into finitely many parts homeo-
morphic to disks, and conversely glued back together from these parts. It is
natural to view these parts as polygons, with each edge of the polygon being
a piece of the boundary that is in its entirety glued together with another
edge of (the same or different) polygon. For example, the following figure
illustrates the way the torus can be cut into such polygons.

Let us keep the edges of the polygons used in the gluing drawn in the
surface. This gives a drawing of a graph N in the surface, where all faces of
are homeomorphic to the open disks.

Definition 2. A net of a surface is a graph drawn in the surface so that
every face is homeomorphic to an open disk.

How many polygons are there needed to represent a surface? As long as
we have more than one polygon, since the resulting surface is connected, two
of them can be glued together to a single polygon. Repeating this process, we
end up with just a single polygon (with even number of edges) for which we
have prescribed a way how the edges should be glued together (equivalently,
every surface has a net with just one face; we call such a net simple). This
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gives a polygonal representation of the surface, illustrated here for the torus
(the edges of matching color are glued together in the direction of the arrows).
Note the figure also illustrates how K7 can be drawn in the torus.

Note that we can succintly describe the polygonal representation by as-
signing the same letters to the pairs of edges that are glued together, with
distinct letters assigned to different pairs, and give the cyclic string of letters
in the clockwise order along the polyhedron, marking the edges we traverse
against the direction of the arrows by the superscript −1. E.g., the repre-
sentation of the torus given above is ABA−1B−1.

Exercise 3. Consider a polygonal representation given by a cyclic string
w = AA−1w′ containing the substring AA−1. Note that gluing the edges
marked A first transforms the polygon into one described by w′, and thus w
and w′ are representations of the same surface. Similarly, show that

• w1ABw2AB can be simplified to w1Cw2C.

• w1Aw2A and w1A
−1w2A

−1 represent the same surface.

• w1Aw2A
−1 and w1A

−1w2A represent the same surface.

For a net G of a surface, let us define

g(G) = |E(G1)| − |V (G1)| − |F (G1)|+ 2.

Lemma 4. If G1 and G2 are nets of the same surface, then g(G1) = g(G2).
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Proof. For simplicity, let us assume that the drawings of G1 and G2 intersect
in a finite number of points (getting rid of this assumption is actually rather
nontrivial). Note that subdividing an edge of a net G does not change g(G)
(it increases both the number of edges and the number of vertices by 1).
Hence, by putting vertices at all the intersections if needed, we can assume
that G1 and G2 only intersect in vertices. Let G = G1 ∪ G2. We will show
that g(G1) = g(G) = g(G2). By symmetry, it suffices to prove the first
equality.

Note that deleting an edge of G1 that separates two distinct faces does
not change g(G1) (it decreases both the number of edges and the number
of faces by 1, and preserves the property that G1 is a net). Hence, we
can without loss of generality assume that G1 has only one face. Cutting
the surface with G drawn in it along the edges of G1 gives us a graph G′

drawn in the disk. Taking this disk to be a part of the plane, we obtain a
drawing of G′ in the plane with |F (G′)| = |F (G)|+1 = |F (G)|− |F (G1)|+2,
|E(G′)| = |E(G)|+ |E(G1)| and

|V (G′)| = |V (G)|−|V (G1)|+
∑

v∈V (G1)

degG1
(v) = |V (G)|−|V (G1)|+2|E(G1)|.

By Euler’s formula, we have

0 = |E(G′)| − |F (G′)| − |V (G′)|+ 2

= |E(G)|+ |E(G1)| − (|F (G)| − |F (G1)|+ 2)− (|V (G)| − |V (G1)|+ 2|E(G1)|) + 2

= (|E(G)| − |V (G)| − |F (G)|)− (|E(G1)| − |V (G1)| − |F (G1)|),

and thus g(G) = g(G1).

Definition 5. The Euler genus of a surface with a net G is g(G).

By Lemma 4, the genus does not depend on which net of the surface
we choose. For example, the net for torus depicted in the first picture has
4 vertices, 4 faces, and 8 edges, implying that the torus has Euler genus
8− 4− 4 + 2 = 2.

Corollary 6 (Generalized Euler’s formula). If G is a graph drawn in a sur-
face of Euler genus g, then

|E(G)| ≤ |V (G)|+ |F (G)|+ g − 2.

The equality holds iff every face of G is homeomorphic to an open disk.
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Proof. As long as it is possible to add an edge to G in such a way that the
number of faces stays the same, do so, obtaining a supergraph G′ of G. Then
G′ is a net of the surface, and thus

|E(G)| ≤ |E(G′)| = |V (G′)|+ |F (G′)|+ g − 2 = |V (G)|+ |F (G)|+ g − 2

by the definition of the genus of a surface.

