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Preface

The fact that every map can be colored by four colors is probably the best known
result of graph theory among the general public. It is one of the problems that
shaped the graph theory as we know it today; the attempts to prove the Four
Color Theorem inspired many notions that became important on their own. It
also motivated the study of colorings of near-planar graphs, including the graphs
embedded in the surfaces of bounded genus. Even though a computer-assisted
proof of the Four Color Theorem was eventually found, many natural problems
motivated by it remain unsolved and the study of colorings of planar graphs and
of graphs on surfaces is one of the most active areas of research in modern graph
theory.

In addition to general graph coloring methods, there is a number of tech-
niques that were developed specifically to deal with embedded graphs, such as
the method of reducible configurations and discharging, precoloring extension
technique, and recoloring arguments made possible by the specific structure of
cuts in embedded graphs. This habilitation thesis outlines some of recently de-
veloped refinements of these techniques. Their applications are demonstrated by
giving several detailed examples based on my recent papers:

• Z. Dvorak, B. Lidicky, R. Skrekovski: 3-choosability of triangle-free planar
graphs with constraints on 4-cycles, SIAM Journal on Discrete Mathematics
24 (2010), 934-945.

• Z. Dvorak, K. Kawarabayashi, R. Thomas: Three-coloring triangle-free pla-
nar graphs in linear time, ACM Transactions on Algorithms 7 (2011), ar-
ticle no. 41.

• Z. Dvorak, D. Kral, R. Thomas: Coloring triangle-free graphs on surfaces,
SODA 2009, Proceedings of the twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms.

• Z. Dvorak, B. Lidicky, B. Mohar: 5-choosability of graphs with crossings
far apart, submitted.

• Z. Dvorak: 3-choosability of planar graphs with (≤4)-cycles far apart, sub-
mitted.
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• Z. Dvorak, D. Kral, R. Thomas: Three-coloring triangle-free graphs on
surfaces I. Extending a coloring to a disk with one triangle, submitted.

• Z. Dvorak, D. Kral, R. Thomas: Three-coloring triangle-free graphs on
surfaces II. 4-critical graphs in a disk, in preparation.

• Z. Dvorak, D. Kral, R. Thomas: Three-coloring triangle-free graphs on
surfaces III. Graphs of girth five, in preparation.

• Z. Dvorak, B. Lidicky, B. Mohar, L. Postle: 5-list-coloring planar graphs
with distant precolored vertices, in preparation.

Prague, May 3, 2012
Zdeněk Dvořák

Prohlašuji, že jsem tuto práci vypracoval samostatně a že jsem použil pouze
prameny uvedené v seznamu. Souhlaśım se zap̊ujčováńım této práce.
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Chapter 1

Introduction

We assume that the reader is familiar with the basics of graph theory to the extent
covered e.g. by Diestel [19]. Of a particular interest to us is the notion of a proper
graph coloring, which is a function assigning to each vertex of an undirected graph
a color in such a way that no two adjacent vertices have the same color. Let us
note that a graph containing a loop has no proper coloring and that parallel
edges can be suppressed without affecting the colorings; hence, throughout the
thesis, we assume that the graphs are undirected and simple. Furthermore, by a
“coloring” we always mean a proper coloring (improper colorings will be declared
explicitly).

In 1852, Guthrie proposed to De Morgan a conjecture, which can be stated
in the modern terms as follows: every planar graph can be properly colored
using only four colors. In 1879, Kempe published a proof of this conjecture; the
proof was however shown invalid 11 years later by Heawood. Still, this attempt
contained an important idea of “Kempe chains”, which became one of the most
important tools in graph coloring theory. Using Kempe chains, Heawood showed
that planar graphs are 5-colorable. Another contribution of Heawood is the
generalization of the problem to the surfaces of higher genus, showing that every
graph embedded in a surface of Euler genus g > 0 can be colored by at most⌊

7 +
√

24g + 1

2

⌋
(1.1)

colors. This bound was shown to be tight by Ringel and Youngs [58], except for
the case of Klein bottle where the correct bound is 6 by Franklin [38].

Another incorrect proof of 4-colorability of planar graphs was given by Tait
in 1880. The error in this proof was pointed out by Petersen in 1891. In this
attempt, Tait proved an important fact: the Four Color Theorem is equivalent
to the claim that every bridgeless cubic planar graph is 3-edge-colorable. This
sparked interest in non-3-edge-colorable graphs (snarks), which also turn out to
be important for many other graph problems including the Cycle double cover
conjecture and the 5-Flow Conjecture. Furthermore, this motivated the study of
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Hamiltonicity of planar graphs, since every Hamiltonian cubic graph is 3-edge-
colorable.

Further concepts and problems inspired by the attempts to prove the Four
Color Theorem include the nowhere-zero flows (and in particular, the 4-Flow
Conjecture), chromatic polynomial, and Hadwiger’s conjecture.

The Four Color Theorem was finally proved by Appel and Haken [6, 7] in 1976,
using a computer. The proof is based on the ideas of reducible configurations
and discharging, which we explore in a greater detail in Section 2.1. A simpler
proof was later given by Robertson et al. [59]. Since then, several variations of
these proofs appeared ([42, 62]), however all of them are computer assisted and
involve analysis of a large number of cases. Furthermore, there are significant
difficulties in generalizing these proofs to other, more complicated situations; for
example, it is unclear whether non-4-colorable graphs with one crossing can be
described efficiently, and the existing proofs of the Four Color Theorem give a
little guidance. For this reason, many mathematicians still are not satisfied with
the solution of the Four Color Conjecture.

The Four Color Theorem also served as an inspiration for many other coloring
results regarding planar and near-planar graphs. One of the best known results
is the theorem of Grötzsch [43] claiming that every triangle-free planar graph
is 3-colorable. Unlike the Four Color Theorem, this result has many relatively
simple proofs ([67, 69, 72, 23]; see also Chapter 3) based on two distinct ideas:
the method of reducible configurations, which we already mentioned, and the
precoloring extension argument, which we explore in more detail in Section 2.2.
Unsurprisingly, there are many possible strengthenings and generalizations of
Grötzsch’s theorem.

A natural question is whether we can allow some triangles while still preserv-
ing the 3-colorability. Grünbaum [44] gave a proof that every planar graph with
at most three triangles is 3-colorable, however later an error was found in his
proof. A correct proof of this statement was given by Aksionov [2]. Extending
this theorem further is nontrivial, since there exist infinitely many 4-critical (a
graph G is k-critical if all its proper subgraphs are (k− 1)-colorable, but G itself
is not (k−1)-colorable) planar graphs with four triangles. In his alternative proof
of Aksionov’s result, Borodin [11] claims to have described all such graphs, form-
ing 15 infinite families, however this characterization has not not been published
yet.

However, all such known examples contain a pair of triangles that are close
to each other. This motivated Havel to ask whether every planar graphs with
triangles sufficiently far apart is 3-colorable. In Dvořák et al. [24], we answered
this question in affirmative. In addition to deep structural results on 4-critical
plane graphs, we use another common technique of recoloring, described in details
in Section 2.3. However, the bound on the distance between the triangles that
we give is much larger than the known lower bound of 4 given by Aksionov and
Mel’nikov [3].
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Another approach is to allow unrestricted triangles, but instead forbid cycles
of other lengths. It is easy to see that it is not sufficient to forbid only 4-cycles
or only 5-cycles. However, Steinberg [61] conjectured that every planar graph
without both 4- and 5-cycles is 3-colorable, and this question is still open. A
number of improvements were made with regards to the following relaxed version:
What is the smallest k such that every planar graph without cycles of length
between 4 and k is 3-colorable? The current best result of Borodin et al. [13]
shows that k ≤ 7. Furthermore, many authors consider other combinations of
forbidden cycles [12, 15, 16, 17]; a more complete list can be found in the on-line
survey of Montassier [56].

Most proofs in graph colorings employ the following idea in some form: sup-
pose that we already colored part of the graph and we would like to extend the
coloring to the rest. This means that in the rest of the graph, only some colors
(those not used on already colored neighbors) are available. This motivates the
notion of list coloring [35]: a list assignment L is a function that assigns a set
of colors (a list) to each vertex of a graph G. An L-coloring of G is a proper
coloring such that for each v ∈ V (G), the color of v belongs to L(v). We say that
G is k-list-colorable if it has an L-coloring for every assignment L of lists of size
at least k. Does the list coloring version of the Four Color Theorem hold, i.e., is
it true that every planar graph G is 4-list-colorable? This was shown to be false
by Voigt [75]. Similarly, there exists a triangle-free planar graph not colorable
from all lists of size three [76]. On the other hand, Thomassen [65, 69] proved
that every planar graph is 5-list-colorable and every planar graph of girth five is
3-list-colorable. There are also many other sufficient conditions implying 3- or
4-list-colorability of subclasses of planar graphs; again, we refer the reader to the
survey of Montassier [56].

Finally, let us consider graphs that are non-planar, but close to being planar
in some sense. One possibility is to draw graphs in plane with a limited number
of crossings (the crossing number of a graph). There are infinitely many 5-
critical graphs with crossing number one, and characterizing those graphs is a
challenging open problem. On the other hand, it is easy to see that all graphs
with crossing number at most two are 5-colorable. Furthermore, any graph with
crossing number at most four that does not contain K6 as a subgraph is 5-
colorable (Erman et al. [36]). More generally, Albertson conjectured that if a
graph has chromatic number at least n, then its crossing number is greater or
equal to the crossing number of Kn; Barát and Tóth [10] proved that this holds for
n ≤ 16. Analogically to Havel’s problem, one can also consider the situation that
the crossings are far apart. Král’ and Stacho [50] proved that if no two crossings
are incident with the same vertex, then the graph is 5-colorable. For list colorings,
Dvořák et al. [33] and independently Campos and Havet [14] proved that every
graph with crossing number at most two is 5-list-colorable. Furthermore, the
same holds if the distance between every two crossings is at least 15 (Dvořák et
al. [30]; see also Chapter 9).
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Historically older and more developed approach to near-planar graphs is
through embeddings in surfaces. Clearly, a graph is planar if and only if it
has an embedding in sphere; and asking about the chromatic number of graphs
in other surfaces is natural. As we mentioned before, a tight bound (1.1) on
the chromatic number was given by Heawood. However, this bound turns out
to be insufficiently detailed—only a small fraction of graphs achieve or approach
this bound. Indeed, observe that every sufficiently large graph embedded in a
fixed surface Σ contains a vertex of degree at most 6; hence, the size of every
k-critical graph embedded in Σ is bounded by a function of the genus of Σ, for
each k ≥ 8. In particular, there are only finitely many such graphs. Similarly, it
is easy to see that there are only finitely many 7-critical graphs embedded in Σ.
Using a much more involved argument, Thomassen [70] proved that the number
of 6-critical graphs in any fixed surface is also finite. His proof gives a bound on
the size of such graphs which is double exponential in the genus of the surface.
This bound was improved to linear by Postle and Thomas [57]. Algorithmically,
these results give a linear-time algorithm to test whether a graph G embedded in
Σ is 5-colorable—for each 6-critical graph embeddable in Σ, test whether it is a
subgraph of G. This test can be carried out in linear time using the algorithm of
Eppstein [34]. The lists of 6-critical graphs are explicitly known for the projective
plane [4], the torus [66] and the Klein bottle [18, 45].

Note that 3-critical graphs are just odd cycles. Furthermore, 3-colorability
is NP-complete even for planar graphs [40], hence it is likely not possible to
characterize embedded 4-critical graphs. The remaining open case is that of 5-
critical graphs. By the Four Color Theorem, there are no planar 5-critical graphs.
On the other hand, Fisk [37] gave examples of infinite families of 5-critical graphs
for every surface other than the sphere. Both characterization of such graphs and
the corresponding algorithmic question of 4-colorability of graphs of bounded
genus are open (and likely rather difficult) problems.

Let us now consider graphs of girth at least five. It is easy to see that there
is only a finite number of such k-critical graphs embeddable in any fixed surface,
for k ≥ 5. Thomassen [71] proved that this claim holds even for k = 4, and
in Dvořák et al. [27], we show that every 4-critical graph of girth at least five
embedded in a surface of genus g has at most O(g) vertices (see Chapter 7). Let
us remark that there are no 4-critical graphs of girth at least five and genus at
most two by Thomassen [68] and Thomas and Walls [63].

The situation is more complicated for triangle-free graphs. It is still fairly
easy to argue that the number of k-critical triangle-free graphs embedded in a
fixed surface is finite for k ≥ 5. There are infinitely many 4-critical triangle-free
graphs embedded in any surface other than the sphere. However, Gimbel and
Thomassen [41] proved that a projective planar triangle-free graph is 4-critical
if and only if it is a non-bipartite quadrangulation without separating 4-cycles.
This gave a hope that the 4-critical triangle-free graphs have some structure that
is easy to describe. In Dvořák et al. [28], we gave such a description (subject to
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some further constraints) and used it to give a linear-time algorithm to decide
3-colorability of triangle-free graphs embedded in a fixed surface. Furthermore,
we proved that for every orientable surface Σ, there exists a constant d such that
every triangle-free graph embedded in Σ with edge-width at least d is 3-colorable.

Essentially all of the results mentioned in this introduction were proved using
a few basic techniques—reducible configurations, discharging, precoloring exten-
sion and recoloring. We give their more detailed description in the following
chapter. The main focus of this thesis is the new refinements of these techniques
that we developed. The first of them is the weight technique. It deals with the
situation where we need to establish a bound on the size of a critical graph. Using
various reductions, we can relate any critical graph to critical graphs with smaller
numbers of vertices. However, this relationship does not make it possible to prove
a bound on the size by induction, since the reduction could decrease the size of
the graph below the considered bound. Instead, we assign weights to the vertices
and faces of the considered graph and exhibit reductions that do not decrease the
sum of weights, leading to a natural inductive argument. Part II is devoted to
describing the theory of this technique in details, as well as giving some heuristic
ideas on the choice of appropriate weight function and other concerns in practical
applications.

The second technique is a refinement to the precoloring extension arguments
and we study it in more details in Part III. We consider the situation that some
claim holds for graphs in some prescribed class (e.g., that all planar graphs of girth
five are 3-list-colorable). We would like to show that this claim is still true even
if we allow distant perturbations of the graphs in this class (e.g., that all planar
graphs such that the distance between every two (≤4)-cycles is at least 26 are 3-
list-colorable). The key observation here is that the proof of the original statement
still works, as long as the perturbations are far enough from the precolored path
whose neighborhood we reduce. Once one of the perturbations appears close to
the precolored path, we know that all other perturbations must be far from it,
and typically do not affect the colorability. Therefore, it suffices to focus on the
situation that there is exactly one perturbation (formally, we of course need to be
more careful). Another important idea is to use the symmetry of the precolored
path (trying to apply the reductions of the original proof on the other side of
the precolored path) to obtain another short path from the perturbation to the
boundary of the outer face. The two paths from the perturbation to the boundary
then enable us to eliminate the perturbation similarly to the way the standard
precoloring extension method deals with chords.
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Chapter 2

Techniques

Let us now give an overview of basic techniques and tools used for coloring em-
bedded graphs:

• The method of reducible configurations and discharging was first formalized
in the context of attempts at proof of the Four Color Theorem. Nowadays,
it is the most common method used to prove existence of various kinds
of colorings for embedded graphs. It consists of showing that some set of
configurations is both reducible (i.e., cannot appear in a smallest counterex-
ample to the claim in question) and unavoidable, i.e., must appear in every
graph from the considered class. The existence of such a set clearly implies
that there exists no smallest counterexample, and consequently the claim is
true. The unavoidability part of the argument is usually carried out using
the discharging method, which is essentially a double-counting argument
using the properties of planar (or surface) embedding. For more details,
see Section 2.1.

• The precoloring extension technique was developed by Thomassen in his
papers [65, 69] dealing with list-coloring of planar graphs, and it is the
most powerful known tool in this context. The idea is to color small pieces
of the graph carefully so that yet uncolored vertices have enough available
colors left. This involves proving a stronger claim specifying exactly what
“enough” means, and the choice of this stronger claim is a rather delicate
part of the argument. For details and a deeper discussion of these issues,
see Section 2.2.

• The recoloring method is used to deal with “cylinder-like” graphs, that is
graphs where interesting parts are separated by many short cycles. In such
case, it is often possible to show that the cylinder-like part is in fact irrele-
vant, in the sense that every precoloring of its boundary can be extended to
a coloring of the whole cylindrical section, by carefully altering the coloring
between consecutive short cycles. More details can be found in Section 2.3.
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Finally, in Section 2.4 we discuss critical graphs. While the notion of crit-
icality is not a proof technique per se, it makes it possible to treat properties
of hypothetical minimal counterexamples to various coloring claims in a uniform
way. Consequently, it is a convenient idea to use in many of the proofs. After
discussing some basic properties of critical graphs, we explore the generalization
of criticality to the situation where some vertices are precolored. This turns out
to be useful especially in Part II.

2.1 Reducible configurations and discharging

Consider a k-critical graph G. It is easy to see that G does not contain a vertex
v of degree at most k − 2: Otherwise, by the k-criticality of G, there exists a
coloring of G − v by k − 1 colors, and we can choose one of these k − 1 colors
for v, distinct from the colors of its neighbors. In this way, we would obtain a
coloring of G by k − 1 colors, contrary to the assumption that G is k-critical.

A generalization of this observation leads to the method of reducible configu-
rations: suppose that we want to prove that every graph in some class G can be
colored in some prescribed way. We exhibit a set C of configurations (typically,
subgraphs with prescribed degrees of vertices, although other more complicated
definitions are also common) and a partial well-ordering ≺ of G with the following
properties:

• reducibility: if all graphsG′ ∈ G withG′ ≺ G are colorable andG contains
a configuration belonging to C, then G is colorable.

