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1 Tutte’s theorem

At the end of the previous lecture, we gave an inductive characterization of
3-connected graphs, which we prove now.

Theorem 1 (Tutte). For every 3-connected graph G 6= K4, there exists an
edge e ∈ E(G) such that G/e is 3-connected.

Proof. Suppose for a contradiction this is not the case, and thus for every
e ∈ E(G), the graph G/e contains a cut S ′e of size at most two. Let we be
the vertex of G/e created by identifying the ends of e = uv. If we 6∈ S ′e, then
S ′e would be a cut of size at most two in G, which is not possible. Hence,
we ∈ S ′e. Let Se = (S ′e\we)∪{u, v}. Then Se is a cut in G, and thus |Se| ≥ 3.
Since |S ′e| ≤ 2 and |Se| = |S ′e|+ 1, we have |Se| = 3. Therefore,

(?) for every e = uv ∈ E(G), there exists a 3-cut Se ⊆ V (G) such that
u, v ∈ Se.

Let us consider an edge e = uv ∈ E(G) and a component A of G−Se chosen
so that (among all choices of edges and components) |V (A)| is minimum.
Let w be the vertex of Se distinct from u and v. Since G is 3-connected,
every vertex of Se has a neighbor in A; let e′ = zw be an edge of G with
z ∈ V (A). Note that since uv is an edge, {u, v} intersects only one component
of G−Se′ . Let B be a component of G−Se′ disjoint from {u, v}. In particular,
B ∩ Se = ∅.

Since G is 3-connected, every vertex of Se′ has a neighbor in B, and in
particular, z has a neighbor x ∈ V (B). Since z ∈ V (A), all neighbors of
z in G are contained in V (A) ∪ Se, and since B ∩ Se = ∅, it follows that
x ∈ V (A). Since A is a component of G − Se, B is a connected subgraph
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of G − Se, and V (A) ∩ V (B) ⊇ {x} 6= ∅, it follows that V (B) ⊆ V (A).
Moreover, z ∈ V (A)\V (B), and thus |V (B)| < |V (A)|. This contradicts the
minimality of A.

We say that a graph G is obtained from a graph G′ by splitting a vertex if
G′ = G/e for some e ∈ E(G); equivalently, G is obtained from G′ by selecting
a vertex w and replacing it by adjacent vertices u and v whose neighborhoods
are chosen so that NG(u) ∪NG(v) = NG′(w) ∪ {u, v}.

Exercise 2. If G′ is 3-connected, G is obtained from G′ by splitting a vertex
into an edge uv, and degG(u), degG(v) ≥ 3, then G is 3-connected.

Corollary 3. A graph G is 3-connected if and only if G can be obtained
from K4 by iteratively splitting vertices into adjacent vertices of degree at
least three.

2 Wagner’s theorem

We now finish the proof of the characterization of planar graphs by forbidden
minors. We first deal with the 3-connected graphs.

Lemma 4. If G is 3-connected and K5, K3,3 6�m G, then G is planar.

Proof. We prove the claim by induction on |V (G)|. If |V (G)| ≤ 4, then G
is planar, and thus we can assume |V (G)| ≥ 5. By Tutte’s theorem, there
exists e = uv ∈ E(G) such that G/e is 3-connected. By symmetry, we can
assume deg(u) ≤ deg(v). Since G/e is a minor of G, it contains neither K5

nor K3,3 as a minor. By the induction hypothesis, G/e is planar.
Consider a plane drawing of G/e. Let w be the vertex of G/e created by

the contraction of e. Since G/e is 3-connected, (G/e) − w = G − {u, v} is
2-connected, and thus every face of (G/e) − w is bounded by a cycle. Let
C be the cycle bounding the face of (G/e) − w in which w is drawn. Since
G is 3-connected, u has at least two neighbors in C. A u-span is a maximal
subpath Q of C not containing any neighbors of u, and the sides of the span
are the two vertices x, y ∈ V (C) \ V (Q) adjacent to the ends of Q. By the
maximality of Q, both x and y are adjacent to u.

