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December 22, 2020

Extremal combinatorics studies how large structures (graphs, set systems,
. . . ) can exist subject to various constraints (forbidden subgraphs, restricted
intersections, . . . ). We will give a couple of examples, without much effort
for a coherent theory.

1 Turn’s theorem and Erdős-Stone theorem

How many edges can a graph have without creating a large clique? In this
direction, you have probably already seen Mantel’s theorem.

Theorem 1 (Mantel). A triangle-free graph with n vertices has at most n2/4
edges.

This theorem is tight (for even n), as shown by the bipartite graph
Kn/2,n/2. We might suspect a similar result for larger cliques. The r-partite
Turn graph with n vertices Tr(n) is the complete r-partite graph where the
sizes of any two of its parts differ by at most 1 (i.e., they are all as close
to n/r as possible). Let tr(n) be the number of edges of Tr(n); note that
tr(n) ≤ (1− 1/r)n2/2. Clearly, Tr(n) does not contain a clique of size r + 1,
and it indeed turns out that tr(n) is the largest number of edges an n-vertex
graph with this property can have.

Theorem 2 (Turn). Let G be a graph with n vertices and let r be a positive
integer. If ω(G) ≤ r, then |E(G)| ≤ tr(n). Moreover, if |E(G)| = tr(n), then
G is isomorphic to Tr(n).

Proof. It suffices to prove that if G is an n-vertex graph satisfying ω(G) ≤ r
with the largest possible number of edges, then G is isomorphic to Tr(n).
This is clear if n ≤ r (as then Tr(n) = Kn), and thus we can assume n > r.

First, we claim that any non-adjacent vertices in G have the same degree.
Indeed, if say v1, v2 ∈ V (G) were non-adjacent vertices such that deg v1 <
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deg v2, then consider the graph G′ obtained from G− v1 by duplicating the
vertex v2. Note that ω(G′) ≤ r, since duplicating a vertex cannot increase
the clique number (any clique in G′ containing the duplicate can be turned
into a clique in G by replacing the duplicate by v2). However, |E(G′)| =
|E(G)| − deg v1 + deg v2 > |E(G)|, contradicting the maximality of |E(G)|.

Next, we claim that if v1, v2, v3 ∈ V (G) are distinct vertices such that
v1v2, v2v3 6∈ E(G), then also v1v3 6∈ E(G). Suppose for a contradiction that
this is not the case, and thus v1v3 ∈ E(G). By the previous paragraph, v1,
v2, and v3 all have the same degree d. Consider the graph G′′ obtained from
G − {v1, v3} by adding two duplicates of v2. Clearly, ω(G′′) ≤ r. Moreover,
|E(G′′)| = |E(G)|− (deg v1 +deg v3−1)+2 deg v2 = |E(G)|− (2d−1)+2d =
|E(G)|+ 1, contradicting the maximality of |E(G)|.

Hence, the relation u ∼ v iff uv 6∈ E(G) is an equivalence, and thus G is
a complete multipartite graph (the classes of the equivalence are the parts
of G). Since G has the maximum possible number of edges subject to the
condition ω(G) ≤ r, observe that G is r-partite (otherwise you can split one
part into two and add edges between them) and the sizes of any two parts
differ by at most 1 (otherwise you can move a vertex from a larger part to
a smaller one, adjusting the neighborhoods accordingly and increasing the
number of edges), and thus G is isomorphic to Tr(n).

What happens if instead of a clique, we forbid another graph F? Note
that the Turn graph Tr(n) (and any of its subgraphs) are r-colorable, and
thus if F has chromatic number at least r + 1, then F 6⊆ Tr(n), showing
that there exist graphs with at least tr(n) edges that do not contain F as a
subgraph. This is not in general tight, but you cannot go much above this
bound.

Theorem 3 (Erdős-Stone). Let F be a graph of chromatic number r + 1.
For every ε > 0, there exists n0 such that any graph with n ≥ n0 vertices and
at least (1− 1/r + ε)n2/2 edges contains F as a subgraph.

We are not going to prove this theorem; let us just note that Erdős-Stone
theorem approximates the exact maximum number of edges to arbitrary pre-
cision (for large enough graphs), as long as F is not bipartite. If F is bipartite,
then rdős-Stone theorem only tells you that for every ε > 0 and sufficiently
large n, the maximum is at most εn2, while T1(n) has no edges and thus it
does not provide any nontrivial lower bound. Indeed, for bipartite graphs,
the maximum is much smaller than quadratic; e.g. you might recall that
the maximum number of edges of an n-vertex graph without a 4-cycle is
Θ(n3/2). Indeed, a similar (typically non-tight) subquadratic bound holds
for all bipartite graphs.
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Lemma 4. Let F ⊆ Ka,b be a bipartite graph, where a ≤ b. There exists
a constant c such that every n-vertex graph G with at least cn2−1/a edges
contains F as a subgraph.

