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December 19, 2020

Sometimes, we want to count the number of certain objects up to sym-
metries; e.g., we can ask how many non-isomorphic graphs are there on n
vertices (counting the graphs that differ only by a permutation of vertices
as one graph), or in how many ways can we color the faces of the cube by
k colors up to rotations (counting all colorings that differ only by a rotation
of the cube as one coloring). To deal with these kinds of problems, we first
need to introduce a bit of group theory.

1 Groups

A group G is a set with a binary associative operation ◦ on G and and a
identity element 1 ∈ G such that

• 1 ◦ x = x ◦ 1 = x for every x ∈ G, and

• for every x ∈ G, there exists y ∈ G such that x ◦ y = y ◦ x = 1.

We say that the element y is inverse to x and denote it by x−1. Let us
remark that it is easy to see that both the identity element and the inverse
are unique. E.g., if x ◦ y1 = y1 ◦ x = 1 and x ◦ y2 = y2 ◦ x = 1, then
y1 = (y2 ◦ x) ◦ y1 = y2 ◦ (x ◦ y1) = y2.

Example 1. The set of all permutations of {1, . . . , n}, with the operation
being the composition of permutations and the identity element being the
identity permutation, forms a group. This group is called the symmetric
group and denoted by Symn. This group has size n!.

The set of rotations of R3 that map an unit cube centered at (0, 0, 0) to
itself, together with the operation of composition (the rotations are just func-
tions mapping R3 to R3) and with the identity element being the identity
function, form a group, which we will denote by Rcube. Note that Rcube con-
sists of the identity, 9 rotations along an axis passing through the center of
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opposite faces (three choices of an axis, rotation by 90, 180, or 270 degrees),
6 rotations along an axis passing through the center of opposite edges (six
choices of an axis, rotation by 180 degrees), and 8 rotations along an axis
passing through opposite vertices (four choices of an axis, rotation by 120 or
240 degrees), and thus |Rcube| = 24.

Note that the elements of the group often correspond to operations on
some objects. More precisely, for a group G and a set T , an action of G
on T is a function a : G → T T that to each element of G assign a function
aG : T → T , with the following properties:

• a1 is the identity function. I.e., a1(x) = x for all x ∈ G.

• ag◦h = ag · ah, with · denoting the function composition. I.e., ag◦h(x) =
ah(ag(x)) for every x ∈ G.

Note this implies that ag−1 is the inverse function to ag, since ag−1 · ag =
ag−1◦g = a1 = id.

Example 2. For a graph H with vertex set {1, . . . , n} and a permutation π
of this set, we can define aπ(H) to be the graph obtained from H by permuting
the vertices according to π, i.e., aπ(H) is the graph with vertex set {1, . . . , n}
and with uv ∈ E(aπ(H)) if and only if π−1(u)π−1(v) ∈ E(H). Then a is an
action of Symn on the set Hn of all graphs with vertex set {1, . . . , n}.

Let Bk denote the set of all colorings of faces of the cube by colors 1, . . . ,
k. Then Rcube naturally acts on Bk: Each coloring is mapped by a rotation
r ∈ Rcube to the appropriately rotated coloring.

We are interested in the number of distinct objects up to some such action.
More precisely, let a be an action of a group G on a set T . For x, y ∈ T , we
define x ∼a y if and only if there exists g ∈ G such that ag(x) = y. It is easy
to see that ∼a is an equivalence, and the classes of the equivalence are orbits.

Example 3. Consider the actions defined in Example 2. Two graphs belong
to the same orbit iff they are isomorphic. Two colorings belong th the same
orbit iff they only differ by a rotation.

We would now like to find an easy way how to count the orbits, in the
typical situation that the size of the group is much smaller than the number
of objects it acts on. To this end, we demonstrate a relationship to the
number of objects fixed by each element of the group under the action. For
g ∈ G, the set of fixed points of g is Fixa(g) = {x ∈ T : ag(x) = x}.
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Example 4. Consider the permutation (12) that swaps vertices 1 and 2. In
the action a defined in Example 2, we have H ∈ Fixa((12)) iff exchanging
the vertices 1 and 2 does not change the graph H, i.e, if the vertices 1 and 2
have the same sets of neighbors in V (H) \ {1, 2}.