• unavoidability: every graph in G contains one of the configurations in C.
Of course, if there existed a graph in G that would not be colorable, we could
choose such a graph G that is minimal with respect to ≺. By unavoidability,
G contains a configuration of C, and by reducibility, G is colorable. This is a
contradiction showing that every graph in G is colorable.

For the reducibility condition, the usual argument consists of removing the
configuration or its part, thus obtaining a graph G′ ≺ G. This graph G′ is
colorable by the assumptions, and we then extend the coloring to the removed
part, thus obtaining a coloring of G. Commonly, variations of this simple scheme
are required; for example, instead of removing the configuration, we replace it
by some smaller configuration (a reducent). This restricts the coloring of the
resulting graph, which can be used to exclude the colorings that do not extend to
G. Of course, introduction of a nontrivial reducent makes it harder to argue that
the resulting graph still belongs to the class G, and arguments regarding critical
subgraphs as outlined in Section 2.4 are often an important tool to deal with this
difficulty.

Another common idea is to alter the coloring of G′ somehow before trying to
extend it to a coloring of G. This may involve local recolorings of the vertices near
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the reduced configuration, or global changes using e.g. Kempe chains. A rather
involved variant of this idea is used in the proof of the Four Color Theorem.

For the unavoidability part of the argument, one typically uses the discharging
technique. Using Euler’s formula, it is easy to see that every planar graph contains
a vertex of degree at most 5. The discharging technique is a generalization of this
observation, obtained using a double-counting argument over specific subgraphs
of a (usually embedded) graph. If G has a 2-cell embedding in a surface of Euler
genus g, then the number of its edges can be expressed as m = n+s−2+g, where
n is the number of vertices of G and s is its number of faces. Let 0 < α < 2β be
arbitrary constants, and let us assign charge c(v) = α deg(v)− 2β to each vertex
v and c(f) = (β−α)`(f)− 2β to each face (where `(f) denotes the length of the
face). Then, the sum of the charges is∑
v∈V (G)

c(v) +
∑

f∈F (G)

c(f) = −2β(n+ s) + α
∑

v∈V (G)

deg(v) + (β − α)
∑

f∈F (G)

`(f)

= 2β(g − 2−m) + 2αm+ 2(β − α)m

= 2β(g − 2).

Next, we redistribute the charge according to a set of rules (typically locally, e.g.,
moving it from vertices to incident faces or adjacent vertices) so that the sum of
the charges is unchanged. Finally, assuming that no configuration of C appears in
G, we argue that the resulting charge of all vertices and faces is nonnegative. If G
consists of planar or projective planar graphs, then g ≤ 1 and this directly gives
a contradiction, since the sum of the original charges is negative. In the case of
surfaces of greater genus, we need further arguments showing that the sum of the
charges exceeds the bound of 2β(g − 2) in order to obtain the contradiction and
show that some of the configurations of C appear in G.

Let us demonstrate some of these ideas by a simple example (more involved
applications can be found in Chapters 3 and 7). By the Four Color Theorem,
every planar graph is 4-colorable. Can we prescribe coloring of some vertices?
E.g., suppose that we precolor an induced 4-cycle—can this precoloring always
be extended to a 4-coloring of the whole graph? The answer to this question is
negative, and even the algorithmic problem of deciding whether this extension
exists is open. Here, we consider a special case of this question.

Theorem 1. Let G be a plane graph with outer face F of length at most 5 bounded
by an induced cycle. If no two triangles in G share a vertex, then every proper
precoloring ϕ of F by at most four colors extends to a proper 4-coloring of G.

Proof. For a contradiction, suppose that G is a counterexample to the claim with
the smallest number of vertices. Clearly, every vertex in V (G) \V (F ) has degree
at least four. Furthermore, we can assume that F has length at least four, as if F
is a triangle, we can color G by the Four Color Theorem and permute the colors
to match ϕ.
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Note that G is 2-connected: otherwise, we have G = G1∪G2, where F belongs
to G1, G1 and G2 intersect in at most one vertex, and both of them have fewer
vertices than G. By the minimality of G, the precoloring ϕ of F extends to G1.
Furthermore, G2 has a 4-coloring by the Four Color Theorem, and by permuting
the colors in the coloring of G2, we can assume that these colorings match on
V (G1) ∩ V (G2). This would give a 4-coloring of G extending ϕ.

Consider now a cycle C 6= F in G of length at most 5, and suppose that no
chord of C is drawn inside it. We claim that C bounds a face. Indeed, otherwise
we have G = G1 ∪ G2, where F belongs to G1, G1 ∩ G2 = C and C is the outer
face of G2, and both G1 and G2 have fewer vertices than G. By the minimality
of G, we first extend ϕ to a 4-coloring of G1. This gives a proper 4-coloring of C,
which we then extend to G2. This results in a proper 4-coloring of G that extends
ϕ, which is a contradiction. Consequently, no (≤5)-cycle is separating. It follows
that no vertex v ∈ V (G) \V (F ) has two non-adjacent neighbors in F ; otherwise,
we would have V (G) = V (F )∪ {v} and since no two triangles intersect, v would
have degree at most three.

Consider now a triangle xyz ⊂ G such that x, y, z 6∈ V (F ) and deg(x) =
deg(y) = deg(z) = 4. Suppose furthermore that the edge xy is incident with a
4-face xyuv, and let w be the neighbor of x distinct from y, z and v. Observe that
the distance between u and w is at least three: otherwise, there exists a cycle C of
length at most 5 containing path uyxw. Since xyz shares no vertex with another
triangle, we have vw 6∈ V (G); hence, v 6∈ V (C), and similarly z 6∈ V (C). But
then C separates v from z, which is a contradiction. Since the distance between u
and w is at least three, at most one of u and w belongs to F . Let G′ be the graph
obtained from G− {x, y, z} by adding the edge uw. Observe that F is the outer
face of G′ and it is bounded by an induced cycle, and that no triangle contains
the edge uw. Consequently, G′ satisfies the assumptions of the theorem, and by
the minimality of G, there exists a proper 4-coloring ψ of G′ extending ϕ. Let
t be the neighbor of y distinct from x, z and u. Note that since uv and uw are
edges of G′, we have either ψ(v) = ψ(w) or {ψ(v), ψ(w)} 6= {ψ(u), ψ(t)}. In both
of the cases, ψ can be extended to a 4-coloring of G, which is a contradiction. It
follows that all faces sharing edges with xyz have length at least five.

Let us now proceed with the discharging part of the proof. We assign to each
vertex v charge deg(v)− 4 and to each face f charge `(f)− 4; the sum of these
charges is −8. We then redistribute the charge according to the following rules:

R1 Each vertex of degree at least 5 incident with a triangle T sends 1 to the
face bounded by T .

R2 Each face of length at least 5 distinct from F sends 1/3 to each triangle
with that it shares an edge whose endvertices do not belong to F .

R3 Each face of length at least 5 distinct from F sends 2/3 to each vertex of
degree two (belonging to F ) with that it is incident.
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First, let us analyze the final charge of vertices. All vertices not in V (F ) have
degree at least four, thus their initial charge is nonnegative. Vertices only send
charge by rule R1, which only applies when the initial charge of a vertex is at
least one. We conclude that the final charge of each vertex in V (G) \ V (F ) is
nonnegative.

Consider a vertex v ∈ V (F ) of degree two, and let f be the face incident with
v distinct from F . Since F is an induced cycle and no vertex of V (G) \V (F ) has
two non-adjacent neighbors in F , it follows that f has length at least five, and
thus v receives 2/3 by R3. Therefore, the final charge of v is −4/3. We conclude
that the sum of the final charges of the vertices is at least −4n2/3 − n3, where
n2 and n3 are the numbers of vertices of G of degree 2 and 3, respectively.

Let us now consider a face f 6= F . If `(f) = 4, then both the initial and the
final charge of f is 0. Suppose that `(f) ≥ 5, let t be the number of triangles to
that f sends charge by R2 and d the number of incident vertices of degree two. If
d = 0, then note that 2t ≤ `(f), since no two triangles share a vertex. Therefore,
the final charge of f is (`(f)−4)− t/2 ≥ `(f)−b`(f)/2c/3−4 > 0. If d > 0, then
d ≤ `(f)−4, since F is an induced cycle and if |V (f)\V (F )| = 1, then the vertex
of V (f) \ V (F ) would have degree two. Furthermore, we have d+ 2 + 2t ≤ `(f).
Therefore, the final charge of f is (`(f)−4)−2d/3−t/3 ≥ (`(f)−4)/3−1/3 ≥ 0.

Finally, suppose that f is a triangle. Its initial charge is −1. If f shares no
vertex with F , then either it is incident with a vertex of degree at least five, or all
incident faces have length at least five, and thus f receives total charge at least
1 by R1 and R2. We conclude that the sum of the final charges of the faces is at
least `(F )− 4− k, where k is the number of triangles that share a vertex with F .

Therefore, the sum of the final charges ofG is at least−4n2/3−n3+`(F )−4−k.
On the other hand, the sum of final charges is equal to −8, the sum of initial
charges. We obtain 4n2/3 + n3 + k ≥ `(F ) + 4. Let k1 be the number of
triangles that share one vertex with F and k2 the number of triangles sharing
an edge with F . We have k = k1 + k2. Furthermore, if a triangle shares only
one vertex with F , then this vertex has degree at least four. Consequently, we
have n2 + n3 + k1 ≤ `(F ). Combining these inequalities, we have n2/3 + k2 ≥ 4;
however, n2 ≤ 5 and k2 ≤ 2, which is a contradiction.

At first, determining the components of the proof—the choice of initial charge,
reducible configurations and discharging rules—may seem a somewhat daunting
task. Nevertheless, with a little experience this becomes rather routine. In princi-
ple, the choice of the initial charge does not matter, as one charge can be changed
into another by a simple discharging rule (although choosing the initial charge
properly may simplify the arguments and the presentation of the proof). The
common choices are

• c(v) = deg(v)−6 for vertices (and the corresponding charge c(f) = 2`(f)−6
for faces) in the problems for triangulations or graphs with many triangles;
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the choice ensures that triangles have zero charge, making them easier to
deal with.

• c(v) = deg(v)− 4 for vertices and c(f) = `(f)− 4 for faces in problems for
triangle-free graphs (for similar reasons).

• c(v) = deg(v) − d for vertices (and the corresponding charge for faces) in
problems where we know that the minimal degree of a vertex is at least d.

Once the initial charge is chosen, we should ideally have only a few kinds of objects
with negative charge (triangles in the example Theorem 1), and we need to find
a charge to move to them from somewhere (nearby vertices of big degree and
large faces). Usually, we can come up with examples of parts of the graphs where
not enough charge is available in the neighborhood of an object with negative
charge (in our case, triangle with all vertices of degree four and incident with a
4-face). In such a part, we need to find some reducible configuration, excluding
its existence. Several rounds of this process (attempt to discharge and find a
reducible configuration if that is not possible) often lead to a proof. Even the
proofs of the Four Color Theorem were found by a similar procedure, although
computers were used both to test the reducibility of the configurations and to
check where a negative charge appears after application of proposed discharging
rules.

2.2 Precoloring extension

The idea of the precoloring extension technique is as follows: suppose that we
want to color a planar graph. We will maintain lists of allowed colors for each
vertex. We pick a few vertices incident with the outer face, color them and remove
their colors from the list of their neighbors. We repeat this operation until the
whole graph is colored.

Of course, in order for this to work, we need to ensure that the lists of the
vertices incident with the outer face do not shrink too much, so that the coloring
still exists. To do so, we need to pick the vertices to be colored in such a way
that not too many of them have a common neighbor, and select their coloring
carefully to avoid decreasing the lists of the vertices incident with the outer face
below a certain bound.

Before we discuss the technique in more detail, let us give an example. We
prove that every planar graph is 5-list-colorable. The presented proof is a slight
variation of the well known proof of this fact by Thomassen [65]. The main
difference in our proof is the choice of the vertices to color—Thomassen’s proof
uses a different idea of only picking one vertex, but instead of coloring it directly,
he “reserves” two possible colors for the vertex by removing them from the lists
of its neighbors that are not incident with the outer face, and only chooses one

12



of the two colors when the rest of the graph is colored depending on the colors
chosen for its neighbors incident with the outer face.

Theorem 2. Let G be a plane graph with outer face F and let P ⊆ F be a
path (possibly empty) of length at most one. Let L be a list assignment such that
|L(v)| ≥ 5 for v ∈ V (G) \ V (F ), |L(v)| ≥ 3 for v ∈ V (F ) \ V (P ) and |L(v)| ≥ 1
for v ∈ V (P ). If P is L-colorable, then G is L-colorable.

Proof. By removing the extra colors, we can assume that |L(v)| = 5 for v ∈
V (G) \ V (F ), |L(v)| = 3 for v ∈ V (F ) \ V (P ) and |L(v)| = 1 for v ∈ V (P ), and
that P has length one. Assume for a contradiction that G is a counterexample
with the smallest number of vertices. Clearly, G is connected. Furthermore, G
is 2-connected: otherwise, we have G = G1 ∪ G2, where G1 and G2 intersect
in a single vertex v and both G1 and G2 have fewer vertices than G. We can
assume that P ⊆ G1. By the minimality of G, there exists an L-coloring ϕ of
G1. Furthermore, there also exists a coloring of G2 from the lists obtained from
L by changing the list of v to {ϕ(v)}. This gives an L-coloring of G, which is a
contradiction. A similar argument shows that F is bounded by an induced cycle
(otherwise, we split G on the chord of F , color the part containing P and extend
the coloring to the other part).

Let p be a vertex of P and v1 the vertex of V (F ) \ V (P ) adjacent to p, and
choose a subset S of L(v1) \ L(p) of size two. Let pv1v2 . . . vnq be the subpath of
F such that S ⊆ L(vi) for 1 ≤ i ≤ n and S 6⊆ L(q) (such a path exists, since S
is not a subset of the list of any vertex of P ). Let ψ be a coloring of the path
v1 . . . vn by colors in S (alternating on this path) such that ψ(vn) 6∈ L(q). Let
G′ = G−{v1, . . . , vn} and let L′ be the list assignment such that L′(v) = L(v)\S
for every v ∈ V (G)\V (F ) which has a neighbor in {v1, . . . , vn} and L′(v) = L(v)
for every other vertex v. By the minimality of G, the graph G′ is L′-colorable,
and combined with ψ, this gives an L-coloring of G. This is a contradiction.

The key part of a proof by precoloring extension is the choice of the constraints
on the lists incident with the outer face. Obviously, every graph satisfying these
constraints (at least without a precolored path) should be colorable—in Theo-
rem 2, we cannot allow the vertices of F to have lists of size two, since there are
many examples of graphs not colorable from such lists (in fact, the assumptions
of Theorem 2 are rather tight and almost any attempt to strengthen them fails).
On the other hand, the conditions need to be strong enough to be maintainable—
while Theorem 2 would certainly be true if we required the vertices incident with
the outer face to have lists of size four, it does not seem possible to devise re-
ductions preserving this assumption. Finding the right conditions usually needs
a lot of experimentation.

A related concern is the choice of the length of the precolored path P , which
is needed to eliminate short paths between vertices incident with the outer face.
In Theorem 2, we only needed to eliminate chords, and thus a path of length
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one sufficed. More involved situations may require considering longer precolored
paths. For example, Thomassen’s proof [69] of 3-list-colorability of planar graphs
of girth 5 assumes that all vertices incident with the outer face have list of size
at least two and that the vertices with list of size two form an independent set.
Furthermore, one of the reductions in the proof colors not only vertices incident
with the outer face, but also some vertices in their neighborhood. Thus, to ensure
the validity of the list assignment after this reduction, one needs to exclude the
existence of a path v1v2v3v4, where v1 and v4 are incident with the outer face, v1
and v2 are being colored and v4 has list of size two. Therefore, one needs to be
able to handle such a path of length three.

A problem that may appear with longer precolored paths is that the col-
orability claim may no longer hold without further assumptions. Sometimes,
these assumptions can be expressed as a finite list of forbidden subgraphs with
prescribed lists; for example in Chapter 10, we need to deal with a precolored path
of length five, and this requires us to forbid 11 graphs depicted in Figure 10.2.

Let us also remark that the precoloring extension technique naturally gives
proofs for list coloring statements, as the lists are in any case needed to record
the effect of the already colored part of the graph. In particular, all known
proofs of the 5-list-colorability of planar graphs and 3-list-colorability of planar
graphs of girth 5 use this technique, and it is an open problem whether these
claims can be proved say by the method of reducible configurations (which would
be preferable for some generalizations). On the other hand, this seems to be a
limitation of the technique in the cases where the graphs from the considered
class are k-colorable, but not necessarily k-list-colorable. While it still may be
possible to get a precoloring extension proof of such a statement, the reductions
must somehow use the fact that all the lists are subsets of a fixed set of k colors.

For examples of more involved applications of the precoloring extension tech-
nique, see Chapters 8, 9 and 10.

2.3 Recoloring

The basic difficulty in generalizing claims from sphere to the other surfaces is
the presence of short non-contractible cycles. For example, if we tried to prove
Theorem 1 in the projective plane, we would run into problems at the point
where we attempt to reduce the triangle xyz by adding the edge uw—together
with a path of length two between u and w, this could result in a non-contractible
triangle, which would not be excluded by the preceding argument.

