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1 Number of matchings in bipartite graphs

Consider a bipartite graph G with parts A = {a1,...,a,} and B = {by,...,b,}.
The bipartite adjacency matriz of G is the n x n matrix C such that C; ; =1
if a;b; € E(G) and C;; = 0 otherwise. Note that aibr(1), a2br(2), - -, Gpbr(n)
is a perfect matching in G if and only if 7(1), ..., m(n) are pairwise different
(i.e., m is a permutation of {1,...,n}) and Ci 1) = ... = Cpzm) = 1.

The permanent of the n x n matrix C' is

per(C) = Z H Cir(i)-

7 permutation =1

Observation 1. If G is a bipartite graph with bipartite adjacency matriz C,
then the number of perfect matchings in G is per(C).

Exercise 2. Show that if G is a bipartite graph with parts of size n and
G # Ky, then G has at most n! — (n — 1)! perfect matchings. Find such a
graph with exactly n! — (n — 1)! perfect matchings.

The definition of permanent seems quite similar to the definition of the
determinant,

det(C) = Z sgn(m) H Cin (i)
7 permutation =1

where sgn(m) € {—1, 1} is the sign of the permutation 7. However, while you
can determine the permanent of a matrix in polynomial time, this is likely
not possible for the permanent (even the permanent of a {0, 1}-matrix). The
problem of determining the permanent of a {0, 1}-matrix (or equivalently,
the number of perfect matchings in a bipartite graph) is #P-complete, and
solving it in polynomial time would imply P = NP.



Exercise 3. Show you can determine in polynomial time whether a bipartite
graph has an even or an odd number of perfect matchings. Hint: compare
the definitions of the permanent and the determinant.

Thus, in general, the best we can hope for is obtaining approximations
or bounds for the number of perfect matchings.

Theorem 4 (Bregman-Cinc inequality). Let C' be an n x n {0,1}-matriz,
and let r; = Z;;l C;,; denote the sum of the i-th row of C'. Then

per(C) < H(ri!)l/”.
i=1

We will not prove this theorem. Using the upper bound d! < ed(d/e),
we have the following corollary (note that ved — 1 as d — 00).

Corollary 5. A d-reqular bipartite graph with parts of size n has at most
(@) < (Ved-d/e)" perfect matchings.

Exercise 6. For any integer d > 1 and any integer n divisible by d, find a
d-reqular bipartite graph with parts of size n that has evactly (d!)™? perfect
matchings.

Exercise 7. Suppose G is a bipartite graph with both parts of size n and
suppose that the average degree d of G is an integer. Show that G has at
most (d))"/? perfect matchings.

For a lower bound, we use another well-known inequality, originally con-
jectured by Van der Waerden. A matrix is bistochastic if it is non-negative
the sum of each row and each column is equal to 1.

Theorem 8. If C' is an n x n bistochasic matriz, then per(C) > 2.

Exercise 9. Find an n x n bistochasic matriz such that per(C) = 2.

n

We are not going to prove Theorem 8; let us just note the following
consequence.

Corollary 10. A d-regular bipartite graph G with parts of size n has at least
(d/e)™ perfect matchings.

Proof. Let C' be the bipartite adjacency matrix of G. Since G is d-regular,
the matrix C'/d is bistochastic. Hence, using the bound n! > (n/e)", we have

per(C) = d"per(C/d) > ™" > (d/e)".



Note that for non-bipartite graphs, the situation is much more compli-
cated; the fact that 3-regular 2-edge-connected graphs have an exponential
number of perfect matchings was proved only recently, and the right magni-
tude of the exponential is unknown.

2 Counting the matchings in planar graphs

While it is hard to count a number of matchings in a general graph, there
are polynomial-time algorithms for some special graph classes. Very inter-
estingly, there is such an algorithm for planar graphs.

First, let us introduce some more general definitions. An even 2-factor
F on vertex set V' of even size is a graph whose components are even cycles;
we allow cycles of length two. Let ¢(F') be the number of components of F,
and let us define sgn(F) = (—1)VI=¢) Let also cy(F) denote the number of
2-cycles of F'. Note that for any two matchings M; and M, with vertex set
V', the union M; + M, of M; and M, is an even 2-factor (with the cycles of
length two corresponding to the edges belonging to both M; and Ms). Let
M (F) be the set of all pairs (M;, Ms) of matchings such that F' = M; + M.