It turns out that the number of orbits is equal to the average number
of fixed points over the elements of the group. Before we prove this, we
need to introduce another object. For an action a of a group G on a set T
and elements x, y ∈ T , let Mapa(x, y) = {g ∈ G : ag(x) = y}. Obviously,
Mapa(x, y) is non-empty if and only if x and y belong to the same orbit.
Suppose z is another element belonging to the same orbit, and thus ah(y) = z
for some h. Then for each g ∈ Mapa(x, y), we have ag◦h(x) = ah(ag(x)) =
ah(y) = z, and thus g ◦h ∈ Mapa(x, z). Conversely, for each f ∈ Mapa(x, z),
we have f◦h−1 ∈ Mapa(x, y). This establishes a bijection between Mapa(x, y)
and Mapa(x, z), and thus |Mapa(x, y)| = |Mapa(x, z)| for any elements y and
z belonging to the same orbit. Moreover, note that for any g ∈ G, there exists
precisely one y in the orbit of x (namely y = ag(x))) such that g ∈ Mapa(x, y).
Therefore, denoting by Ox the orbit containing x, we have

|G| =
∑
y∈Ox

|Mapa(x, y)| = |Ox| · |Mapa(x, x)|.

Theorem 5 (Burnside’s lemma). For any group finite G and an action a of
G on a finite set T , the number of orbits of this action is equal to

1

|G|
·
∑
g∈G

|Fixa(g)|.

Proof. Let O1, . . . , On be the orbits of the action a. We will count the
number m of pairs (x, g) such that x ∈ T , g ∈ G, and ag(x) = x in two
ways. On one hand, for each g all the elements x with this property belong
to Fixa(g), and thus

m =
∑
g∈G

|Fixa(g)|.

On the other hand, for each element x ∈ T all g ∈ G with this property
belong to Mapa(x, x), and thus

m =
∑
x∈T

|Mapa(x, x)| =
∑
x∈T

|G|
|Ox|

= |G|
∑
x∈T

1

|Ox|
= |G|

n∑
i=1

|Oi| ·
1

|Oi|
= |G|n.

Comparing the two expressions, we have

n =
1

|G|
·
∑
g∈G

|Fixa(g)|,

as required.
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2 Applications of Burnside’s lemma

Example 6. Let us count the number of colorings of the faces of a cube by
k colors up to rotations. Recall Rcube is group of rotations that preserve the
cube, Bk is the set of all colorings of the faces by k colors, and let a be the
natural action of Rcube on Bk as defined in Example 2. We want to determine
the number of orbits of a, and by Burnside’s lemma, it suffices to compute
the number of fixed points for each element r of Rcube:

• If r is the identity, then all colorings are fixed by r, and thus |Fixa(r)| =
|Bk| = k6.

• If r is one of the six rotations by ±90 degrees along an axis passing
through centers of opposite faces, then r fixes exactly the colorings for
which the faces not pierced by the axis all have the same color. Hence,
we can choose one color for these four faces and one color for each of
the two faces pierced by the axis, and |Fixa(r)| = k3.

• If r is one of the three rotations by 180 degrees along an axis passing
through centers of opposite faces, then r fixes exactly the colorings for
which the opposite faces not pierced by the axis (of which there are two
pairs) have the same color. Hence |Fixa(r)| = k4.

• If r is one of the six rotations by 180 degrees along an axis passing
through centers of opposite edges, then r fixes exactly the colorings for
which the two opposite faces not incident with the pierced edges, as
well as the pairs of faces incident with the pierced edges, have the same
color, and thus |Fixa(r)| = k3.

• Finally, if r is one of the eight rotations by ±120 degrees along an axis
passing through opposite vertices, then r fixes exactly the colorings for
which the three faces incident with each of the pierced vertices have the
same color, and thus |Fixa(r)| = k2.

By Burnside’s lemma, it follows that the number of colorings is

1

|Rcube

∑
r∈Rcube

|Fixa(r)| =
k6 + 3k4 + 12k3 + 8k2

24
.