Exercise 7. Observe that every surface other than the sphere has a simple
net of minimum degree at least two (deleting a vertex of degree one preserves
the fact that the graph is a net), and that every simple net of the sphere is
a tree. Consequently, show that the sphere has Euler genus 0, and any other
surface has positive genus.

Corollary 8. If G is a simple graph drawn in a surface of Euler genus g and
|E(G)| ≥ 2, then

|E(G)| ≤ 3|V (G)|+ 3g − 6.

Proof. For a face f of G, let us define `(F ) as the number of edges incident
with f , where an edge incident with f on both sides is counted twice. Since
G is simple and |E(G)| ≥ 2, observe that `(F ) ≥ 3, and thus

2|E(G)| =
∑

f∈F (G)

`(F ) ≥ 3|F (G)|.

Using the Generalized Euler’s formula, we have

|E(G)| ≤ |V (G)|+ |F (G)|+ g − 2 ≤ |V (G)|+ 2
3
|E(G)|+ g − 2

|E(G)| ≤ 3|V (G)|+ 3g − 6,

as required.

The following figure shows all non-isomorphic polygonal representations
of length at most four (excluding those we can simplify using Exercise 3), and
the genus of the corresponding surfaces (the colors indicate which vertices of
the polygon get glued together to a single vertex).
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Figure 1: Polygonal representations of basic surfaces

Exercise 9. In which of these surfaces can we draw K6 or K7?

The first three surfaces in the picture above are distinct, as they have
pairwise different genus. What about the last three surfaces? For these, we
need another invariant. Let us consider the second surface, the projective
plane (note the gluing prescribed for this surface cannot be accomplished
in the 3-dimensional space, but it can be done in the 4-dimensional one).
Suppose we walk “around” the projective plane, crossing the edge of its net
(the boundary of the polygon) exactly once:
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Notice this switched our left and right side. So, in the projective plane,
we cannot consistently define “left” and “right”. Note also this is not the
case on the torus—we can define the orientation (left/right) in the face of
the simple net, then observe that the orientation is the same on both sides
of each edge of the net.

Definition 10. A surface is non-orientable if in its polygonal representation,
two edges that are glued together are directed in the same direction along the
boundary of the cycle. The surface is orientable otherwise.

Note this definition does not depend on the choice of the representation
of the surface; as we have argued, orientability is equivalent to the possibility
to define a consistent orientation at each point of the surface. In Figure 1,
the surface in the bottom left is orientable, while the surfaces represented
by the remaining two bottom pictures are non-orientable. We claim that
they actually represent the same surface (the Klein bottle). Indeed, we can
transform one into the other one by cutting and gluing as shown here:
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Similarly, it turns out that you can bring every representation into one
of two “canonical” forms, as shown in the following theorem (which we will
not prove).

Theorem 11 (Classification theorem). Every polygonal representation can
be transformed by a series of cuttings and gluings together with simplifications
described in Exercise 3 to one of the following two forms:

• (ABA−1B−1)(CDC−1D−1) . . .

• (AA)(BB)(CC) . . .

Note that the surfaces of the first form (with the block repeated k times)
are orientable and have Euler genus 2k. The surfaces of the second form are
non-orientable and have Euler genus k.

Corollary 12. Two surfaces are homeomorphic if and only if they have the
same Euler genus and orientability.

Moreover, the Euler genus of an orientable surface is always even; hence,
it is sometimes convenient to speak about the genus of the surface, which is
equal to half the Euler genus for orientable surface and to the Euler genus
for the non-orientable ones.
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Finally, let us mention another approach to forming surfaces. You can
start with the sphere, then perform the following operations (repeatedly, in
any order), see the illustration below:

• Adding a handle: Drill two holes anywhere in the surface, then attach
a “handle” (a cylinder) on them.

• Adding a crosscap: Drill a hole anywhere in the surface, then glue
together the opposite points of the boundary of this hole (this can only
be done in (≥4)-dimensional space).

Exercise 13. Show that adding a handle increases the Euler genus by two,
while adding a crosscap increases it by one (hint: start with a net N in which
the holes you drill are the faces of the net, then add an edge to N to obtain
a net for the new surface).

Observation 14. A surface obtained from the sphere by adding a handles
and b crosscaps has Euler genus 2a + b, and it is orientable iff b > 0. Con-
sequently, every surface is homeomorphic to some surface obtained in this
way.
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