One possible way to deal with this problem is as follows. First, we show
that the hypothetical minimal counterexample G actually has to contain many
disjoint short non-contractible cycles (e.g., by a modification of a discharging
argument showing existence of many configurations that are reducible unless they
are incident with a non-contractible cycle). We then argue that many of these
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cycles have the same homotopy. Consequently, there exists a part of the surface
homeomorphic to a cylinder containing a subgraph G with disjoint short cycles
C1, C2, . . . , Cm (for m large enough) going around the cylinder. We can assume
that for any i < j < k, Cj separates Ci from Ck; let Gi denote the subgraph of
G drawn between Ci and Ci+1, and let G′ denote the subgraph of G between C1

and Cm. The graphs Gi are planar, and we show that Gi has several colorings
that differ on V (Ci)∪V (Ci+1) (for this, we can use the other discussed methods,
or possibly find a coloring of Gi by fewer colors and use the additional available
colors to obtain further colorings). We then combine the available colorings and
prove that every precoloring of C1 ∪Cm extends to a coloring of G′. This gives a
contradiction, since G− [V (G′)\ (V (C1)∪V (Cm))] is colorable by the minimality
of G, and the extension would give a coloring of G.

Let us give an example, which can be useful as a part of a proof that the
number of 7-critical graphs embedded in a fixed surface is finite (although, let us
note that there exists a much easier way of proving this using results of Gallai [39]
on the structure of critical graphs).

Lemma 3. Let G be a plane graph and A and B two faces of G bounded by
triangles. Let ϕ be a coloring of A∪B by 6 colors. Suppose that ϕ does not extend
to a 6-coloring of G, but it does extend to a 6-coloring of every proper subgraph
of G that includes A ∪ B. Then G contains at most 18 triangles separating A
from B, including the cycles A and B themself.

Proof. Note that every non-facial triangle in G separates A from B and that
every vertex not in A ∪ B has degree at least 6. Otherwise, let G = G1 ∪ G2,
where A ∪ B ⊆ G1 and G2 consists of the part of G drawn inside the triangle in
the former case and of the vertex of degree at most five and its neighborhood in
the latter case. By the assumptions of the lemma, ϕ extends to a 6-coloring of
G1, and we can further extend it to G2. This gives a 6-coloring of G extending
ϕ, which is a contradiction.

Let C1, . . . , CN be the triangles in G separating A from B ordered in such
a way that Ci separates A from Ci+1 for 1 ≤ i ≤ N − 1; note that C1 = A and
CN = B. We claim that

(1) Ci is vertex-disjoint with Ci+3 for 1 ≤ i ≤ N − 3.

Proof. Suppose on the contrary that Ci intersects with Ci+3 for some i; then
Ci ∪ Ci+3 contains a closed walk of length 4 or 6 bounding an open disk that is
disjoint with A and B, but contains at least one vertex of G. Furthermore, if
the length of the closed walk is 6, then it passes through one vertex twice. Let
us choose a closed walk W (not necessarily contained in Ci ∪ Ci+3) with these
properties so that the open disk ∆ bounded by W is as small as possible. If
no edge joining vertices of W is drawn inside ∆, then let Q = W and Λ = ∆.
Otherwise, let Q be a separating induced cycle with V (Q) ⊆ V (W ) such that
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the open disk Λ bounded by Q is disjoint with A and B. Let d be the number of
vertices of Q, and note that 4 ≤ d ≤ 5 (all non-facial triangles separate A from
B, and if W has length 6, then it passes through one vertex twice). Let G′ be
subgraph of G drawn in the closure of Λ, let n be the number of its vertices and
m the number of its edges. Since all vertices of G not in A ∪ B have degree at
least 6, we have 2m =

∑
v∈V (G′) degG′(v) ≥ 6(n−d)+

∑
v∈V (Q) degG′(v), and thus

m ≥ 3n − 3d + 1
2

∑
v∈V (Q) degG′(v). On the other hand, the number of edges of

G′ is 3n− 6−∑f∈F (G′)(`(f)− 3) by Euler’s formula. Therefore,

6d− 12 ≥ 2
∑

f∈F (G′)

(`(f)− 3) +
∑

v∈V (Q)

degG′(v).

If Q is a cycle, then it bounds a face of length d, hence

4d− 6 ≥ 2
∑

f∈F (G′),f 6=Q
(`(f)− 3) +

∑
v∈V (Q)

degG′(v).

Since Q is an induced cycle, observe that the number of vertices of degree two
in G′ is bounded by

∑
f∈F (G′),f 6=Q(`(f) − 3). Therefore, 4d − 6 ≥ 3d, which is a

contradiction. Let us now consider the case that Q = W = vv1v2vw1w2 is a walk
of length 6 passing twice through a vertex v. Suppose that v1, v2 and v have
a common neighbor u. By the minimality of ∆ and the absence of separating
triangles, we conclude that u is the only vertex drawn inside ∆; but then u
has degree at most 5, which is a contradiction. Therefore, v, v1 and v2 have
no common neighbor. It follows that v1 either has degree at least four or it is
incident with a face of length at least four. By symmetry, the same holds for
v2, w1 and w2. Note that v has degree at least four and that a 4-face cannot be
incident with three of v1, v2, w1 and w2, since no edge between vertices of Q is
drawn inside Λ. We conclude that 2

∑
f∈F (G′)(`(f)−3) +

∑
v∈V (Q) degG′(v) ≥ 20,

which gives a contradiction.

Suppose now that that N ≥ 19. Then by (1), there exist pairwise vertex-
disjoint cycles K1, . . . , K7 in G separating A from B, where K1 = A, K7 = B
and Ki separates A from Ki+1 for 1 ≤ i ≤ 6. Let Gi denote the subgraph of G
drawn between Ki and Ki+1. By the Four Color Theorem, Gi is 4-colorable; let us
fix such a 4-coloring ψi. Let vertices of Ki be denoted by vi1, v

i
2 and vi3, where the

labels are chosen so that for every i ∈ {1, . . . , 6}, there exist at least two values
j ∈ {1, 2, 3} satisfying ψi(v

i
j) = ψi(v

i+1
j ). We say that Gi is copying if the equality

holds for all three values of j, and that it is j-changing if ψi(v
i
j) 6= ψi(v

i+1
j ) for

some j ∈ {1, 2, 3}.
Let c1, c2 and c3 be distinct colors and let α be a coloring of K2 using at least

one of these colors. We claim that there exists a 6-coloring β of G2∪G3 extending
α such that {β(v41), β(v42), β(v43)} = {c1, c2, c3}. The coloring β is constructed as
follows: let β1 be a coloring obtained from ψ2 by permuting the colors so that β1
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matches α on K2. We can assume that α(v21) = 1, α(v22) = 2 and α(v23) = 3, and
that β1 does not use colors 5 and 6.

Suppose first that G3 is copying. If {β1(v31), β1(v
3
2), β1(v

3
3)} ∩ {c1, c2, c3} = ∅,

then let β′1 be obtained from β1 by changing the color of v31 to 5, otherwise let
β′1 = β1. Let S = {β′1(v31), β′1(v

3
2), β′1(v

3
3)} and note that we can assume that

c1 ∈ S. Let β2 be the coloring obtained from ψ3 by permuting its colors so that
β2 matches β′1 on K2, such that β2 does not use any color in {c2, c3} \ S. Let
β′2 be obtained from β2 by recoloring at most two of vertices of K4 by colors c2
and c3 if necessary, so that {β′2(v41), β′2(v

4
2), β′2(v

4
3)} = {c1, c2, c3}. We let β be the

combination of β′1 and β′2.
If G3 is not copying, then by symmetry, we can assume that it is 3-changing.

Since {c1, c2, c3} 6= {4, 5, 6}, we can obtain a coloring β′1 of G2 such that β′1(v
3
3) 6∈

{c1, c2, c3} from β1 by recoloring v33 if needed. Then, we choose β2 by per-
muting the colors of ψ3 so that it matches β′1 on K3 and so that β2(v

4
3) ∈

{c1, c2, c3}. Finally, we obtain β′2 by recoloring v41 and v42 if necessary so that
{β′2(v41), β′2(v

4
2), β′2(v

4
3)} = {c1, c2, c3}, and let β be the combination of β′1 and β′2.

Let {c1, c2, c3} = {1, . . . , 6} \ {ϕ(v71), ϕ(v72), ϕ(v73)}. Observe that we can per-
mute the colors of ψ1 and possibly recolor one vertex of K2 so that the resulting
coloring α of G1 matches ϕ on K1 and uses at least one of the colors c1, c2 and
c3 on K2. By the preceding claim, we can then extend α to a 6-coloring ψ of
G1 ∪ G2 ∪ G3 that uses exactly the colors c1, c2 and c3 on K4. Symmetrically,
there exists a 6-coloring ψ′ of G4 ∪G5 ∪G6 matching ϕ on K7 such that ψ′ uses
exactly the colors c1, c2 and c3 on K4. Furthermore, by permuting the colors c1,
c2 and c3 in ψ′ (which do not appear on K7), we can ensure that ψ and ψ′ match
on K4. Therefore, the combination of ψ and ψ′ is a 6-coloring of G extending ϕ.
This is a contradiction.

The previous lemma can be used to deal with non-facial triangles, as indicated
by the following example.

Theorem 4. Let G be a plane graph and A and B two faces of G bounded by
triangles. Let ϕ be any coloring of A ∪ B by 6 colors. If the distance between A
and B is at least 80, then ϕ extends to a 6-coloring of G.

Proof. For contradiction, assume that G is a counterexample with the smallest
number of vertices. Clearly, every vertex not in A ∪ B has degree at least 6.
Furthermore, since every planar graph is 6-colorable, every triangle that does
not separate A from B bounds a face (otherwise we would first color the part of
the graph outside the triangle, then extend the coloring inside). Similarly, G is
connected.

Suppose that G contains a vertex v 6∈ V (A) ∪ V (B) of degree 6 not incident
with a triangle separating A from B, such that all incident faces are triangles. Let
v1, v2, . . . , v6 be the neighbors of v in order around v according to the drawing of
G. For 1 ≤ i ≤ 6, let di be the distance between A and vi. Since all faces incident
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with v are triangles, we have |di+1 − di| ≤ 1 for each i (where d7 = d1). We can
assume that d1 is the smallest of these distances. A straightforward case analysis
shows that da = db, where {a, b} is equal to {2, 6} or {1, 3} or {3, 6} or {1, 5}
or {2, 5}. Note that at most one of va and vb belongs to B, as otherwise vavvb
would be a triangle separating A from B. Similarly, neither va nor vb belongs to
A, as if say va did, we would have db = da = 0 and vb would belong to A as well,
and vavvb would be a triangle separating A from B.

Let G′ be the graph obtained from G− v by identifying va with vb. This does
not create a loop, since v does not belong to a triangle separating A from B. Since
da = db, the distance between A and B in G′ is greater or equal to the distance
between A and B in G. By the minimality of G, there exists a 6-coloring of G′

extending ϕ. Since the neighbors of v have at most five different colors in this
coloring (va and vb get the same color), we conclude that this coloring extends
to a 6-coloring of G. This is a contradiction, hence each vertex of degree 6 not
belonging to A∪B is either incident with a face of length at least four or with a
triangle separating A from B.

Let us now give each vertex v charge deg(v) − 6 and each face f the charge
2`(f) − 6. The sum of these charges is −12. Each face of length at least four
now sends charge 1/2 to each incident vertex of degree 6. Furthermore, for each
triangle separating A from B, we increase the charge of all its incident vertices by
1/2. By this adjustment, the charge of each triangular face is 0, the charge of any
other face is at least 2`(f)− 6− `(f)/2 = 3`(f)/2− 6 ≥ 0 and the charge of each
vertex not in A∪B is at least 1/2. Note that all vertices of A∪B have final charge
at least −4. Let n = |V (G)| and let N be the number of triangles separating A
from B. We have −12 + 3N/2 ≥ −24 + (n− 6)/2, and thus N ≥ n/3− 10. Since
the distance between A and B is at least 80 and G is connected, it follows that
G has at least 85 vertices and we have N ≥ 19. Note that by the minimality
of G, ϕ extends to every proper subgraph of G including A ∪ B. This gives a
contradiction with Lemma 3.

A rather more difficult example of an application of the recoloring technique
can be found in Chapter 6.

2.4 Critical graphs

A technical difficulty that often appears in the proofs of the coloring results is that
the considered graph may contain “irrelevant” parts. For example, when proving
k-colorability, we usually do not care about vertices of degree less than k (as long
as the class of graphs in question is closed under induced subgraphs). To avoid
this difficulty, one typically considers a hypothetical minimal counterexample G,
which has the property that every proper subgraph of G is k-colorable, while G
itself is not k-colorable. Equivalently, G is (k + 1)-critical.
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This motivates the study of the properties of k-critical graphs. For exam-
ple, every k-critical graph has minimum degree at least k − 1 (more generally,
Dirac [20] proved that they are (k − 1)-edge-connected). Gallai [39] proved that
every 2-connected subgraph induced by vertices of degree k − 1 in a k-critical
graph is either complete or an odd cycle, and this result is important in many
coloring proofs. For instance, it gives a lower bound on the density of 7-critical
graphs that implies that for any g, only finitely many of them have genus at most
g, as observed by Mohar [54] and independently by Thomassen [64]. For a survey
on other properties of k-critical graphs, see [47].

In proofs using the method of reducible configurations, one is often required
to deal separately with short non-facial cycles. For instance, suppose that we
would like to prove Grötzsch’s theorem and 3-color a triangle-free graph G, and
that G has a face v1v2v3v4 of length four. We can attempt identifying v1 with
v3, eliminating the face and suppressing the parallel edges. If the resulting graph
is 3-colorable, the original graph G clearly is 3-colorable as well. Of course, a
possible problem is that the identification can create a triangle. This happens
exactly when v1 and v3 are joined by a path v1xyv3 of length three in G. Note
that v2 6∈ {x, y}, since G is triangle-free. It follows that C = v1v2v3yx is a 5-cycle
in G. If C bounded a face, then v2 would have degree two, and we could remove
v2 instead. Therefore, only the case that C is non-facial is problematic.

One possible way how to deal with this difficulty is the following: we will
prove a more general claim that in every triangle-free planar graph G, every
precoloring of a 5-cycle K by three colors can be extended to a 3-coloring of G.
In a hypothetical minimal counterexample to this claim, every 5-cycle bounds a
face; and consequently, we can always reduce 4-faces as outlined in the preceding
paragraph (assuming that at least one of v1 and v3 does not belong to K). Indeed,
if C were a non-facial 5-cycle, then we could express G as G1∪G2, where K ⊆ G1,
G1 ∩G2 = C and both G1 and G2 are proper subgraphs of G. By the minimality
of G, there would exist a 3-coloring of G1 extending the precoloring of K. This
coloring induces a 3-coloring of C, and again by the minimality of G, we could
extend it to a 3-coloring of G2. This would give a 3-coloring of G extending the
precoloring of K. The proof of Theorem 1 demonstrated this idea.

Sometimes, more complicated variants of the argument are needed. The avail-
able reducible configurations may force us to deal with cycles of length k, but it
may happen that the claim that every precoloring of a k-cycle extends is false.
For example, in his proof of Grötzsch’s theorem, Thomassen [68] needed to deal
with cycles of length 9 in graphs of girth five, and it is not true that every pre-
coloring of a 9-cycle in such a graph extends. To handle this issue, he proved the
following claim.

Theorem 5. Let G be a plane graph of girth at least 5 and let C ⊆ G be a facial
cycle of length at most 9. Let ϕ be a proper coloring of C by 3-colors. There exists
a 3-coloring of G extending ϕ, unless either `(C) ≥ 8 and there exists a chord of
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Figure 2.1: 4-critical graphs of girth five and a precolored (≤9)-face

C joining two vertices u and v with ϕ(u) = ϕ(v), or `(C) = 9, three vertices u,
v and w of C have a common neighbor and ϕ(u) 6= ϕ(v) 6= ϕ(w) 6= ϕ(u).

This does not enable us to eliminate non-facial 9-cycles entirely; however, we
can assume that the interior of every 9-cycle contains at most one vertex, which
in turn may be sufficient to argue the reducibility of a configuration. Examples
of similar applications can be found throughout the thesis; in this section, we
develop some of the necessary theory and present ideas on how results similar to
Theorem 5 can be proved.

Notably, Theorem 5 identifies what could be considered to be “4-critical
graphs with precolored cycle C” (which are planar and of girth five, and where
C bounds a face)— 8- or 9-cycle C with a chord, and a 9-cycle C together with a
vertex with three neighbors in C, see Figure 2.1. However, it is not entirely clear
what we mean by a critical graph with a precolored subgraph. There are at least
two basic ways of defining this concept; for a graph G and its proper subgraph
T and a fixed number of colors k, we will say that

• G is strongly T -critical (for k-colorability) if there exists a proper k-coloring
ϕ of T that extends to a k-coloring of every proper subgraph of G that
includes T , but not to a k-coloring of G.

• G is T -critical (for k-colorability) if for every proper subgraph G′ of G
including T , there exists a proper k-coloring of T that extends to a k-
coloring of G′, but not to a k-coloring of G.

Let us remark that T itself is not considered to be T -critical. This choice is
essentially arbitrary—there are several occasions where including this trivial case
would simplify statements of results, but many other cases where we would need
to exclude it.

Clearly, if G is strongly T -critical, then it is also T -critical. However, the
converse does not hold. For example, if G consists of a 5-cycle C with two
chords, then G is C-critical for 3-colorability, but not strongly C-critical (while
a cycle C with one chord would be both C-critical and strongly C-critical). In
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Figure 2.2: Subgraph versus subset distinction

the special case that T is empty, both ∅-critical and strongly ∅-critical graphs for
k-colorability coincide with (k + 1)-critical graphs.