Example 7. Let us count the number of non-isomorphic graphs on 5 vertices.
Here we consider the symmetric group Sym5 with the action a defined in
Example 2. Let us discuss the permutations π ∈ Sym5 according to their
cycle structure:

4



• If π has five cycles of length 1, i.e., π is the identity, then π fixes all

2(5
2) = 210 graphs on 5 vertices.

• There are 10 permutations with one cycle (ab) of length two and three
cycles of length 1. In a graph fixed by such a permutation, the neigh-
borhood of a uniquely determines the neighborhood of b (they must be
the same outside of {a, b}), and thus we only have freedom to select
edge/non-edge status for the remaining 7 pairs of vertices. Thus, such
a permutation fixes 27 of the graphs.

• There are 15 permutations with two cycles (ab) and (cd) of length two
and one of length one. In a fixed graph, ac is an edge iff bd is, ad is
an edge iff bc is, and the fifth vertex has the same adjacencies to a and
b and to c and d, leaving us with 6 choices; hence, there are 26 fixed
graphs.

• There are 20 permutations with one cycle (abc) of length three and two
cycles of length one. If fixed by this permutation, ab is an edge iff bc
and ac are, and for the remaining two vertices, each of them is adjacent
to either all of a, b, c or none. Hence, there are 4 choices and 24 fixed
graphs.

• There are 20 permutations with one cycle (abc) of length three and one
cycle (de) of length two. The situation is similar to the previous case,
but either all edges between a, b, c and d, e are present, or none is.
Hence, there are three choices and 23 fixed graphs.

• There are 30 permutations with one cycle (abcd) of length four and one
cycle of length one. In the fixed graphs, ab, bc, cd, de are either all
edges or all non-edges, ad and bc are either both edges or both non-
edges, and the fifth vertex is adjacent to either all or none of a, b, c, d.
This leaves three choices and 23 graphs.

• Finally, there are 24 permutations with one cycle of length five. We
have one choice for the edges of the cycle and one choice for the diag-
onals, giving 22 fixed graphs.

By Burnside’s lemma, the number of non-isomorphic graphs on 5 vertices is

1

5!
(210 + 10 · 27 + 15 · 26 + 20 · 24 + 20 · 23 + 30 · 23 + 24 · 22) = 34.
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3 Polya enumeration formula

We can also combine the theory we developed with the theory of generating
functions. Let us start with a way how to represent the symmetries in a
generating function. Let B be a set of size n. For a permutation π of B
with c1 cycles of length 1, c2 cycles of length 2, . . . , cn cycles of length n,
let xc(π) be defined as xc11 x

c2
2 · · · xcnn . Let G be a subgroup of Symn, i.e., a set

of permutations of n elements closed on composition and inverse. The cycle
index ZG of G is the following polynomial in variables x1, . . . , xn.

ZG(x1, . . . , xn) =
1

|G|
∑
π∈G

xc(π).

Example 8. For a permutation π of the set {1, . . . , n}, we can define a per-
mutation π′ on the set

({1,...,n}
2

)
of pairs of its elements by setting π′({i, j}) =

{π(i), π(j)}. Let Sym′n = {π′ : π ∈ Symn}. Let us determine the cycle index
of Sym′5. The group Sym5 contains:

• One permutation π with five cycles of length 1 (the identity). For this
permutation, π′ is also the identity and has 10 cycles of length 1. Hence,
this contributes x101 to the cycle index.

• 10 permutations π with one cycle (ab) of length two and three cycles
of length 1. Then the permutation π′ fixes the pair {a, b} and all pairs
disjoint from {a, b}, giving four cycles of length 1, and for each c 6∈
{a, b}, the pairs {a, c} and {b, c} form a cycle of length two. This
contributes 10x41x

3
2 to the cycle index.

• 15 permutations π with two cycles (ab) and (cd) of length two and one
of length one. The permutation π′ fixes the pairs {a, b} and {c, d} (two
cycles of length one), and the remaining pairs are contained in four
cycles of length two. This contributes 15x21x

4
2 to the cycle index.