Proof. It suffices to prove the claim for F = Ka,b, since if G contains as a
subgraph Ka,b, it also contains all subgraphs of Ka,b. Let m be the number of
(a+1)-tuples (x, y1, y2, . . . , ya) of vertices of G such that xy1, . . . , xya ∈ E(G).
On one hand, we can choose x arbitrarily and then choose y1, . . . , ya among
its neighbors, giving

m =
∑

x∈V (G)

dega x ≥

(∑
x∈V (G) deg x

)a
na−1 =

(2|E(G)|)a

na−1 .

On the other hand, we can start by choosing y1, . . . , ya. If these vertices
are pairwise distinct, then since Ka,b 6⊆ G, they have at most b− 1 common
neighbors that can play the role of x. On the other hand, if they are not
pairwise distinct, there might be up to n choices for x, but there are at most
(a−1)ana−1 ways how to select y1, . . . , ya (choose a−1 vertices, then choose
one of them and a position in {1, . . . , a} to which it is copied). Therefore,

m ≤ (b− 1)na + (a− 1)ana.

Combining these inequalities, we obtain

|E(G)| ≤ 1
2
(b− 1 + (a− 1)a)1/an2−1/a.

2 Set systems

How many subsets of size r can you select from {1, . . . , n} so that they all
pairwise intersect? If r > n/2, you can choose all

(
n
r

)
subsets, which is not

very interesting. If r ≤ n/2, you can select all subsets of size r that contain
the element n; there are

(
n−1
r−1

)
of them. Can you do better?

Theorem 5 (Erdős-Ko-Rado). If A1, . . . , Am are distinct pairwise inter-
secting subsets of {1, . . . , n} of size r ≤ n/2, then

m ≤
(
n− 1

r − 1

)
.
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Proof. Let c be the number of pairs (C,A), where C is a directed cycle on
vertices {1, . . . , n}, A is a subpath of C with r vertices, and V (A) is equal
to one A1, . . . , Am. On one hand, we can start by forming vertices of one of
the sets into a path (this can be done in mr! ways), then forming the rest of
the vertices into a path (in (n − r)! ways), then concatenating the paths to
form the cycle C. This gives

c = mr!(n− r)!.

Conversely, we can start by forming the cycle C (in (n − 1)! ways), and
observing that from C, we can select at most r pairwise intersecting r-vertex
paths (once we select one such path a1a2 . . . ar, any other such path starts
either immediately to the left or immediately to the right from an edge aiai+1

for i ∈ {1, . . . , r − 1}, and we cannot have both a path starting to the left
and to the right from the same edge, as they would be disjoint). Hence,

c ≤ (n− 1)!r.

Together, the inequalities give

m ≤ (n− 1)!r

r!(n− r)!
=

(
n− 1

r − 1

)
.

3 Points in convex position

It is easy to see that among any 5-points in the plane in general position (no
three on the same line), you can choose four that are in the convex position.
Can we find a larger convex set?

Theorem 6 (Erdős-Szekeres). Let n ≥ 2 be an integer. Any set of at least(
2n−4
n−2

)
+ 1 points in the plane in general position contains r that are in the

convex position.

Proof. Without loss of generality (by rotating the set if necessary), we can
assume no two of the points have the same x-coordinate. An m-cup is a
sequence p1, p2, . . . , pm of points with increasing x-coordinates in convex po-
sition such that all of them are at or below the line passing through p1 and
pm. An m-cap is such a sequence where all the points are at or above this
line. We will prove that any set of at least

(
a+b−4
a−2

)
+ 1 points in the plane in

general position and with pairwise distinct x-coordinates contains either an
a-cup or a b-cap.
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We prove this by induction on a+ b. The claim is trivial if min(a, b) = 2,
and thus we can assume a, b ≥ 3. Suppose that X contains neither an a-cup
nor a b-cap. Let A ⊆ X consist of the rightmost points of all (a − 1)-cups
and B ⊆ X of the leftmost points of all (b− 1)-cups in X. Note that X \ A
does not contain any (a− 1)-cup, and thus by the induction hypothesis, we
have |X \ A| ≤

(
a+b−5
a−3

)
. Similarly, |X \B| ≤

(
a+b−5
a−2

)
. Consequently,

|X|−|A∩B| = |(X\A)∪(X\B)| ≤
(
a + b− 5

a− 3

)
+

(
a + b− 5

a− 2

)
=

(
a + b− 4

a− 2

)
< |X|,

and thus there exists a point p ∈ A ∩ B. Let p1, . . . , pa−1 be a cup and
q1, . . . , qb−1 a cap with pa−1 = p = q1. If q2 is above the line pa−2pa−1, then
p1, . . . , pa−1, q2 is an a-cup. Otherwise, pa−2 is below the line q1q2, and thus
pa−1, q1, . . . , qb−1 is a b-cap.
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