We define the criticality with respect to a subgraph, rather than a subset of
vertices. This is mostly for a notational convenience (most often, we will study
graphs critical with respect to a facial cycle C, and it is easier to write C-critical
than V (C)-critical). Consider a graph T and let T ′ be a graph with the same
set of vertices, but with no edges. Note that a T -critical graph is not necessarily
T ′-critical—the graph G in Figure 2.2 is T -critical for 3-coloring, where T consists
of the thick edge e, however G−e has no 3-coloring, and thus G is not T ′-critical.
However, each T ′-critical graph is also T -critical; more generally:

Lemma 6. If G is T -critical and T ⊆ S ⊂ G, then G is S-critical.

Proof. If G′ is a proper subgraph of G including S, then by the criticality of G,
there exists a coloring of T that extends to a coloring of G′, but not to a coloring
of G. This gives a coloring of S that extends to a coloring of G′, but not to G.
Consequently, G is S-critical.

While the definition of strongly T -critical graphs may seem more natural,
there is a good motivation for the definition of a T -critical graphs—they capture
the information about which precolorings of T extend to the whole graph, as the
following lemma shows. For a graph G and its subgraph T , let ck(T,G) denote
the set of proper k-colorings of T that extend to a proper k-coloring of G.

Lemma 7. Let T be a proper subgraph of G and let k be an integer. There exists
G′ ⊆ G with T ⊆ G′ such that ck(T,G

′) = ck(T,G) and either G′ is T -critical or
G′ = T .

Proof. We let G′ be a minimal subgraph of G such that T ⊆ G′ and ck(T,G
′) =

ck(T,G). For every proper subgraph G′′ ⊂ G′ with T ⊆ G′′, the minimality of
G′ implies that ck(T,G

′′) 6= ck(T,G) = ck(T,G
′), hence there exists a k-coloring

of T that extends to G′′, but not G′. Consequently, either G′ = T or G′ is
T -critical.
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The analogous claim does not hold for strongly T -critical graphs, as the afore-
mentioned example of a cycle with two chords shows.

Let us now demonstrate that the notion of graphs critical with respect to a
subgraph can be used to restrict non-facial cycles in embedded critical graphs; i.e.,
that if G is a critical graph drawn on a surface and W is a non-facial contractible
cycle in G, then the subgraph of G drawn inside W is W -critical. We state
the result in a little more general way which allows W to be a closed walk with
repeated vertices and edges.

Theorem 8. Let G be a graph embedded in a surface Σ and let Λ ⊂ Σ be an open
disk bounded by a closed walk W ⊆ G such that Λ is not a face of G. Let T be a
subgraph of G disjoint from Λ. Let f ′ be a homeomorphism from the interior of
a closed disk ∆ to Λ, and let f : ∆ → Σ be the continuous extension of f ′. Let
G′ be the graph drawn in ∆ such that f(G′) is equal to the subgraph of G drawn
in the closure of Λ and the boundary of ∆ is formed by a cycle C ⊂ G′. If G is
T -critical, then G′ is C-critical.

Proof. Let G1 be a proper subgraph of G′ that includes C, and let G2 = G −
f(G′−G1). Note that G2 is a proper subgraph of G including T . If G is T -critical,
then there exists a coloring ψ of T that extends to a coloring ϕ of G2, but not to
a coloring of G. Let ψ′ be the coloring of C such that ψ′(v) = ϕ(f(v)) for every
v ∈ V (C). Observe that ψ′ extends to a coloring of G1 (given as the preimage
of ϕ), but does not extend to a coloring of G′. Since this holds for every proper
subgraph of G′ including C, we conclude that G′ is C-critical.

More generally, a claim analogous to Theorem 8 can be applied to any cut in
a graph. Another useful operation is cutting the surface along a path.

Lemma 9. Let G be a graph embedded in a surface Σ, let T be a subgraph of G
and let c be a simple (possibly closed) curve such that for every edge e ∈ E(G),
if the interior of e intersects c, then e is completely contained in c. Let Σ′ be the
(possibly disconnected) surface with holes obtained from Σ by cutting along c and
let f : Σ′ → Σ be the corresponding continuous mapping. Let G′ be the graph
drawn in Σ′ such that f(G′) is equal to G, each edge e ∈ G∩ c corresponds to two
edges of G′ and each vertex v ∈ G∩c distinct from the endpoints of c corresponds
to two vertices of G′. Let T ′ consist of the subgraph of G′ contained in f−1(T ∪c).
If G is T -critical, then G′ = T ′ or G′ is T ′-critical.

Proof. Suppose that G′ 6= T ′, and let G1 be a proper subgraph of G′ including
T ′. Let G2 = f(G1) and note that G2 is a proper subgraph of G including T .
If G is T -critical, then there exists a coloring ψ of T that extends to a coloring
ϕ of G2, but not to G. Let ψ′ be the coloring of T ′ defined by ψ′(v) = ϕ(f(v))
for v ∈ V (T ′). Observe that ψ′ extends to a coloring of G1, but not of G′. This
implies that G′ is T ′-critical.
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Let us remark that these claims do not hold for strongly T -critical graphs.
In the view of these results, one could question whether the strong T -criticality
is actually useful. One reason for introducing it is historical. There have been
quite a few papers dealing with the issue, especially with the case of extending
a precoloring of a facial cycle in a planar graph. Walls [77] and Thomassen [71]
independently listed plane strongly C-critical graphs of girth at least five, where
C is a facial cycle of length at most 11 (the latter paper in fact proves a more
general claim about list coloring), and Dvořák and Kawarabayashi [22] extended
this for facial 12-cycles. For triangle-free graphs, the problem was considered by
Gimbel and Thomassen [41] for 6-cycles and by Aksenov et al. [1] for 7-cycles.
Similar results for extension of a coloring of a (≤ 6)-cycle to a 5-coloring of a
planar graph were obtained by Thomassen [66]. All these results are essentially
formulated in terms of strong criticality.

A more substantial reason is that in some situations, it is more convenient
to work with strong reducibility. If G is strongly T -critical, then we can fix
a precoloring ϕ of T that does not extend to G, but extends to every proper
subgraph (for T -criticality, there is no such single precoloring). This may simplify
some arguments; for example, if we use the method of reducible configurations
and we need to reduce a configuration appearing close to T , we can use several
different reductions depending on the colors of the vertices of T according to ϕ.

Fortunately, it is typically easy to switch between T -criticality and strong
T -criticality as needed. One direction is trivial, since every strongly T -critical
graph is also T -critical. For the other direction, note that if G is T -critical, then
there exists a proper coloring ϕ of T that does not extend to a coloring of G.
Now, if G′ ⊆ G is a minimal subgraph of G including T such that ϕ does not
extend to a coloring of G′, then G′ is strongly T -critical and G′ 6= T . Theorem 8
can then be used to obtain information about the difference between G and G′.

Indeed, it is not hard to prove the following claims (see e.g. [28, 31]): Let
G be a plane graph and C a facial cycle in G. Suppose that G is C-critical for
k-colorability and that G 6= C. Then every face C ′ of G distinct from C has
length at most

• `(C)− 1 if k = 5,

• `(C)− 2 if k = 3 and G is triangle-free, and

• `(C)− 3 if k = 3 and G has girth at least five.

Consequently in these cases, one can generate C-critical graphs from strongly
C-critical ones by combining them with C ′-critical graphs, where `(C ′) < `(C)
(which in turn can be recursively obtained from strongly C ′-critical graphs).
And since the size of the precolored subgraph decreases, this algorithm is guar-
anteed to terminate. Using it, one can easily verify that although Walls [77]
and Thomassen [71] explicitly only determine strongly C-critical graphs (plane
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of girth at least five, with respect to a facial cycle C of length at most 11), they
in fact list all such C-critical graphs except for cycles with two chords. Let us
remark that this observation does not hold for 4-colorability of plane graphs—for
every t there exists a C-critical plane graph G for 4-colorability, where C is a
4-face and G has t other 4-faces. This illustrates difficulties with extending the
Four Color Theorem.

How can we prove what the T -critical graphs (for a prescribed graph T ) from
some class are? Both the technique of reducible configurations and of precoloring
extension can be useful. In both cases, assume that we already know the list L of
all such graphs (which may be finite, or at least belong to some easily described
infinite class of graphs). Now, for a contradiction we assume that there exists a
T -critical graph G not belonging to L, and let us consider the smallest such graph.
If G is not strongly T -critical, then it contains a proper subgraph G′ ⊃ T that
is (strongly) T -critical, and by the minimality of G, we have G′ ∈ L. Therefore,
G can be obtained from some graph in L by filling its faces with smaller critical
graphs. Thus, it is easy to generate all such candidates for G and prove that they
either are not T -critical or belong to L.

Suppose now that G is strongly T -critical, and thus there exists a coloring
ϕ of T that extends to every proper subgraph of G, but not to G. Let us now
discuss the specifics of the two methods.

• In order to apply the reducible configurations technique, we first find a
reducible configuration in G that is far enough from T such that the coloring
of T does not interfere with the reducibility (for this, it is often useful that
in a plane graph, the charges do not sum to zero, but to a strictly negative
number, and thus we can somewhat increase the charge of the vertices of
T while still keeping the sum of charges negative). Let G′ be the graph
obtained from G by performing the reduction; we have that ϕ does not
extend to a coloring of G′, and thus G′ has a strongly T -critical subgraph
G′′. By the minimality of G, we have G′′ ∈ L. Thus, G can be obtained
from a graph in L by first “unreducing” a configuration, and then filling in
further critical graphs in the faces of the resulting graph G′′′ ⊆ G. We again
need to argue that all graphs obtained in that way either are not T -critical
or belong to L.

There is a slight difficulty with the last step. Suppose that we are consid-
ering say the case that T is a facial cycle in a plane graph and that we are
using 5 colors. As mentioned before, in this case each face of G′′ has length
at most `(T )−1. However, the faces of the graph G′′′ could be longer, since
unreducing the configuration usually extends the lengths of cycles. If the
faces of G′′′ have length at most `(T ), we can still proceed with the proof by
induction. However, if some face has length greater than `(T ), some more
involved argument to deal with the case must be found.

An example of this approach can be found in Chapter 4. A more involved
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application of the technique combined with other ideas is also used in Chap-
ter 7.

• If we use the precoloring extension method, we instead remove vertices of
T from G and remove their colors according to ϕ from the lists of their
neighbors. Since ϕ does not extend to a coloring of G, it follows that the
resulting list assignment does not satisfy the assumptions of the particular
result that we are using (e.g., if T is a facial cycle, we use 5 colors and
we apply Theorem 2, there must exist a vertex v with list of size at most
two). This may give information necessary for the inductive proof of the
characterization of critical graphs—continuing our example, v has at least
three neighbors in T . Let G′ be the subgraph of G induced by V (T ) ∪ v,
and note that all faces of G′ distinct from T have length at most `(T ).
Using Theorem 8 and the inductive assumption that all graphs critical with
respect to a facial `(T )-cycle belong to L, we can again argue that either
G is not T -critical or it belongs to L.

A more detailed version of this argument can be found in Chapter 8. An
analogous approach for 3-list-colorability of plane graphs of girth at least 5
was investigated by Dvořák and Kawarabayashi [22].

Both approaches can also be naturally used to determine the elements of L:
initially, set L = ∅ and attempt to proceed with the proof. If the attempt fails,
we obtain a counterexample—a T -critical graph from the considered class that
does not belong to L. We include this graph and repeat the whole process. Of
course, this only leads to a result when L is finite, otherwise we at some point
need to guess a generalization of the obtained examples of T -critical graphs that
enables us to describe an infinite set L in a finite way.

Almost all other examples given in the rest of the thesis deal with critical
graphs in some form. In Chapter 7, we give bounds on the size of embedded
graphs of girth 5 critical for 3-colorability, instead of an exact characterization.
In Chapters 8 and 9, we deal with graphs critical for 5-list-colorability that are
embedded in plane with distant perturbations (crossings, precolored vertices,
. . . ), and in Chapter 10, we deal with similar ideas for 3-list-colorability of plane
graphs with distant (≤4)-cycles.
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Part I

Applications of the basic
techniques
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In this part, we give several more realistic examples of the methods outlined
in Chapter 2. The first of them (Chapter 3) uses the method of reducible con-
figurations to give a new proof of Grötzsch’s theorem with the property that the
reducibility of the configurations can be checked by inspecting a constant number
of edges, which is useful in the algorithmic setting. The second one (Chapter 4)
demonstrates the use of discharging method to find a list of graphs critical with
respect to a precolored facial cycle. The third one (Chapter 5) uses the precolor-
ing extension method to prove 3-list-colorability of plane graphs without triangles
and with restrictions on 4-cycles, generalizing a result of Thomassen [72]. The fi-
nal example (Chapter 6) combines the method of reducible configurations and the
recoloring technique to derive a rather technical result regarding graphs critical
with respect to two facial cycles (this result is later used in Chapter 7).
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Chapter 3

Three-coloring triangle-free
planar graphs in linear time1

The following is a classical theorem of Grötzsch [43].

Theorem 10. Every triangle-free planar graph is 3-colorable.

This result has been the subject of extensive research. Thomassen [67, 72]
found two short proofs and extended the result in many ways. We return to the
various extensions later, but let us discuss algorithmic aspects of Theorem 10
first. It is easy to convert either of Thomassen’s proofs into a quadratic-time
algorithm to find a 3-coloring, but it is not clear how to do so in linear time. A
serious problem appears very early in the algorithm. Given a facial cycle C of
length four, one would like to identify a pair of diagonally opposite vertices of C
and apply recursion to the smaller graph. It is easy to see that at least one pair
of diagonally opposite vertices on C can be identified without creating a triangle,
but how can we efficiently decide which pair? If we could test in (amortized)
constant time whether given two vertices are joined by a path of length at most
three, then that would take care of this issue. This can, in fact, be done, using a
data structure of Kowalik and Kurowski [49] provided the graph does not change.
In our application, however, we need to repeatedly identify vertices, and it is
not clear how to maintain the data structure of Kowalik and Kurowski in overall
linear time. Kowalik [48] developed a sophisticated enhancement of this data
structure that supports edge addition and deletion in amortized O(log n) time.
Furthermore, he found a variant of the proof of Grötzsch’s theorem that can be
turned into an O(n log n) algorithm to 3-color a triangle-free planar graph on n
vertices using this data structure. We improve this to a linear-time algorithm, as
follows.

Theorem 11. There is a linear-time algorithm to 3-color an input triangle-free
planar graph.

1The results of this chapter are based on Dvořák et al. [23].
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To describe the algorithm we exhibit a specific list of five reducible configurations,
called “multigrams”, and show that every triangle-free planar graph contains one
of those reducible configurations. Proving this is the only step that requires some
effort; the rest of the algorithm is entirely straightforward, and the algorithm is
very easy to implement. Given a triangle-free planar graph G we look for one
of the reducible configurations in G, and upon finding one we modify G to a
smaller graph G′, and apply the algorithm recursively to G′. It is easy to see that
every 3-coloring of G′ can be converted to a 3-coloring of G in constant time.
Furthermore, each reducible configuration has a vertex of degree at most three,
and, conversely, given a vertex of G of degree at most three it can be checked in
constant time whether it belongs to a reducible configuration. Thus at every step
a reducible configuration can be found in amortized constant time by maintaining
a list of candidates for such vertices. As a by-product of the proof of correctness
of our algorithm we give a short proof of Grötzsch’s theorem.

We work with simple graphs embedded in plane. On several occasions we
will be identifying vertices, but when we do, we will remove the resulting parallel
edges. When this will be done by the algorithm we will make sure that the only
parallel edges that arise will form faces of length two. The detection and removal
of such parallel edges can be done in constant time.

3.1 Short proof of Grötzsch’s theorem

Let G be a plane graph. Somewhat nonstandardly, we call a cycle F in G facial
if it bounds a face in a connected component of G, regardless of whether F is a
face or not (another component of G might lie in the disk bounded by F ). This
technicality makes no difference in this section, because here we may assume
that all graphs are connected. However, it will be needed in the description of
the algorithm, because the graph may become disconnected during the course of
the algorithm, and we cannot afford to decompose it into connected components.

By a tetragram in G we mean a sequence (v1, v2, v3, v4) of vertices of G such
that they form a facial cycle in G in the order listed. We define a hexagram
(v1, v2, . . . , v6) similarly. By a pentagram inG we mean a sequence (v1, v2, v3, v4, v5)
of vertices of G such that they form a facial cycle in G in the order listed and
v1, v2, v3, v4 all have degree exactly three. We will show that every triangle-free
planar graph of minimum degree at least three has a tetra-, penta- or hexagram
with certain additional properties that will allow an inductive argument. But
first we need the following lemma.

Lemma 12. Let G be a connected triangle-free plane graph and let f0 be the
unbounded face of G. Assume that the boundary of f0 is a cycle C of length
at most six, and that every vertex of G not on C has degree at least three. If
G 6= C, then G has either a tetragram, or a pentagram (v1, v2, v3, v4, v5) such that
v1, v2, v3, v4 6∈ V (C).
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Proof. We define the charge of a vertex v to be 3 deg(v) − 12, the charge of the
face f0 to be 3|V (C)| + 11 and the charge of a face f 6= f0 of length ` to be
3`−12. It follows from Euler’s formula that the sum of the charges of all vertices
and faces is −1.

We now redistribute the charges according to the following rules. Every vertex
not on C of degree three will receive one unit of charge from each incident face,
each vertex on C of degree three will receive three units from f0, and each vertex
of degree two on C will receive five units from f0 and one unit from the other
incident face. Thus the final charge of every vertex is non-negative.