Suppose first that there exists a u-span Q with sides x and y such that
v has a neighbor x′ ∈ V (Q). Then every neighbor of v in C is contained in
V (Q) ∪ {x, y}, as otherwise if v had a neighbor y ∈ V (C) \ (V (Q) ∪ {x, y}),
then C + {ux, uy, uv, vx′, vy′} would be a subdivision of K3,3, contradicting
the assumption K3,3 6�m G. Consequently, G is planar: From the drawing of
G/e, delete edges wz such that z is only adjacent to v in G, thus obtaining
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a drawing of G − v. Then, draw v in the face of G − v whose boundary
contains Q.

Therefore, we can assume no u-span contains a neighbor of v, and thus
every neighbor of v in C is also a neighbor of u. Since deg(u) ≤ deg(v),
it follows that u and v have exactly the same neighbors in C. Moreover,
deg(u) = deg(v) = deg(w) ≥ 3, since G/e is 3-connected. But then C
together with uv and three common neighbors of u and v in C forms a
subdivision of K5, contradicting the assumption that K5 6�m G.

Exercise 5. Prove that if G is a 2-connected graph containing neither K4

nor K2,3 as a minor, then G is outerplanar. First, observe using the ear
lemma that if G 6= K3 is a 2-connected graph, then it contains an edge e such
that either G− e or G/e is 2-connected. Then use induction similarly to the
proof of Lemma 4.

We are now ready to finish the characterization.

Theorem 6 (Wagner). A graph G is planar if and only if K5, K3,3 6�m G.

Proof. If G is planar, then all its minors are planar, and thus K5, K3,3 6�m G.
Hence, it suffices to prove that every graph G containing neither K5 nor K3,3

as a minor is planar. We prove the claim by induction on |V (G)|.
If G is not connected, then the claim follows by the induction hypothesis

applied to each component of G. If G is connected but not 2-connected,
then let G = G1 ∪G2, where G1 and G2 are proper induced subgraphs of G
intersecting in exactly one vertex v. Clearly K5, K3,3 6�m G1, G2, and thus by
the induction hypothesis, G1 and G2 are planar. Without loss of generality,
we can draw them so that v is incident with their outer faces, then glue their
drawings on v to obtain a plane drawing of G.

If G is 2-connected but not 3-connected, then G = G1∪G2, where G1 and
G2 are proper induced subgraphs of G intersecting in exactly two vertices u
and v. Note that for i ∈ {1, 2}, Gi contains a path from u to v, as otherwise
G would not be 2-connected. Consequently, G3−i+uv is a minor of G, and by
the induction hypothesis, it is planar. There exist plane drawings of G1 +uv
and G2 + uv such that the edge uv is incident with their outer faces. Hence,
we can glue these drawings to obtain a plane drawing of G + uv, and thus
also of G.

Finally, if G is 3-connected, then the claim follows by Lemma 4.

Exercise 7. Prove that if a graph G contains neither K4 nor K2,3 as a minor,
then G is outerplanar, using the result of Exercise 5 and then proceeding
similarly to the proof of Theorem 6.
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Exercise 8. Show that the result of Exercise 7 also follows from Theorem 6
using the following observation. Let G′ be the graph obtained from G by
adding a vertex u adjacent to all vertices of G. Since K4, K2,3 6�m G, we
have K5, K3,3 6�m G′.

3 Hadwiger’s conjecture

Observation 9. If K2 6�m G, then G has no edges, and thus χ(G) = 1. If
K3 6�m G, then G is a forest, and thus χ(G) ≤ 2.

Let us now consider graphs not containing K4 as a minor.

Lemma 10. If a graph G has n ≥ 4 vertices and at least 2n− 2 edges, then
G contains K4 as a minor.