Observation 11. For any even 2-factor F, we have |M(F)| = 2¢(F)=e(F),

A permutation 7 is even-cycled if each of the cycles of m has even length.
For an even 2-factor F, let II(F') be the set of even-cycled permutations 7
such that F'is obtained by forgetting the orientation in the cycles of 7. Note
that each such permutation 7 satisfies sgn(m) = sgn(F).

Observation 12. For any even 2-factor F, we have |II(F)| = 2¢(F)=e(F),

For distinct integers x and y, let A(z,y) = 1 if < y and A\(z,y) = —1
if y < x. Let us now define a sign of a matching M with vertex set V =
{1,...,n} as follows. Let o be an arbitrary permutation of V' such that the
edges of M are o(1)o(2), o(3)o(4), ...; we let

n/2
sgn(M) = sgn(o H)\ (20 —1),0(2i)).
Observation 13. The sign of M does not depend on the choice of o.

Proof. Any two possible choices of o can be obtained from one another by a
sequence of the following operations:

e swapping o(2¢ — 1) and ¢(2i) for some i



e swapping o(2i — 1) with (25 — 1) and o(2¢) with o(25) for some i # j.

Recall that swapping two elements of a permutation reverses the sign of the
permutation. Hence, the first operation reverses sgn(o), but also reverses
Ao (2i—1),0(2i)). The second operation swaps the elements in a permutation

twice, and thus it does not change sgn(c). In either case, (M) is unaffected.
0

Now, let us relate the signs of matchings and even 2-factors. For an even
cycle C' = vy ... v, whose vertices are integers, let us define A\(C') = —1 if
the set D of indices ¢ such that v; > v;11 has odd size and 1 otherwise; we
take the indices cyclically, i.e., by v;11 we mean v;. Note that since C'is even,
it does not matter in which direction we traverse C, as reversing the order
replaces D by V(C)\ D. For an even 2-factor F' on vertex set {1,...,n}, we
define A(F') to be the product of A\(C') over the cycles of F.

Lemma 14. For any matchings My and My on the vertex set V = {1,...,n},
we have sgn(My + M) = sgn(M;)sgn(Ma)A(My + M,).

Proof. Let m € TI(M; + M,) be any permutation with the same cycles as
M; + M;. Consider any cycle C' = vjvs ... vy of m. Let a(C') be the sequence

U1, Vg, ..., vy and b(C) the sequence vq,vs, ... vy, vy. If the cycles of 7 are
Ci, ..., C, let a be the concatenation of the sequences a(Cy), ..., a(Cy)
and b the concatenation of the sequences b(Cy), ..., b(Cy). Let o1 be the

permutation mapping ¢ to the i-th element of a, amd o, the permutation
mapping i to the i-th element of b. Observe that 7 = o, ' o 09, and thus
sgn(Mi + My) = sgn(r) = sgn(o1)sgn(0r).

Moreover, by the definition we have

n

sgn(M,,) = sgn(oy) - H Mo(2i — 1), 04(24))
for k € {1,2}, and

n n

[T e1(2i = 1), 01(20)) Mo2(2i — 1), 02(20)) = [ MG, 7(0) = A(M; + My).

i=1 =1

Combining these equalities, we obtain sgn(M;+Ms) = sgn(M;)sgn(Ma)A(Mi+
Ms). O

Let G be a graph and let b : F(G) — R be an assignment of values to
edges. The Pfaffian is defined as follows.

Pf(G,b) = Z sgn(M) H b(e).

M perfect matching of G ecE(M)

4



Suppose that V(G) = {1,...,n}. The antisymmetric adjacency matriz of
(G,b) is the matrix C' such that C,, = b(uwv) if wv € E(G) and u < v,
Cyo = —b(uv) if wv € E(G) and v > v, and C,, = 0 otherwise. Using the
following result, we can (up to sign) compute the Pfaffian.