We now show that the final charge of f0 is also non-negative. Let ` denote the
length of C. Then f0 has initial charge of 3`+11. By hypothesis at least one vertex
of C has degree at least three, and hence f0 sends a total of at most 5(`− 1) + 3
units of charge, leaving it at the end with charge of at least 3`+11−5(`−1)−3 ≥ 1.

Since no charge is lost or created, there is a face f 6= f0 whose final charge is
negative. Since f sends at most one unit to each incident vertex, we see that f
has length at most five. Furthermore, if f has length exactly five, then it sends
one unit to at least four incident vertices. None of those could be a degree two
vertex on C, for then f would not be sending anything to the ends of the common
subpath of the boundaries of f and f0. Thus the vertices of f form the desired
tetragram or pentagram.

Let k = 4, 5, 6, and let (v1, v2, . . . , vk) be a tetragram, pentagram or hexagram
in a triangle-free plane graph G. If k = 4 or k = 6, then we say that (v1, v2, . . . , vk)
is safe if every path in G of length at most three with ends v1 and v3 is a subgraph
of the cycle v1v2 · · · vk. For k = 5 we define safety as follows. For i = 1, 2, 3, 4
let xi be the neighbor of vi distinct from vi−1 and vi+1 (where v0 = v5). Then
xi 6∈ {v1, . . . , v5}, because G is triangle-free. Assume that

• the vertices x1, x2, x3, x4 are pairwise distinct and pairwise non-adjacent,
and

• there is no path in G \ {v1, v2, v3, v4} of length at most three from x2 to v5,
and

• every path in G \ {v1, v2, v3, v4} of length at most three from x3 to x4 has
length exactly two, and its completion via the path x3v3v4x4 results in a
facial cycle of length five in G (in particular, there is at most one such
path).

In those circumstances we say that the pentagram (v1, v2, . . . , v5) is safe.

Lemma 13. Every triangle-free plane graph G of minimum degree at least three
has a safe tetragram, a safe pentagram, or a safe hexagram.
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Proof. Let G be as stated. If (v1, v2, v3, v4) is a tetragram in G, then one of the
tetragrams (v1, v2, v3, v4), (v2, v3, v4, v1) is safe, as G is planar and triangle-free.
Thus we may assume that G has no 4-faces, and hence every 4-cycle in G is
separating.

Let us define an induced subgraph G1 of G and a facial cycle C1 of G1 in
the following way: If G has a separating cycle of length at most five, then let us
select such a cycle C1 so that the disk it bounds is as small as possible, and let
G1 be the subgraph of G consisting of all vertices and edges drawn in the closed
disk bounded by C1. If G has no separating cycle of length at most five, then let
G1 := G and let C1 be a facial cycle of G of length at most five. Such a facial
cycle exists, because the minimum degree of G is at least three. In the latter case,
we also redraw G so that C1 becomes the outer face; thus G1 is always drawn in
the closed disk bounded by C1. Note that G1 does not contain any separating
cycle of length at most five, and thus G1 does not contain any 4-cycle except
possibly C1.

Next, we define a subgraph G2 of G1 and its facial cycle C2 as follows. If G1

contains a separating cycle of length six, then choose such a cycle C2 so that the
disk it bounds contains as few vertices as possible, and let G2 be the subgraph
of G1 consisting of all vertices and edges drawn in the closed disk bounded by
C2. Otherwise, let G2 := G1 and C2 := C1. Note that G2 does not contain any
separating cycle of length at most six. As G has no 4-faces, it follows that any
cycle of length at most six in G2 bounds a face.

The cycle C2 is induced in G, for if it had a chord, then the chord would
belong to G1 (because G1 is an induced subgraph of G), and hence V (C2) would
include the vertex-sets of two distinct cycles of length at most (and hence exactly)
four in G1, a contradiction.

From Lemma 12 applied to the graph G2 and facial cycle C2 we deduce that
G2 has a pentagram (v1, v2, v3, v4, v5) such that v1, v2, v3, v4 6∈ V (C2). We may
assume that neither this pentagram nor the pentagram (v4, v3, v2, v1, v5) is safe
in G, for otherwise the lemma holds. Let xi be the neighbor of vi outside of the
pentagram, for 1 ≤ i ≤ 4. Note that all of these neighbors belong to G2, and
as G2 is triangle-free and contains no 4-cycles other than C2 and no separating
cycles of length at most 5, they are distinct and mutually non-adjacent. It follows
that |{x1, x2, x3, x4}∩V (C2)| ≤ 3, and by symmetry we may assume that at least
one of x3 and x4 does not lie on C2. Furthermore, as each cycle of length at most
six in G2 is facial, if v5 ∈ V (C2), then {x1, x2, x3, x4} ∩ V (C2) = ∅.

Since the pentagram (v1, v2, v3, v4, v5) is not safe in G, there exists a pair of
vertices x, y such that either {x, y} = {x2, v5} or {x, y} = {x3, x4}, and there
exists a path P in G\{v1, v2, v3, v4} with ends x and y such that P has length
at most three, and if {x, y} = {x3, x4}, then either P has length exactly three,
or its completion via the path x3v3v4x4 does not result in a facial cycle in G. If
{x, y} = {x2, v5} then let Q denote the path x2v2v1v5; otherwise let Q denote
the path x3v3v4x4. Suppose first that P ∪Q bounds a face in G. Then it follows
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that {x, y} = {x3, x4}, and hence P has length exactly three. Let the vertices
of P ∪ Q be x3v3v4x4ab in order. Let us argue that (x4, v4, v3, x3, a, b) is a safe
hexagram. If that were not the case, then there would exist a path x4u1v3 or
x4u1u2v3 for some u1, u2 6= v4. Since v2 and v3 have degree three and the vertices
x1, x2, x3 and x4 are distinct and mutually non-adjacent, the former case is not
possible, and in the latter case u2 = x3. However, since at most one of x3 and x4
lies on C2, x4u1x3v3v4 would be a separating 5-cycle in G2, and hence in G1, a
contradiction.

Thus we may assume that P ∪Q does not bound a face in G, and so P ∪Q is a
separating cycle in G. It follows from the choice of C2 that P∪Q is not a subgraph
of G2. But not both x, y belong to C2 and C2 is induced; thus a subpath R of P∪Q
of length four joins two vertices w1, w4 of C2, and a vertex w of (P ∪Q)\V (G2)
is adjacent to both w1 and w4. If w 6∈ V (G1), then w1, w4 ∈ V (C1), because
they belong to C2. But C1 has length at most five, and w1, w4 are not adjacent,
because G is triangle-free. Thus w1, w4 have a common neighbor in C1, and this
neighbor can replace w. Thus we may assume that w ∈ V (G1).

If w1 and w4 have a common neighbor in C2, then R can be completed using
this neighbor to a cycle that contradicts the choice of C2. It follows that w1, w4

are at distance three on C2, and so we may assume that the vertices of C2 are
w1, w2, . . . , w6, in order. From the symmetry we may assume that w1w2w3w4w
bounds a face, by the minimality of C1. Thus the closed disk bounded by P ∪Q
does not include w5, w6, and it includes no vertex of V (G) − V (G2), except w.
Thus P ∪Q contradicts the choice of C2.

Proof of Theorem 10. Let G be a triangle-free plane graph. We proceed by in-
duction on |V (G)|. We may assume that every vertex v of G has degree at
least three, for otherwise the theorem follows by induction applied to G \ v. By
Lemma 13 there is a safe tetra-, penta-, or hexagram (v1, v2, . . . , vk). If k = 4
or k = 6, then we apply induction to the graph obtained from G by identifying
v1 and v3. It follows from the definition of safety that the new graph has no
triangles, and clearly every 3-coloring of the new graph extends to a 3-coloring
of G.

Thus we may assume that (v1, v2, . . . , v5) is a safe pentagram in G. Let G′

be obtained from G \ {v1, v2, v3, v4} by identifying v5 with x2, and x3 with x4.
It follows from the definition of safety that G′ is triangle-free, and hence it is
3-colorable by the induction hypothesis. Any 3-coloring of G′ can be extended
to a 3-coloring of G: let c1 be the color of x1, c2 the color of x2 and v5, and c3
the color of x3 and x4. If c1 = c2, then we color the vertices v4, v3, v2 and v1 in
this order. Note that when vi (i = 1, 2, 3, 4) is colored, it is adjacent to vertices
of at most two different colors, and hence we can choose the third color for it.
Similarly, if c2 = c3, then we color the vertices in the following order: v1, v2, v3
and v4. Let us now consider the case that c1 6= c2 6= c3. We color v2 with c1, v3
with c2, and choose a color different from c1 and c2 for v1 and a color different
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from c2 and c3 for v4. Thus G is 3-colorable, as desired.

Let us note that the essential ideas of the proof came from Thomassen’s
work [67]. For graphs of girth at least five Thomassen actually proves a stronger
statement, namely that every 3-coloring of an induced facial cycle of length at
most nine extends to a 3-coloring of the entire triangle-free plane graph, unless
some vertex of G has three distinct neighbors on C (and those neighbors received
three different colors). By restricting ourselves to Theorem 10 we were able to
somewhat streamline the argument. Another variation of the same technique is
presented in [48].

3.2 Graph representation

For the purpose of our algorithm, graphs will be represented by means of doubly
linked adjacency lists. More precisely, the neighbors of each vertex v will be
listed in the clockwise cyclic order in which they appear around v, and the two
occurrences of the same edge will be linked to each other. The facial walks of the
graph can be read off from this representation using the standard face tracing
algorithm ([55], page 93). Thus all vertices and edges incident with a facial cycle
of length k can be listed in time O(k). Here we make use of our non-standard
definition of facial cycle.

Suppose that D is a fixed constant (in our algorithm, D = 59). We can
perform the following operations with graphs represented in the described way
in constant time:

• remove an edge when a corresponding entry of the adjacency list is given

• add an edge with ends u, v into a face f , assuming that the edges preceding
and following u, v in the facial boundary of f are specified

• remove an isolated vertex

• determine the degree of a vertex v if deg(v) ≤ D, or prove that deg(v) > D

• check whether two vertices u and v such that min(deg(u), deg(v)) ≤ D are
adjacent

• check whether the distance between two vertices u and v such that max(deg(u), deg(v)) ≤
D is at most two

• given an edge e incident with a face f , output all vertices whose distance
from e in the facial walk of f is at most two, and determine whether the
length of the component of the boundary of f that contains e has length
at most 6
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• output the subgraph consisting of vertices reachable from a vertex v0 through
a path v0, v1, . . . , vt of length t ≤ D, such that deg(vi) ≤ D for 0 ≤ i < t
(but the degree of vt may be arbitrary).

All the transformations and queries executed in the algorithm can be ex-
pressed in terms of these simple operations.

3.3 The algorithm

The idea of our algorithm is to find a safe tetragram, pentagram or hexagram γ
in G and use it to reduce the size of the graph as in the proof of Theorem 10
above. Finding γ is easy, but the difficulty lies in testing safety. To resolve
this problem we prove a variant of Lemma 13 that will guarantee the existence
of such γ with an additional property that will allow testing safety in constant
time. The additional property, called security, is merely that enough vertices
in and around γ have bounded degree. Unfortunately, the additional property
we require necessitates the introduction of two more configurations, a variation
of tetragram called “octagram” and a variation of pentagram called “decagram”.
For the sake of consistency, we say that a monogram in a graph G is the one-vertex
sequence (v) comprised of a vertex v ∈ V (G) of degree at most two.

Now let G be a plane graph, let k ∈ {1, 4, 5, 6} and let γ = (v1, v2, . . . , vk)
be a mono-, tetra-, penta-, or hexagram in G. Let C be a subgraph of G. (For
the purpose of this section the reader may assume that C is the null graph, but
in the next section we will need C to be a facial cycle of G.) A vertex of G
is big if it has degree at least 60, and small otherwise. A vertex v ∈ V (G) is
C-admissible if it is small and does not belong to C; otherwise it is C-forbidden.
A pentagram (v1, v2, . . . , v5) is called a decagram if v5 has degree exactly three
(and hence v1, . . . , v5 all have degree three). A tetragram is called an octagram if
all its vertices have degree exactly three. A multigram is a monogram, tetragram,
pentagram, hexagram, octagram or a decagram. The vertex v1 will be called the
pivot of the multigram (v1, v2, . . . , vk). In the following γ will be a multigram,
and we will define (or recall) what it means for γ to be safe and C-secure. We
will also define a smaller graph G′, which will be called the γ-reduction of G.

If γ is a monogram, then we define it to be always safe, and we say that it is
C-secure if v1 6∈ V (C). We define G′ := G \ v1.

Now let γ be a tetragram. Let us recall that γ is safe if the only paths in
G of length at most three with ends v1 and v3 are subgraphs of the facial cycle
v1v2v3v4. We say that γ is C-secure if

• it is safe, and

• v1 is C-admissible and has degree exactly three, and
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• letting x denote the neighbor of v1 other than v2 and v4, the vertex x is
C-admissible, and

• either

– v3 is C-admissible, or

– every neighbor w of x is C-admissible or belongs to a 4-face incident
with the edge v1x (either v1v2wx or v1v4wx).

We define G′ to be the graph obtained from G by identifying the vertices v1 and
v3 and deleting one edge from each of the two pairs of parallel edges that result.

If γ is an octagram, then it is always safe, and it is C-secure if v1, v2, v3, v4
are all are C-admissible. We define G′ := G \ {v1, v2, v3, v4}.

Now let γ be a decagram, and for i = 1, 2, 3, 4 let xi be the neighbor of vi
other than vi−1 or vi+1, where v0 means v5. We say that the decagram γ is safe if
x1, x3 are distinct, non-adjacent and there is no path of length two between them.
We say that γ is C-secure if it is safe and the vertices v1, v2, . . . , v5, x1, x3 are all
C-admissible. We define G′ to be the graph obtained from G \ {v1, v2, . . . , v5} by
adding the edge x1x3.

Now let γ be a pentagram, and for i = 1, 2, 3, 4 let xi be as in the previous
paragraph. Let us recall that the safety of γ was defined prior to Lemma 13. We
say that γ is C-secure if it is safe, the vertices v1, v2, . . . , v5, x1, x2, x3, x4 are all
C-admissible, either v5 or x2 has no C-forbidden neighbor, and either x3 or x4
has no C-forbidden neighbor. We define G′ as in the proof of Theorem 10: G′ is
obtained from G \ {v1, v2, v3, v4} by identifying x2 and v5; identifying x3 and x4;
and deleting one of the parallel edges should x3 and x4 have a common neighbor.

Finally, let γ be a hexagram. Let us recall that γ is safe if every path of
length at most three in G between v1 and v3 is the path v1v2v3. We say that
γ is C-secure if v1, v3, v6 are C-admissible, v1 has degree exactly three, and the
neighbor of v1 other than v2 or v6 is C-admissible. We define G′ to be the graph
obtained from G by identifying the vertices v1 and v3 and deleting one of the
parallel edges that result.

We say that a multigram γ is secure if it is K0-secure, where K0 denotes the
null graph. This completes the definition of safe and secure multigrams.

Lemma 14. Let G be a triangle-free plane graph, let γ be a safe multigram in G,
and let G′ be the γ-reduction of G. Then G′ is triangle-free, and every 3-coloring
of G′ can be converted to a 3-coloring of G in constant time. Moreover, if γ
is secure, then G′ can be regarded as having been obtained from G by deleting
at most 126 edges, adding at most 116 edges, and deleting at least one isolated
vertex.

Proof. The graph G′ is triangle-free, because γ is safe. Unless γ is an octagram or
a decagram, we argue that every 3-coloring of G′ can be extended to a 3-coloring
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of G as in the proof of Theorem 10. If γ is an octagram or a decagram, then every
3-coloring of G′ extends to a 3-coloring G, because each vertex of V (G)− V (G′)
has a list of at least two available colors, and, in the case of a decagram, the lists
are not all equal by the construction of G′.

If γ is secure, then every time vertices u and v are identified in the construction
of G′, one of u, v is small. Thus the identification of u and v can be seen as a
deletion of at most 59 edges and addition of at most 59 edges. The lemma follows
by a more careful examination of the construction of G′.

Let G and C be as above. We say that two small vertices u, v ∈ V (G) are
close if either there is a path of length at most four between u and v consisting
of small vertices, or a facial cycle of length at most six contains both u and v.
A vertex u is close to an edge e if both u and e belong to the facial walk of the
same face and the distance between u and and one end of e in this facial walk is
at most two. Thus for every vertex v there are at most 1 + 4 ·59 + 592 + 593 + 594

vertices that are close to v, and for every edge e, there are at most 10 vertices
that are close to e.

Lemma 15. Given a triangle-free plane graph G and a vertex v ∈ V (G), it can
be decided in constant time whether G has a secure multigram with pivot v.

Proof. This follows by inspecting the subgraph of G induced by vertices and edges
that are close to v and testing the security of all multigrams with pivot v that
lie in this subgraph. Given such multigram, the only non-trivial part of testing
security is testing safety. Thus we may assume that the multigram satisfies all
conditions in the definition of security, except safety. To test safety we need to
check the existence of certain paths P of bounded length with prescribed ends.
We claim that whenever such a test is needed every vertex of P , except possibly
one, is small. The claim follows easily, except in the case of a tetragram vv2v3v4,
where v has degree three, the vertex v3 is big, and letting x denote the neighbor
of v1 other than v2 and v4, x is small, but has a big neighbor w. In this case
the straightforward check whether w and x3 are adjacent would take more than
constant time, but it actually follows that w and x3 are not adjacent: the vertex
w belongs to a 4-face incident with the edge vx, for otherwise the tetragram is not
secure; but then it follows that w and x3 are not adjacent, for otherwise wv3v2
would be a triangle. This proves our claim that in the course of testing safety it
suffices to examine paths with all but one vertex small.