• 20 permutations π with one cycle (abc) of length three and two cycles
of length one. The pair of elements distinct from a, b, and c is fixed by
π′, while the remaining pairs are in cycles of length three, contributing
20x1x

3
3 to the cycle index.

• 20 permutations π with one cycle (abc) of length three and one cycle
(de) of length two. In π′, the pair {d, e} is fixed, the pairs contained in
{a, b, c} form a cycle of length three, and the remaining pairs form a
cycle of length six, contributing 20x1x3x6 to the cycle index.
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• 30 permutations with one cycle (abcd) of length four and one cycle of
length one. In π′, the diagonal pairs contained in {a, b, c, d} form a two
cycle of length two and the remaining pairs form two cycles of length
four, contributing 30x2x

2
4 to the cycle index.

• 24 permutations with one cycle of length five. In π′, the pairs are split
to two cycles of length five, contributing 24x25 to the cycle index.

Therefore,

ZSym′5
=

1

120
(x101 + 10x41x

3
2 + 15x21x

4
2 + 20x1x

3
3 + 20x1x3x6 + 30x2x

2
4 + 24x25).

We view the elements of B as boxes to which we can arrange objects of
certain sizes, with the size of the arrangement being the sum of the sizes
of the objects in the boxes. Suppose F (x) = f0 + f1x1 + f2x2 + . . . is a
generating function for the objects; i.e., to each box, we can choose to put
one of f0 objects of size 0, or one of f1 objects of size 1, etc. Let tm denote
the number of such arrangements of size m, where two arrangements that
differ only by a permutation belonging to G are considered to be the same.
Letting a be the action of G on the set Am of arrangements of size m and
using Burnside’s lemma, we have

tm =
1

|G|
∑
π∈G

|Fixa(π)|.

For π to fix an arrangement, we need to put the same object to all boxes
in each of the cycles of π. I.e., for a cycle of length `, we need to choose
one object, and if the size of the chosen object is s, this cycle will in total
contribute `s to the size of the whole arrangement. It is convenient to see
this as being able to choose one of f0 objects of size 0, or one of f1 objects
of size `, or one of f2 objects of size 2`, etc.; the generating function of this
sequence is f0 + f1x

` + f2x
2` + . . . = F (x`). Now we need to combine such

independent choices in each cycle; the independent choices correspond to the
product of generating functions, and thus

|Fixa(π)| = [xm]
∏

b cycle of π

F (x`(b)).

The product on the right-hand side is the same as xc(π) with F (x) substituted
for x1, F (x2) for x2, . . . Hence,

tm = [xm]
1

|G|
∑
π∈G

∏
b cycle of π

F (x`(b)) = [xn]ZG(F (x), F (x2), F (x3), . . . , F (xn)).
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Thus, we actually obtain a generating function for the arrangements up to
the symmetries; defining T (x) =

∑
n≥0 tnx

n, we have

T (x) = ZG(F (x), F (x2), F (x3), . . . , F (xn)).

Example 9. Let us count again the number of non-isomorphic graphs with
5 vertices, this time classified by the number of edges. I.e., let tm denote
the number of non-isomorphic graphs with 5 vertices with m edges. We can
view the graphs as arrangements into boxes: We have one box for each pair
of vertices, and we need to decide whether we put an edge to it (an object
contributing 1 to the size), or a non-edge (an object contributing 0 to the
size). Hence, the generating function for the objects is F (x) = 1 + x, and

T (x) = ZSym′5
(1 + x, 1 + x2, . . . , 1 + x10)

=
1

120
((1 + x)10 + 10(1 + x)4(1 + x2)3 + 15(1 + x)2(1 + x2)4+

20(1 + x)(1 + x3)3 + 20(1 + x)(1 + x3)(1 + x6)+

30(1 + x2)(1 + x4)2 + 24(1 + x5)2)

= 1 + x+ 2x2 + 4x3 + 6x4 + 6x5 + 6x6 + 4x7 + 2x8 + x9 + x10.

For example, this tells us there are 6 pairwise non-isomorphic graphs on 5
vertices with 4 edges.
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