Lemma 15. Let G be a graph with vertex set {1,...,n} forn even and let b :
E(G) = R be an assignment of values to edges. Let C' be the antisymmetric
adjacency matriz of (G,b). Then Pf*(G,b) = det(C).

Proof. Consider a term sgn(m) [[?", C; ~;) appearing in the definition of the
determinant. Suppose 7 contains an odd cycle and 7’ is obtained from 7 by
reversing this odd cycle. Clearly sgn(n’) = sgn(m), and since the cycle is odd
and the matrix C' is antisymmetric, we have

n n

sgn(7) H Cin(iy = —sgn(n’") H Ci nr(i)-

i=1 =1

Hence, these two terms cancel each other. It follows that

det(C) = > sgu(m) [[ Ciney

7 even-cycled i=1

= > 2/ =e2Pgen(F)A(F) ] ble)
F C @ even 2-factor ecE(F)

= Z sgn(Mi)sgn(Mo) H b(e) H b(e)
M3, My C G perfect matchings ecE(Mj) e€E(Mas)

2

- > sen(M) ] ble) | =P(G,b).

M C G perfect matching ecE(M)

]

A Pfaffian function for a graph G with vertex set {1,...,n} is a function
b: E(G) — {—1,1} such that for every perfect matching M of G, sgn(M) -
[ec () ble) is the same.

Exercise 16. Fvery tree has at most one perfect matching, and thus it also
has a Pfaffian function.

Observation 17. If there exists a Pfaffian function b for the graph G, then
G has precisely |Pf(G, b)| perfect matchings.

As we can determine the absolute value of the Pfaffian in polynomial time
using Lemma 15, if we can find a Pfaffian function for G, then we can also
determine the number of perfect matchings.

3



Theorem 18 (Kasteleyn). For a plane graph G with vertex set {1,...,n},
a Pfaffian function can be found in polynomial time.

Proof. Without loss of generality, we can assume G is connected. For an

internal face f, let vivs ... v; be the vertices encountered when traversing the

boundary of f in the clockwise order, and let us define B(f) = {(v1,v2), ..., (vi_1,v¢), (v, v1) }.
We choose the function b so that for every internal face f,

(x) the number of pairs (u,v) € B(f) such that b(uv) # A(u,v) is odd.

We can do this by induction: If G is a tree, then any choice of b works.
Otherwise, there exists an edge e separating the outer face of G from some
internal face f. We apply the induction hypothesis to obtain the restriction
of b to G — e. Then we select b(e) € {—1, 1} so that (x) holds for f.

Let us argue b is a Pfaffian function for G. Consider any perfect matchings
M, and Ms of G and the even 2-factor F' = My + Ms. Let C' = wjus ... us
be a cycle of I traversed in the clockwise order and let Int(C') denote the
set of faces of G drawn inside C'. Let m be the number of edges of G drawn
strictly inside C'. Then (with w11 = u1) we have

AC) T vle) = [ ] M, i )b(uiuiinn)

ecE(C) i=1

= (=)™ H H Au, v)b(uv)

FE€Int(C) (u,v)EB(f)

—o" I n=-1

fE€Int(C)
where

e the second equality holds since for each edge uv drawn strictly inside C,
the contributions A(u,v)b(uv) and A(v, u)b(uv) from the two incident
faces combine to —1,

e the third equality holds by (%), and

e the final one holds since the number ne of vertices drawn inside C' is
even (as they are covered by the cycles of the even 2-factor F), the
Euler’s formula gives n. = (m + |C|) + 2 — (|Int(C)| + 1), and thus m
and |Int(C')| have the opposite parity.



Using Lemma 14, we have
(sen(an)- TT b)) - (sen(d2)- T ble)) = sen()sen(d) T ble)
e€E(M) c€E(M3) c€E(F)

= MF)sen(F) ] ble)

ecE(F)

C cycle of F ecE(C)

Therefore, for every perfect matching M of G, sgn(M) - [[.cp(ar b(€) is the
same, and thus b is a Pfaffian function for G. n

Exercise 19. Choose your favourite planar graph with an even number of

vertices and compute the number of its perfect matchings using the described
method.