It follows from the claim that security can be tested in constant time, as
desired.

Lemma 16. Let G and G′ be triangle-free plane graphs, such that for some pair
of non-adjacent vertices u, v ∈ V (G) the graph G′ is obtained from G by adding
the edge uv. Let γ be a secure multigram in exactly one of the graphs G,G′. Then
the pivot of γ is close to u or v in G, or to the edge uv in G′.
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Proof. Let v1 be the pivot of γ. The claim is obvious if v1 ∈ {u, v}, and thus
assume this is not the case. In particular, γ is not a monogram or an octagram,
and γ corresponds to a facial cycle F in G or G′. If F does not exist in G or F is
not facial in G or G′, then v1 is close to the edge uv in G′. Let us now consider
the case that F is a facial cycle both in G and G′. As v1 6∈ {u, v}, the degree
of v1 is three both in G and G′. Let x1 be the neighbor of v1 distinct from its
neighbors on F . Note that x1 is small in G.

Suppose first that γ is a tetragram or a hexagram. Observe that the removal
of the edge uv from G′ must decrease the degree of some of the vertices affecting
the security of γ, change the length of one of the faces incident with the edge
v1x1 affecting the security of γ, or destroy a path affecting its safety. Therefore,
if {u, v} ∩ (V (F ) ∪ {x1}) = ∅ and v1 is not close to the edge uv in G′, then u or
v is a small neighbor of x1 in G that is big in G′. We conclude that v1 is close to
u or v in G.

Let us now consider the case that γ = (v1, v2, . . . , v5) is a decagram or a
pentagram. As γ is secure in G or G′, all the vertices of γ are small in G. If
{u, v}∩V (F ) 6= ∅, then v1 is close to u or v in G, and thus assume that this is not
the case. It follows that the degree of vi is the same in G and G′, for 1 ≤ i ≤ 5;
in particular, deg(vi) = 3 for 1 ≤ i ≤ 4. Let xi be the neighbor of vi not incident
with F , for 1 ≤ i ≤ 4. Similarly, we conclude that x1 and x3 are small in G, and
if γ is a pentagram, then x2 and x4 are small in G. If {u, v} ∩ {x1, x3} 6= ∅, or γ
is a pentagram and {u, v} ∩ {x2, x4} 6= ∅, then u or v is close to v1 in G. If this
is not the case, then the removal or addition of uv cannot affect the security of γ
if γ is a decagram.

We are left with the case when γ is a pentagram, and {u, v}∩{x1, x2, x3, x4} =
∅. It follows that the neighborhoods of x2, x3, x4 and v5 are the same in G and
in G′. As γ is secure in G or G′, all neighbors of v5 or x2, and all neighbors of x3
or x4 are small in G. As γ is not secure both in G and G′, the removal of uv

• destroys a path of length at most three between x2 and v5 or between x3
and x4, or

• removes an edge incident with the common neighbor y of x3 and x4, thus
making the 5-cycle x3v3v4x4y facial, or

• decreases the degree of a neighbor of x2, x3, x4 or v5, making it small in G.

In all the cases, u or v is a small neighbor of x2, x3, x4 or v5, and hence it is close
to v1 in G.

The next theorem will serve as the basis for the proof of correctness of our
algorithm. We defer its proof until the next section.

Theorem 17. Every non-null triangle-free planar graph has a secure multigram.

We are now ready to prove Theorem 11, assuming Theorem 17.
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Algorithm 18. There is an algorithm with the following specifications:
Input: A triangle-free planar graph.
Output: A proper 3-coloring of G.
Running time: O(|V (G)|).

Description. Using a linear-time planarity algorithm that actually outputs
an embedding, such as [60] or [78], we can assume that G is a plane graph.
The algorithm is recursive. Throughout the execution of the algorithm we will
maintain a list L that will include the pivots of all secure multigrams in G, and
possibly other vertices as well. We initialize the list L to consist of all vertices of
G of degree at most three.

At a general step of the algorithm we remove a vertex v from L. There is
such a vertex by Theorem 17 and the requirement that L include the pivots of
all secure multigrams. We check if G has a secure multigram with pivot v. This
can be performed in constant time by Lemma 15. If no such multigram exists,
then we go to the next iteration. Otherwise, we let γ be one such multigram, and
let G′ be the γ-reduction of G. By Lemma 14 the graph G′ is triangle-free and
can be constructed in constant time by adding and deleting bounded number of
edges, and removing a bounded number of isolated vertices. For every edge uv
that was deleted or added during the construction of G′ we add to L all vertices
that are close to u or v, or to the edge uv in G or G′. By Lemma 16 this will
guarantee that L will include the pivots of all secure multigrams in G′. We apply
the algorithm recursively to G′, and convert the resulting 3-coloring of G′ to one
of G using Lemma 14. Since the number of vertices added to L is proportional
to the number of vertices removed from G we deduce that the number of vertices
added to L (counting multiplicity) is at most linear in the number of vertices of
G. Thus the running time is O(|V (G)|), as claimed.

Algorithm 18 has the following extension.

Algorithm 19. There is an algorithm with the following specifications:
Input: A triangle-free plane graph G, a facial cycle C in G of length at most five,
and a proper 3-coloring φ of C.
Output: A proper 3-coloring of G whose restriction to V (C) is equal to φ.
Running time: O(|V (G)|).

Description. The description is exactly the same, except that we replace
“secure” by “C-secure” and appeal to Lemma 20 rather than Theorem 17.

3.4 Proof of correctness

In this section we prove Theorem 17, thereby completing the proof of correctness
of the algorithm from the previous section. The theorem will follow from the next
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lemma. If xy is an edge in a plane graph, and f is a face of G incident with y
but not with the edge xy, then we say that f is opposite to xy. Let us emphasize
that this notion is not symmetric in x, y.

Lemma 20. Let G be a connected triangle-free plane graph and let f0 be its outer
face. Assume that f0 is bounded by a cycle C of length at most six, V (G) 6= V (C),
and if C has length six, then |V (G) − V (C)| ≥ 2. Then G contains a C-secure
multigram.

Proof. Suppose for a contradiction that the lemma is false, and let G be a coun-
terexample with |E(G)| minimum. We first establish the following claim.

(1) If K 6= C is a cycle in G of length at most six, then K bounds a face, or K
has length six and the open disk bounded by K contains at most one vertex.

To prove (1) let K be as stated, and let G′ be the subgraph of G consisting of all
vertices and edges that belong to the closed disk bounded by K. If K does not
satisfy the conclusion of (1), then G′ and K satisfy assumptions of Lemma 20.
From the induction hypothesis applied to G′ and K we deduce that G′ has a
K-secure multigram. However, every K-secure multigram in G′ is a C-secure
multigram in G.

It follows from (1) that C is an induced cycle and that every tetragram in G
is safe.

We assign charges to vertices and faces of G as follows. Initially, a vertex v
will receive a charge of 9 deg(v) − 36 if v 6∈ V (C), and 8 deg(v) − 19 otherwise.
The outer face f0 will receive a charge of zero, and every other face f of length
` will receive a charge of 9` − 36. By Euler’s formula the sum of the charges is
equal to∑

v 6∈V (C)

9(deg(v)− 4) +
∑

v∈V (C)

(8 deg(v)− 19) +
∑
f 6=f0

9( size(f)− 4)

=
∑

v∈V (G)

9(deg(v)− 4) +
∑
f

9(size(f)− 4)−
∑

v∈V (C)

deg(v) + 8|V (C)|+ 36

= 8|V (C)| −
∑

v∈V (C)

deg(v)− 36 ≤ −1,

because all vertices of C have degree at least two, and at least one has degree at
least three by hypothesis. Furthermore,

(2) if at least k vertices of C have degree at least three, then the sum of the
charges is at most −k.
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We now redistribute the charges according to the following rules. The new
charge thus obtained will be referred to as the final charge. We need a definition
first. Let f 6= f0 be a face of G incident with a vertex v ∈ V (C). If there exist
two consecutive edges in the boundary of f such that both are incident with v
and neither belongs to C, then we say that f is a v-interior face. The rules are:

(A) every face other than f0 sends three units of charge to every incident vertex
v such that either v ∈ V (C) and v has degree two in G, or v 6∈ V (C) and
v has degree exactly three,

(B) every big vertex not on C sends three units to each incident face, and four
units to each 4-face that shares an edge with C,

(C) every vertex v ∈ V (C) sends three units to every v-interior face,

(D) if x ∈ V (G) is C-forbidden, and y is a C-admissible neighbor of x of degree
three, then x sends three units to the unique face opposite to xy, and one
unit to the face opposite to yz for every C-admissible neighbor z of y of
degree three,

(E) every C-forbidden vertex sends five units to every C-admissible neighbor of
degree at least four,

(F) for every C-admissible vertex y of degree at least four that has a C-forbidden
neighbor we select a C-forbidden neighbor x of y and let y send one unit to
each face opposite to xy, and one unit to the face opposite to yz for every
C-admissible neighbor z of y of degree three.

Since G does not satisfy the conclusion of the theorem, it follows that every
vertex of G has degree at least two, and every vertex of degree exactly two belongs
to C. With these facts in mind we now show that every vertex has non-negative
charge. To that end let v ∈ V (G) have degree d, and assume first that v is
C-admissible. If d = 3, then it starts out with a charge of −9 and receives three
from each incident face by rule (A) for a final total of zero. If d ≥ 4, then v starts
out with a charge of 9d− 36 ≥ 0. If v has no C-forbidden neighbor, then it sends
no charge and the claim holds. Thus we may assume that v has a C-forbidden
neighbor, and let x be such neighbor selected by rule (F). Then v receives at
least five units by rule (E), and sends at most 2d − 3 by rule (F) for a total of
at least 9d − 36 + 5 − (2d − 3) = 7d − 28 ≥ 0. Thus every C-admissible vertex
has non-negative final charge. If v is big, but does not belong to C, then it sends
only by rules (B), (D) or (E). It sends at most 3d using the first clause of rule
(B), at most 24 using the second clause of rule (B) and at most 5d using rules
(D) or (E) for a total final charge of at least 9d− 36− 3d− 24− 5d ≥ 0, because
d ≥ 60. Thus we may assume that v ∈ V (C). Then v starts out with a charge of
8d− 19 and sends a net total of 3(d− 3) using rules (A) or (C) (if d = 2, then v
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receives 3 by rule (A); and otherwise it sends 3(d− 3) by rule (C)) and it sends
5(d − 2) using rule (D) or (E) for a total of 8d − 19 − 3(d − 3) − 5(d − 2) = 0.
This proves our claim that the final charge of every vertex is non-negative.

It also follows that every face of length ` ≥ 6 has non-negative final charge,
for every face sends at most three units to each incident vertex and only to those
vertices by rule (A); thus the final charge is at most 9`− 36− 3` ≥ 0.

We have thus shown that G has a face f of length at most five with strictly
negative final charge. Clearly f is not the outer face.

(3) No vertex incident with f has degree two.

To prove (3) suppose for a contradiction that a vertex v of degree two is incident
with f . Thus v and the two edges incident with v and f belong to C. Since G 6= C
and f has length at most five we deduce that at least two vertices incident with
f are incident with C and have degree at least three. Those two vertices do not
receive any charge from f , and hence f has length four, because it has negative
charge.

We deduce that f is bounded by a cycle u1u2u3u4, where u1, u2, u3 are con-
secutive vertices of C, and u2 has degree two. It follows that u4 6∈ V (C), because
C is induced. Since f has negative charge it does not receive charge by rule (B),
and hence u4 is small and C-admissible. Let C ′ be the cycle obtained from C
by replacing the vertex u2 by u4; note that |V (C ′)| = |V (C)| ≤ 6. As u4 has
degree greater than two, C ′ does not bound a face, hence it follows from (1)
that |V (C ′)| = 6 and the open disk bounded by C ′ contains at most one vertex.
Therefore, it contains exactly one, because |V (G)| − V (C)| ≥ 2. Let that vertex
be v4; then the remaining vertices of C can be numbered v1, v2, v3 so that the
cycle C is u1u2u3v1v2v3 and v4 is adjacent to v1, v3 and u4. Then (u4, u1, u2, u3)
is a C-secure tetragram, contrary to the assumption that G is a counterexample
to the theorem. This proves (3).

Let uv be an edge of G such that f is opposite to uv. Let us say that v is a
sink if v has degree three and both u and v are C-admissible. Let us say that v
is a source if either v 6∈ V (C) and v is big, or v ∈ V (C) and f is v-interior. Since
v does not have degree two by (3) we deduce that v is a sink if and only if it has
degree three and receives three units of charge from f by rule (A) and f does not
receive three units by rule (D) from u. Likewise, the vertex v is a source if and
only if it sends three units to f by the first clause of rule (B) or by rule (C). Let
s be the number of sources, and t the number of sinks. Thus the charge of f is
at least 9 + 3s− 3t if f has length five and at least 3s− 3t if f has length four.

Let us assume now that f has length five, and let v1, v2, . . . , v5 be the incident
vertices, listed in order. Since f has negative charge, at least four of the five
incident vertices are sinks, and so we may assume that v1, v2, v3, v4 are sinks.
Thus γ = (v1, v2, . . . , v5) is a pentagram. For i = 1, 2, 3, 4 let xi be the neighbor
of vi distinct from vi−1 and vi+1 (where v0 = v5). From (1) and the fact that G
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has no C-secure tetragram we deduce that the vertices x1, x2, x3, x4 are distinct
and pairwise non-adjacent. If v5 is a C-admissible vertex of degree three, then
it follows from (1) that γ is C-secure decagram—otherwise, if there is a path of
length two between x1 and x3, then consider the 6-cycle K = x1v1v2v3x3y. By
(1) the open disk bounded by K includes at most one vertex of G. It follows that
v4 and v5 are not inside the disk; thus either y = x2 or x2 is inside the disk. In
either case, it follows that x2 is adjacent to x1 and x3, a contradiction. Thus v5
is either not C-admissible, or has degree at least four.

Therefore, v5 is not a sink, and hence the final charge of f is at least −3.
It follows that v5 is not a source, which in turn implies that v5 is C-admissible
(because v1 and v4 are C-admissible), and hence has degree at least four. We
claim that γ is a safe pentagram. If there exists a path P in G \ {v1, v2, v3, v4} of
length at most three with ends x2 and v5, then P can be completed to a cycle K
using the path v5v1v2x2. By (1) we conclude that this cycle bounds an open disk
that contains at most one vertex, and it follows that x1 is adjacent to x2, which is
a contradiction. In order to complete the proof that γ is safe it suffices to consider
a path in G \ {v1, v2, v3, v4} of length at most three with ends x3 and x4. This
path can be completed via the path x4v4v3x3 to a cycle K ′. Since v3 and v4 have
degree three, and x3 is not adjacent to x4, we deduce from (1) that K ′ is a facial
cycle. Since x3 is not adjacent to x4 we may assume for a contradiction that K ′

has length six; let its vertices in order be x3v3v4x4ab. Then (v4, v3, x3, b, a, x4) is
a C-secure hexagram in G, a contradiction. This proves our claim that γ is a safe
pentagram. By symmetry the pentagram (v4, v3, v2, v1, v5) is also safe. We have
already established that the vertices v1, v2, . . . , v5, x1, x2, x3, x4 are C-admissible.
If xi has a C-forbidden neighbor for some i ∈ {1, 2, 3, 4}, then f receives one
unit of charge either from that neighbor by rule (D) if xi has degree three, or
from xi by rule (F) otherwise. Since the degree of v5 is greater than three, if v5
has a C-forbidden neighbor, then it sends one unit of charge to f by rule (F).
Thus at most two vertices among v5, x1, x2, x3, x4 have a C-forbidden neighbor,
and hence it follows that either γ, or (v4, v3, v2, v1, v5) is a C-secure pentagram,
a contradiction.

Thus we have shown that f has length four. Let v1, v2, v3, v4 be the incident
vertices listed in order. Let us recall that every tetragram is safe. Since f has
negative charge at least 3s− 3t, we may assume that v1 is a sink and v3 is not a
source. Let γ = (v1, v2, v3, v4). Since v3 is not a source and γ is not a C-secure
tetragram, v3 ∈ V (C) and f is not v3-interior. Then, (3) implies that exactly one
of v2v3, v3v4 is an edge of C, and hence we may assume the latter. In particular,
v2 6∈ V (C). If v2 is a sink, then the charge of f is at least −6, otherwise it is at
least −3.

Let v be the neighbor of v1 other than v2 and v4. Since v1 is a sink, v is C-
admissible. If v has no C-forbidden neighbor, then γ is a C-secure tetragram, a
contradiction. Thus v has a C-forbidden neighbor u. Suppose first that u 6∈ V (C);
hence u is big and f receives 4 units of charge from u by rule (B). As the charge of
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f is negative, we conclude that v2 is a sink. Let v′ be the neighbor of v2 distinct
from v1 and v3. Since γ is not a C-secure tetragram, v′ has a C-forbidden neighbor
u′. However, by rules (D) and (F), f receives one unit of charge from each of u
and u′ (or twice one unit of charge from u, if u = u′), making its final charge
nonnegative.

We conclude that every C-forbidden neighbor of v belongs to C. Since rules
(D) or (F) still apply, we obtain

(4) each 4-face f ′ that shares an edge with C has final charge at least −2t,
where t ∈ {1, 2} is the number of sinks of f ′.