Proof. We prove the claim by induction on n. For n = 4, the only graph with
at least 2n − 2 = 6 edges is K4, and thus the claim holds. Hence, assume
that n ≥ 5. Without loss of generality, we can assume that G has exactly
2n− 2 edges, as otherwise we can delete edges from G without violating the
assumptions. Consequently, G has average degree 2|E(G)|/n = 4− 4/n < 4,
and thus G contains a vertex v of degree at most three.

If deg(v) ≤ 2, then G− v has n− 1 vertices and at least (2n− 2)− 2 =
2(n− 1)− 2 edges, and by the induction hypothesis, K4 �m G− v, implying
that K4 �m G. Hence, we can assume that deg(v) = 3. Since K4 6�m G, v
has non-adjacent neighbors x and y. Then G − v + xy ⊂ G/vx is a minor
of G, and thus K4 6�m G − v + xy. Note that |V (G − v + xy)| = n − 1
and |E(G − v + xy)| = (2n − 2) − 3 + 1 = 2(n − 1) − 2. By the induction
hypothesis, K4 �m G− v + xy �m G.

Exercise 11. For every n ≥ 4, find a graph with n vertices and 2n − 3
edges not containing K4 as a minor. Hint: minors of outerplanar graphs are
outerplanar, and K4 is not outerplanar.

Corollary 12. If K4 6�m G, then G contains a vertex of degree at most three.

Remark: Actually, any graph not containing K4 as a minor contains a
vertex of degree at most two, but this is slightly harder to prove.

Exercise 13. Similarly prove that a graph with n ≥ 5 vertices and at least
3n − 5 edges contains K5 as a minor. Hint: As in the proof of Lemma 10,
we can assume the graph contains a vertex v of degree at most five, and deal
by induction with the case that either deg(v) = 4, or deg(v) = 5 and some
neigbor of v has at least to non-neighbors in N(v). In case that deg(v) = 5
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and each neighbor of v has at most one non-neighbor in N(v), show that
the graph contains K5 as a minor by contracting a suitable edge among the
vertices in N(v).

More generally, the following claim (which we are not going to prove)
holds.

Theorem 14. There exists a function f(k) = O(k
√

log k) such that if G has
at least f(k)|V (G)| edges, then G contains Kk as a minor.

We can now bound the chromatic number of K4-minor-free graphs.

Lemma 15. Every graph G not containing K4 as a minor is 3-colorable.

Proof. We prove the claim by the induction on the number of vertices of G.
Graphs with at most three vertices are 3-colorable, and thus we can assume
that |V (G)| ≥ 4. By Corollary 12, there exists v ∈ V (G) of degree at most
three. If deg(v) ≤ 2, then let G′ = G−v. If deg(v) = 3, then since K4 6�m G,
v has non-adjacent neighbors x and y; let G′ = G/{vx, vy}. In either case,
K4 6�m G, and thus G′ has a 3-coloring ϕ by the induction hypothesis. If
deg(v) = 3, modify ϕ to a 3-coloring of G−v by giving both x and y the color
of the vertex obtained by contracting the edges vx and vy (both x and y can
have the same color, since they are non-adjacent). Thus, ϕ is a 3-coloring of
G−v such that at most two distinct colors appear among the neighbors of v.
Hence, we can extend ϕ to a 3-coloring of G by giving v a color in {1, 2, 3}
different from these two colors.

Exercise 16. Similarly, using the result of Exercise 13, prove that if K5 6�m

G, then G is 5-colorable.

Hadwiger proposed the following influential hypothesis.

Conjecture 17 (Hadwiger). For every positive integer k, if Kk 6�m G, then
χ(G) ≤ k − 1.

We have shown this is true for k ≤ 4.

Exercise 18. Show that Hadwiger’s conjecture implies the Four Color The-
orem.

Hadwiger’s conjecture is known to be true for k ≤ 6. We also know it
holds approximately:

Exercise 19. Use Theorem 14 to prove that if Kk 6�m G, then χ(G) ≤
2f(k) = O(k

√
log k).

This bound was recently improved to χ(G) ≤ O(k(log log k)6).
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