As γ is not a C-secure tetragram, at least one C-forbidden neighbor u of v
is adjacent to neither v2 nor v4. Let C,C1, C2 be the three cycles in the graph
consisting of C and the path uvv1v4, numbered so that v3 belongs to C2. We claim
that C2 has length at least seven. Note that v2 lies in the open disk bounded by
C2; thus by (1) the cycle C2 has length at least six. Assume that C2 has length
exactly six. By (1), the open disk it bounds contains v2 and no other vertex of
G. It follows that v2 has degree three and is adjacent to u, which contradicts the
choice of u.

It follows that C2 has length at least seven, and hence C1 has length at most
five, and by the choice of u, it has length exactly five. By (1), C1 bounds a face.
Thus u and v4 have a common neighbor of degree two on C, say z. Let f(γ)
denote the face bounded by C1. Let us call each tetragram γ′ for which f(γ′)
is defined bad. Note that a face f may correspond to two bad tetragrams (if v2
is a sink, then (v2, v1, v4, v3) is a bad tetragram as well). At this point, we have
proved that only the faces of G that correspond to bad tetragrams have negative
final charge. Additionally, if f corresponds to one bad tetragram, then its final
charge is at least −2 and if it corresponds to two bad tetragrams, then its final
charge is at least −4. Let b be the number of bad tetragrams in G.

Let us consider the bad tetragram γ. The face f(γ) starts out with a charge
of 9, sends three units to each of v1, v, z by rule (A), and receives one either from
v3 by rule (D), or from v2 by rule (F) for a total of +1 (v2 is small, as γ contains
more sinks than sources). Also, if there exists a tetragram γ′ distinct from γ such
that f(γ) = f(γ′), then the final charge of f(γ) is at least +2. It follows that the
total charge of G is at least −b.

Since v3, v4 and u have degree at least three, by (2) the total charge of G is
at most −3, and so b ≥ 3. However, since b > 2, there must be a bad tetragram
other than γ and (v2, v1, v4, v3), giving at least one more vertex of C of degree at
least three. Therefore, the final charge of G is at most −4 by (2), and hence b ≥ 4.
Let u′ be the unique neighbor of u in C\z. Since b ≥ 4 it follows by inspection
that v3v4 and uu′ are the only edges of C that belong to a bad tetragram, and
that G has a vertex v′ of degree three with neighbors v, v2, u

′. It follows that
(v, v′, v2, v1) is a C-secure octagram, as desired.
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Proof of Theorem 17. Let G be a triangle-free planar graph. We may assume
that G is actually drawn in the plane. If G has a vertex of degree two or less,
then it has a secure monogram, and so we may assume that G has minimum
degree at least three. It follows that G has a facial cycle C of length at most five.
Let H be the component of G containing C. We may assume that C bounds
the outer face of H. Since H has minimum degree at least three it follows that
V (H)−V (C) 6= ∅. By Lemma 20 H has a C-secure multigram; but any C-secure
multigram in H is a secure multigram in G, as desired.
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Chapter 4

Coloring planar graphs with one
(≤4)-cycle1

Thomassen [71] proved that the number of vertices of every 4-critical graph of
girth five embedded in a surface Σ is bounded by a constant C depending only
on the genus g of Σ. However, the dependence is double exponential. In Dvořák
et al. [27], we improve this dependence to linear. In order to deal with degen-
erate cases of the claim, we need to consider R-critical (for 3-colorability) plane
graphs that contain at most one cycle T of length at most four different from
R, and where R is a facial cycle of length at most 6. Grötzsch’s theorem admits
the following strengthening, which follows from almost all known proofs of the
theorem.

Theorem 21. There is no R-critical triangle-free plane graph G, where R is a
cycle in G of length at most five.

A strengthening of this result admitting one triangle was obtained by Ak-
sionov [2]. Combined with [41], the result can be stated as follows.

Theorem 22. Let G be a plane graph with a facial cycle R of length at most five
and at most one triangle T distinct from R. If G is R-critical, then R has length
exactly five, T shares at least one edge with R and all faces of G distinct from T
and R have length exactly four.

In particular, if G is a plane graph with a facial cycle R of length at most six
and at most one (≤4)-cycle T and G is R-critical, then R has length exactly 6.
Furthermore, the characterization of 3-colorability of triangle-free planar graphs
with a precolored 6-face by Gimbel and Thomassen [41] implies that T exists and
it is a triangle. The main result of this chapter considers this remaining case.
The two outcomes are illustrated in Figure 4.1.

1The results of this chapter are based on Dvořák et al. [25].
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(a) (b)

Figure 4.1: Critical graphs with a precolored 6-cycle and one triangle.

Theorem 23. Let G be a plane graph with a facial cycle R of length at most
six, let T be a triangle in G, and assume that every cycle in G other than T and
R has length at least five. Let φ be a 3-coloring of R that does not extend to a
3-coloring of G. Then C has length exactly six and either

(a) φ(u) = φ(v) for two distinct vertices u, v ∈ V (C) that are adjacent in G, or

(b) φ(u1) = φ(u2) = φ(u3) for three pairwise distinct vertices u1, u2, u3 ∈ V (C),
where each ui is adjacent to a different vertex of T .

We will need a characterization of plane graphs of girth at least five with a
precolored face of length at most 11, proved by Thomassen [71] and Walls [77].

Theorem 24. Let H be a plane graph of girth at least five, and let C be a facial
cycle in H of length k ≤ 11. If H is C-critical, then

(a) k ≥ 8, V (H) = V (C) and C is not induced, or

(b) k ≥ 9, H − V (C) is a tree with at most k − 8 vertices, and every vertex of
V (H)− V (C) has degree three in G, or

(c) k ≥ 10 and H − V (C) is a connected graph with at most k − 5 vertices
containing exactly one cycle, and the length of this cycle is five.

4.1 Graphs with one triangle

To prove Theorem 23 we prove, for the sake of the inductive argument, the
following slightly more general result. Theorem 23 will be an immediate corollary.

Theorem 25. Let G be a plane graph with outer cycle R of length at most six
and assume that

(∗) there exists a face f0 of G such that every cycle in G of length at most four
bounds a closed disk containing f0.
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If G is R-critical, then R has length exactly six and G is isomorphic to one of
the graphs depicted in Figure 4.1.

Proof. Let G be as stated, and suppose for a contradiction that it is not iso-
morphic to either of the two graphs depicted in Figure 4.1. By Gimbel and
Thomassen [41], the graph G has a triangle T . We may assume that G is mini-
mal in the sense that the theorem holds for every graph with fewer vertices. A
vertex v ∈ V (G) − V (R) will be called internal. The R-criticality of G implies
that

(2) every internal vertex of G has degree at least three.

If C is a cycle in G, then by ins(C) we denote the subgraph of G consisting
of all vertices and edges drawn in the closed disk bounded by C. Let us recall
that by Theorem 8,

(3) for every non-facial cycle C in G, ins(C) is a C-critical graph.

It follows from (∗), (3) and Theorem 22 that

(4) T is the only cycle in G of length at most four.

Next we constrain cycles in G of length at most seven:

(5) Let C 6= R be a cycle in G of length at most seven that does not bound a
face. Then C has length at least six, and the closed disk bounded by C includes
T .

To prove (5) let C be as stated. By the minimality of G and (3) we deduce
that C has length at least six. If T is not contained in the closed disk ∆ bounded
by C, then (∗) implies that ins(C) has girth at least five, contrary to (3) and
Theorem 24. Thus T is contained in ∆, and (5) follows.

It follows that T bounds the face f0. The same argument implies the following
two claims. To prove the second one, Theorem 24 is applied to a graph obtained
from G by splitting repeated vertices of C so that C will become a cycle in the
new graph.

(6) Let C 6= R be a cycle in G of length six that does not bound a face. Then
ins(C) is isomorphic to one of the graphs depicted in Figure 4.1.

(7) Let C 6= R be a closed walk in G of length k ≤ 11 bounding an open disk ∆
disjoint from T , and let H be the subgraph of G consisting of vertices and edges
drawn in the closure of ∆. Then H satisfies the conclusion of Theorem 24.

From (4) and Theorem 22 it follows that

(8) R has length six,

and since every cycle of length at most five bounds a face by (5) we deduce that

(9) the graph G has no subgraph H with outer face R such that H is isomorphic
to either of the two graphs depicted in Figure 4.1; in particular, R is induced.
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Next we claim that

(10) every internal vertex has at most one neighbor in V (R).

To prove (10) suppose for a contradiction that an internal vertex v2 has two
neighbors v1, v3 ∈ V (R). Let P denote the path v1v2v3, and let R,C1, C2 be the
three cycles of R ∪ P . By (4) either one of C1, C2 is T and the other has length
seven, or C1, C2 both have length five. In either case it follows from (5) that
C1, C2 both bound faces of G, and hence v2 has degree two, contrary to (2). This
proves (10).

(11) The cycle T is disjoint from R.

To prove (11) suppose for a contradiction that v ∈ V (T ) ∩ V (R). By (9)
and (10) v is the only vertex of T ∩ R. The graph T ∪ R has a face bounded by
a walk C of length nine. By (7) at least one of the vertices of V (T ) \ V (R) has
degree two, contrary to (2). This proves (11).

Let us fix an orientation of the plane, and let T = t1t2t3 and R = r1r2 . . . r6
be numbered in clockwise cyclic order according to the drawing of G.

(12) G has at most one edge joining T to R.

To prove (12) suppose that say t1r1, t2ri ∈ E(G) for some i ∈ {1, . . . , 6}.
By (4) we have 3 ≤ i ≤ 5. Let C2 = r1t1t3t2riri+1 . . . r6. As t3 has degree at
least three, C2 does not bound a face; thus C2 has length at least eight by (5),
and we conclude that i = 3. Thus C2 has length exactly eight, and hence by (7)
ins(C2) consists of C2 and at most one chord. Since t3 has degree at least three,
this chord exists and joins t3 with r5, and hence G has a subgraph isomorphic to
the graph depicted in Figure 4.1(b), contrary to (9). This proves (12).

(13) G does not contain a 5-face incident only with internal vertices of degree
three.

To prove (13) suppose for a contradiction that G contains such a 5-face C =
v1v2v3v4v5. For 1 ≤ i ≤ 5, let xi be the neighbor of vi not belonging to C (each
vi has such a neighbor, because T and C bound faces by (5) and each vertex
of C has degree three). Since T is disjoint from R by (11) and G contains no
4-cycles by (4), it follows that at most three of the vertices x1, . . . , x5 belong to
R. Without loss of generality we may assume that x1 is internal. Note also that
x1 6∈ {x3, x4}, as G does not contain a 4-cycle. By the symmetry between x3 and
x4 we may assume that if x3 is adjacent to a vertex of R, then so is x4. Let G′ be
the graph obtained from G− V (C) by adding the edge x1x3. Observe that every
coloring of G′ extends to a coloring of G: given a coloring of G′, every vertex in
C has a list of two available colors, and the lists of v1 and v3 are different. We
conclude that φ does not extend to a 3-coloring of G′.

Our next objective is to show that G′ satisfies (∗). To that end let K ′ 6= T
be a cycle in G′ of length at most four. Then K ′ includes the edge x1x3 by (4).
Consider the cycle K in G obtained from K ′ by replacing the edge x1x3 by the
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path P = x1v1v2v3x3. Note that K has length at most seven, and that it does
not bound a face (since v1 and v2 have neighbors drawn on opposite sides of P ).
Thus by (5) T is a subgraph of ins(K). We conclude that G′ satisfies (∗), as
desired.

Let G′′ be a minimal subgraph of G′ such that R is a subgraph of G′′ and
every 3-coloring of R that extends to a 3-coloring of G′′ extends to a 3-coloring
of G′. Note that G′′ 6= R, since φ does not extend to a 3-coloring of G′′. Then
G′′ is R-critical, and the minimality of G implies that G′′ is isomorphic to one
of the graphs depicted in Figure 4.1. But R is an induced subgraph of G by (9)
and x1 is internal, and hence G′′ is isomorphic to the graph of Figure 4.1(b). Let
L′ be the triangle of G′′. By (12) we have L′ 6= T , and hence x1x3 is an edge of
L′. Let t be the third vertex of L′. We may assume that x1 is adjacent to r1,
x3 is adjacent to r3 and t is adjacent to r5, where the adjacencies take place in
G,G′ and G′′. Let D′ be the face boundary of the 5-face of G′′ incident with the
edge x1x3, and let D be the 8-cycle of G obtained from D′ by replacing the edge
x1x3 by the path P . Let L be the 6-cycle in G obtained from L′ by replacing
the edge x1x3 by the path P . By (6) T lies in the closed disk bounded by L,
and since t is adjacent to r5 it follows that ins(D) includes no cycle of length
at most four. By (7) no vertex of G lies in the open disk bounded by D, and
hence v4 and v5 lie in the open disk bounded by L. Since G has no 4-cycles we
deduce that x4 6∈ {x1, t}, and x3 6= x4, for otherwise T = x3v4v3 and the cycle
x3tx1v1v5v4 includes the edge v5x5 in its inside but not T , contrary to (5). Since
x3 is adjacent to r3, the choice of x3 implies that x4 is adjacent to a vertex of R,
contrary to the planarity of G. This proves (13).

(14) The distance between R and T is at least two.

To prove (14) suppose for a contradiction that the distance between R and T
is at most one. Then it is exactly one by (11), and so we may assume that say
t1r1 ∈ E(G). Let C be the closed walk in G of length 11 obtained by traversing
R ∪ T and the edge t1r1 twice, and let H be the subgraph of G consisting of all
vertices and edges of G drawn in the closure of open disk bounded by C. By (7)
the graph H satisfies (a), (b) or (c) of Theorem 24. If it satisfies (a), then by (2)
applied to t2 and t3 the graph H consists of R∪T and two edges, one incident with
t2 and the other with t3. It follows that the graph of Figure 4.1(b) is isomorphic
to a subgraph of G, contrary to (9). If H satisfies (b), then H−V (C) is a tree X
with at most three vertices, each of degree three. Both t2 and t3 have a neighbor
in X, and hence X ∪{t2, t3} includes the vertex-set of a 5-cycle, contrary to (13).
Finally, H cannot satisfy (c) by (13). This proves (14).

(15) No two vertices of degree two are adjacent in G

.
To prove (15) suppose for a contradiction that G has two adjacent vertices of

degree two. By (2) they belong to R, and so we may assume that say r2 and r3
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have degree two. The edge r2r3 is not contained in any 5-cycle, as otherwise R
would have a chord or an internal vertex would have two neighbors in R, contrary
to (9) and (10). Let G′ be the graph obtained from G by contracting the edge
r2r3, and let R′ be the corresponding outer cycle of G′. Then G′ has no cycle of
length at most 4 distinct from T . Furthermore, every 3-coloring ψ of R can be
modified to a 3-coloring ψ′ of R′ such that ψ(ri) = ψ(r′i) for i ∈ {1, 4, 5, 6}, and
ψ extends to G if and only if ψ′ extends to a 3-coloring of G′. It follows that G′

is R′-critical, contrary to Theorem 22. This proves (15).

(16) For every path v1v2v3v4 with v2 and v3 internal and v1, v4 ∈ V (R) there
exists r ∈ V (R) such that v1v2v3v4r bounds a 5-face.

To prove (16) consider a path P = v1v2v3v4 with v2 and v3 internal and
v1, v4 ∈ V (R), and let C1 and C2 be the cycles of R ∪ P other than R such that
T lies in the closed disk bounded by C1. Since T is disjoint from R, C1 does not
bound a face, and hence it has length at least six by (5). Thus C2 has length at
most six, and hence bounds a face by (5), and therefore has length at most five
by (15). This proves (16).

(17) All faces of G distinct from R and T have length exactly five.

To prove (17) consider a face v1v2 . . . vk of length k ≥ 6 in G. By (10) we
may assume without loss of generality that v2 and v3 are internal. Furthermore,
if k = 6, then not all of v1, v4, v5 and v6 may belong to R, by (15), and hence,
by symmetry, we may assume that either v4 or v6 is internal. Let W = {v2, vk}
if k > 6 and W = {v2, v4, v6} if k = 6. Let G′ be the graph obtained from G by
identifying the vertices of W to a new vertex w and deleting all resulting parallel
edges. Thus E(G′) ⊆ E(G). By (2) and (5) the vertices of W are pairwise non-
adjacent, thus the identifications created no loops. Observe that every 3-coloring
ψ of G′ gives rise to a 3-coloring of G (color the vertices of W using ψ(w)). It
follows that some 3-coloring of R does not extend to a 3-coloring of G′. Let G′′ be
a minimal subgraph of G′ such that R is a subgraph of G′′ and every 3-coloring
of R that extends to a 3-coloring of G′′ also extends to a 3-coloring of G′; then
G′′ is R-critical.

Next we show that G′′ satisfies (∗). As a first step we prove that G′′ does not
have a triangle other than T . To that end let K ′ 6= T be a triangle in G′′. Recall
that E(G′′) ⊆ E(G). Two of the edges of K ′ are incident in G with distinct
vertices w1, w2 ∈ W . Let K be the corresponding 5-cycle in G, obtained from
K ′ by replacing w with the shortest path between w1 and w2 in G. Observe that
K does not bound a face in G, contrary to (5). Therefore, G′′ does not have a
triangle distinct from T . Consider now a 4-cycle L′ in G′′. The corresponding
cycle L in G (constructed in the same way as K) has length six. As L does not
bound a face we can apply (6) to the cycle L. By the first result of this paragraph
it follows that T is contained in the closed disk bounded by L′, and hence G′′

satisfies (∗).
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SinceG′′ has fewer vertices thanG, G′′ is one of the graphs drawn in Figure 4.1.
Furthermore, the first result of the previous paragraph implies that T is the
unique triangle of G′′. However, this implies that the distance between T and R
in G is at most one, contradicting (14). This proves (17).

(18) Every 5-face incident with four internal vertices of degree three is incident
with an edge of T .

To prove (18) suppose for a contradiction that G contains a 5-face f =
v1v2v3v4v5, where v1, v3, v4 and v5 are internal vertices of degree three, and
that f does not share an edge with T . By (13) the degree of v2 is at least four.
Let x1, x3, x4 and x5 be the neighbors of v1, v3, v4 and v5, respectively, outside of
{v1, v2, . . . , v5}. If v2 ∈ V (R), then x3 is internal since v3 has only one neighbor
in R by (10), and x4 and x5 are internal by (16) and (2) applied to v1 and v3.
Also, not all of x1, x3, x4 and x5 belong to R, as T does not share an edge with
f . Thus, we may assume that at least one of x3 and x4 and at least one of v2 and
x5 is internal. As f does not share an edge with T , the vertices v2, x3, x4 and
x5 are distinct and pairwise non-adjacent. Let G′ be the graph obtained from
G − {v1, v3, v4, v5} by identifying v2 with x5 to a new vertex w1 and x3 with x4
to a new vertex w2. Note that any coloring ψ of G′ extends to a coloring of G:
Give v2 and x5 the color c1 = ψ(w1) and x3 and x4 the color c2 = ψ(w2). If
c1 = c2, then color the vertices of V (F ) \ {v2} in the order v1, v5, v4 and v3.
Similarly, if c1 = ψ(x1), then color the vertices v3, v4, v5 and v1 in order. Finally,
if ψ(x1) 6= c1 6= c2, then color v1 by c2, v3 by ψ(x1), v4 by c1 and choose a color for
v5 distinct from c1 and c2. It follows that some 3-coloring of R does not extend to
a 3-coloring of G′. Let G′′ be a minimal subgraph of G′ such that R is a subgraph
of G′′ and every 3-coloring of R that extends to a 3-coloring of G′′ also extends
to a 3-coloring of G′. Then G′′ is R-critical.

Next we show that G′′ satisfies (∗). Consider a cycle K ′ of G′′ of length at
most four distinct from T , and let K ⊆ G be the corresponding cycle obtained by
replacing w1 by v2v1v5x5 or w2 by x4v4v3x3 or both. If we replaced both, then K
has length at most 10 and it has two chords v2v3 and v4v5. Thus one of them must
belong to T , contradicting the assumption that f does not share an edge with T .
Therefore, we expanded only one vertex in K ′, and hence 6 ≤ |V (K)| ≤ 7. By
(17), K does not bound a face. By (5) T is a subgraph of ins(K), and hence G′′

satisfies (∗), as claimed.
Since G′′ has fewer vertices than G, we conclude that G′′ is isomorphic to

one of the graphs from Figure 4.1. Let K ′ be the unique triangle of G′′. Using
(14), we conclude that K ′ 6= T . Let K be the corresponding cycle of length six
in G. By (17) the cycle K does not bound a face. By (6) ins(K) is isomorphic
to one of the graphs drawn in Figure 4.1. By (14) we conclude that G′′ cannot
be the graph in Figure 4.1(a), and hence G′′ is isomorphic to the graph in Fig-
ure 4.1(b). We may therefore assume that t1, t2, t3 are adjacent in G′′ to r1, r5, r3,
respectively, where t1, t2, t3 are the vertices of K ′. From the symmetry we may
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assume that the edge t1t3 of K ′ corresponds to the path t1abct3 in K. Now either
{t1, a, b, c} or {a, b, c, t3} is equal to {v2, v1, v5, x5} or {x3, v3, v4, x4}, and so from
the symmetry we may assume that the ordered quadruple (t1, a, b, c) is equal to
one of (v2, v1, v5, x5), (x5, v5, v1, v2), (x3, v3, v4, x4), and (x4, v4, v3, x3).

We claim that t1, r1 and t3, r3 are adjacent in G. Indeed, they are adjacent in
G′′, and so it remains to rule out the case that the edge t1r1 or t3r3 was created
during the identifications that produced G′′ from G. This is done by examining
the four cases listed above. Let first (t1, a, b, c) = (v2, v1, v5, x5). Since ins(K) is
isomorphic to one of the graphs in Figure 4.1 and T shares no edge with f , we
deduce that the vertices v3, v4 do not belong to ins(K). Let i ∈ {1, 3}, and assume
for a contradiction that ri is not adjacent to ti in G. But they are adjacent in G′′,
and so either one of x3, x4 is equal to ti and the other is adjacent to ri, or one of
x3, x4 is equal to ri and the other is adjacent to ti. Since G is planar, it follows
that if i = 1, then x3 is adjacent or equal to ti, and if i = 3, then the vertex x4
is adjacent or equal to ti. Thus in the former case the set {v2, v3, x3} induces a
triangle distinct from T (because T is a subgraph of ins(K)). In the latter case
we deduce that x4 is adjacent to t3, for otherwise the set {t3, x4, v4, v5, x5} induces
a cycle of length at most four, again a contradiction. Since x4 is adjacent to t3,
we have x3 = r3. From (7) applied to the cycle t3t2r5r4r3v3v4v5x5 we deduce
that t3x5v5v4x4 is a cycle of internal degree three vertices, contrary to (13). This
completes the first of the four cases. The second case is handled similarly. In the
last two cases we deduce, using the same argument as above, that v1, v2, v5 do not
belong to ins(K). Thus ins(K) has two adjacent vertices v3 and v4 of degree two,
and hence is isomorphic to the graph in Figure 4.1(a). It follows that t2 ∈ V (T ),
contrary to (14). We have thus shown that t1, r1 and t3, r3 are adjacent in G.

Let D′ denote the cycle r1t1abct3r3r2 of length eight. By (7) it follows
that ins(D′)\E(D′) includes at most one edge, contrary to the fact that all of
v1, v2, . . . , v5 belong to ins(D′). This proves (18).

(19) The cycle R has no subpath z1z2z3 with deg(z2) = 3 and deg(z1) =
deg(z3) = 2.

To prove (19) suppose for a contradiction that say r2 and r4 have degree two
and r3 has degree three. By (15) the vertices r1 and r5 have degree at least three.
By (17) the face incident with r2 distinct from the outer face is bounded by a
5-cycle, say r1r2r3yx. Similarly, there is a face bounded by a 5-cycle r3r4r5zy,
where x 6= z by (2). Let K be the 6-cycle r1xyzr5r6. By (2) and (6) the graph
ins(K) is isomorphic to one of the graphs in Figure 4.1, contrary to (14). This
proves (19).

(20) If R has at least two vertices of degree two, then it has at least one vertex
of degree at least four.

To prove (20) suppose for a contradiction that R has at least two vertices
of degree two and the remaining vertices of degree at most three. By (15) and

56



(19) G has exactly two vertices of degree two, and the distance in R between
them is three. We may therefore assume that r1 and r4 have degree two, and
r2, r3, r5, r6 have degree three. By (17), G has a 6-cycle C = x1x2x3x4x5x6 such
that x1r2, x3r3, x4r5, x6r6 ∈ E(G). By (6) the graph ins(C) is isomorphic to one
of the graphs in Figure 4.1. It follows that either x2 or x5 has degree two, contrary
to (2). This proves (20).

We are now ready to complete the proof of Theorem 23 using the so-called
discharging argument. Let us assign charges to the vertices and faces of G in the
following way: Each face f of length |f | not bounded by R or T gets a charge of
1 = |f |− 4, the face bounded by T gets charge 2 = (|V (T )|− 4) + 3, and the face
bounded by R gets charge 0 = (|V (R)| − 4) − 2. A vertex v ∈ V (R) of degree
two gets charge −1/3 = (deg(v) − 4) + 5/3, a vertex v ∈ V (R) of degree three
gets charge 0 = (deg(v)− 4) + 1, and all other vertices v get charge deg(v)− 4.

(21) The total sum of the charges is at most −1/3.

To prove (21) we deduce from Euler’s formula the sum of the charges is at
most

∑
f∈F (G)(|f | − 4) +

∑
v∈V (G)(deg(v)− 4) +n3 + 5n2/3 + 1 = n3 + 5n2/3− 7,

where n2 is the number of vertices of degree two and n3 is the number of vertices
of R of degree three in G. By (15) n2 ≤ 3. By (19), if n2 = 3 then n3 = 0. By
(20), if n2 = 2, then n3 ≤ 3. It follows that n3 + 5n2/3 ≤ 20/3, and hence the
sum of the charges is at most −1/3, as desired. This proves (21).

Let us now redistribute the charge according to the following rules: every face
distinct from R sends 1/3 to each incident vertex of degree two and each incident
internal vertex of degree three. The face T sends 1/3 to each face that shares an
edge with it. The final charge of each vertex and of the faces R and T is clearly
non-negative. Since the sum of the final charges is equal to the sum of the initial
charges, it follows from (21) that G has a face f of strictly negative final charge.
The face f has length five; let v1, v2, v3, v4, v5 be the incident vertices in order.

If say v2 were a vertex of degree two, then by (15), v1 and v3 would be vertices
of R of degree at least three, and hence f would send no charge to them, contrary
to the fact that the final charge of f is strictly negative. It follows that all vertices
of f have degree at least three, and since the final charge of f is negative, f sends
charge to at least four of them. Therefore, at least four of the vertices incident
with f are internal and have degree three. The fifth vertex has degree at least
four by (13). By (18) f shares an edge with T . However, f sends 1/3 to each of
its incident vertices of degree three and nothing to the fifth vertex, and receives
1/3 from T ; hence the final charge of f is non-negative, a contradiction.

We are now ready to prove Theorem 23.

Proof of Theorem 23. Let G, T and φ be as in Theorem 23. We may assume that
R bounds the outer face. Let G′ be a minimal subgraph of G such that R is
a subgraph of G and φ does not extend to a 3-coloring of G′. It follows that
G′ is R-critical. If T is not a subgraph of G′, then we let f0 be any face of G′;
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otherwise we let f0 denote any face of G′ that is contained in the closed disk
bounded by T . Then G′ satisfies hypothesis (∗) of Theorem 25. By Theorem 25
the graph G′ is isomorphic to one of the graphs depicted in Figure 4.1. If neither
of the two outcomes of Theorem 23 holds, then φ extends to a 3-coloring of G′,
a contradiction.
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Chapter 5

3-list-colorability of planar graphs
with constraints on (≤4)-cycles1

Grötzsch [43] proved that every triangle-free planar graph is 3-colorable. For some
time, the question whether this result holds in the list coloring setting was open;
finally, Voigt [76] found a triangle-free planar graph that is not 3-list-colorable.
On the other hand, Thomassen [69] proved that every planar graph of girth at
least 5 is 3-list-colorable. Numerous papers study additional conditions that force
a triangle-free planar graph to be 3-list-colorable, see e.g. [51, 53, 79, 80, 81, 82].

In particular, let us point out the result of Li [52], strengthening the result
of Thomassen [69]: every planar triangle-free graph such that no 4-cycle shares
a vertex with another 4- or 5-cycle is 3-list-colorable. We further improve this
result, only forbidding the 4-cycles sharing an edge with other 4- or 5-cycles.
Cycles C1 and C2 in a graph are adjacent if they intersect in a single edge, i.e., if
V (C1) ∩ V (C2) = {u, v} for an edge uv.

Theorem 26. Any planar triangle-free graph without 4-cycles adjacent to 4- and
5-cycles is 3-list-colorable.

Since the subgraph formed by a 4-cycle adjacent to a 4- or 5-cycle contains a 6-
or 7-cycle, we obtain the following corollary.

Corollary 27. Any planar graph without 3-, 6- and 7-cycles is 3-list-colorable.

This strengthens the results of Lidický [53] that planar graphs without 3-, 6-, 7-
and 8-cycles are 3-list-colorable, and of Zhang and Xu [80] that planar graphs
without 3-, 6-, 7- and 9-cycles are 3-list-colorable. Theorem 26 also implies the
result of Lam et al. [51] that planar graphs without 3, 5 and 6-cycles are 3-list-
colorable.

1The results of this chapter are based on Dvořák et al. [32].
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5.1 Proof of Theorem 26

A path of length k (or a k-path) is a path on k + 1 vertices. Using the proof
technique of precoloring extension developed by Thomassen [69], we show the
following generalization of Theorem 26:

Theorem 28. Let G be a triangle-free planar graph without 4-cycles adjacent to
4- and 5-cycles, with the outer face C, and P a path of length at most three such
that V (P ) ⊆ V (C). The graph G can be L-colored for any list assignment L such
that

• |L(v)| = 3 for all v ∈ V (G) \ V (C);

• 2 ≤ |L(v)| ≤ 3 for all v ∈ V (C) \ V (P );

• |L(v)| = 1 for all v ∈ V (P ), and the colors in the lists give a proper coloring
of the subgraph of G induced by V (P );

• the vertices with lists of size two form an independent set; and

• each vertex with lists of size two has at most one neighbor in P .

Note that we view the single-element lists as a precoloring of the vertices of P .
Also, P does not have to be a part of the facial walk of C, as we only require
V (P ) ⊆ V (C). If C is a cycle, then let `(C) denote its length. Theorem 28 has
the following easy consequence:

Corollary 29. Let G be a triangle-free planar graph without 4-cycles adjacent to
4- and 5-cycles, with the outer face bounded by an induced cycle C of length at
most 9. Furthermore, assume that

• if `(C) = 8, then at least one edge of C does not belong to a 4-cycle; and

• if `(C) = 9, then C contains two consecutive edges that do not belong to 4-
and 5-cycles.

Let L be an assignment of lists of size 1 to the vertices of C and lists of size 3
to the other vertices of G. If L prescribes a proper coloring of C, then G can be
L-colored.

Proof. The claim follows from Theorem 28 for `(C) = 4. If `(C) ∈ {5, 6, 7},
then let u1w1vw2u2 be an arbitrary subpath of C. Let L′ be the list assignment
obtained from L by removing the color L(v) from the lists of vertices adjacent to
v. We also set the lists of w1 and w2 to 2-lists such that the precoloring of the
other vertices of C forces the prescribed color L(w1) on w1 and L(w2) on w2, i.e.,
L′(w1) = L(w1) ∪ L(u1) and L′(w2) = L(w2) ∪ L(u2). As all the vertices x with
|L′(x)| = 2 are neighbors of a single vertex v, the graph G− v together with the
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list assignment L′ satisfies the assumptions of Theorem 28. It follows that we
can L′-color G− v, giving an L-coloring of G.

Let us now consider the case that `(C) = 8, and let C = w1uvw2r1r2r3r4,
where the edge uv does not belong to a 4-cycle. Let us delete vertices u and v
from G, remove the color in L(u) from the lists of neighbors of u and the color in
L(v) from the lists of neighbors of v, and change the list of w1 to L(w1)∪L(r4) and
the list of w2 to L(w2) ∪ L(r1), so that the precoloring of the path P = r1r2r3r4
forces the right colors on w1 and w2. As uv does not belong to a 4-cycle, the
vertices with lists of size two form an independent set. As C is induced, both w1

and w2 have only one neighbor in the 3-path P . Let x be a neighbor of u other
than v and w1. The vertex x cannot be adjacent to both r1 and r4, as the 4-cycle
uxr4w1 would be adjacent to a 5-cycle xr1r2r3r4. Similarly, x cannot be adjacent
to both r1 and r3 or both r2 and r4. As G does not contain triangles, x has at
most one neighbor in P . By symmetry, this is also true for the neighbors of v.
Therefore, the graph satisfies assumptions of Theorem 28, and can be colored
from the prescribed lists.

Finally, suppose that `(C) = 9, and let C = w1uvww2r1r2r3r4, where the
edges uv and vw are not incident with 4- and 5-cycles. We argue similarly as
in the previous case. We delete vertices u, v and w from G and remove their
colors from the lists of their neighbors. We also set the list of w1 to L(w1)∪L(r4)
and the list of w2 to L(w2) ∪ L(r1), so that the precoloring of the path r1r2r3r4
forces the right colors on w1 and w2. Observe that the resulting graph satisfies
assumptions of Theorem 28, hence it can be colored.

Before we proceed with the proof of Theorem 28, let us describe the notation
that we use in figures. We mark the precolored vertices of P by full circles, the
vertices with list of size three by empty circles, and the vertices with list of size
two by empty squares. The vertices for that the size of the list is not uniquely
determined in the situation demonstrated by the particular figure are marked by
crosses.

Proof of Theorem 28. Suppose G together with lists L is a smallest counterex-
ample, i.e., such that |V (G)|+ |E(G)| is minimum among all graphs that satisfy
the assumptions of Theorem 28, but cannot be L-colored, and

∑
v∈V (G) |L(v)| is

minimum among all such graphs. Let C be the outer face of G and P a path
with V (P ) ⊆ V (C) as in the statement of the theorem. We first derive several
properties of this counterexample. Note that each vertex v of G has degree at
least |L(v)|. A cycle K in G is separating if K 6= C and the interior of K contains
at least one vertex. A chord of a cycle K is an edge in G joining two distinct
vertices of K that are not adjacent in K.

Lemma 30. Let K be a separating cycle in G. Then, `(K) ≥ 8. Furthermore,
if `(K) = 8, then every edge of K belongs to a 4-cycle lying inside K; and if
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Figure 5.1: A chord of C

`(K) = 9, then at least one of any two consecutive edges of K belongs to a 4- or
5-cycle lying inside K.

Proof. We may assume that K is induced, as otherwise we could consider a
shorter separating cycle of length at most 7. Let G1 be the subgraph of G drawn
inside K (including K, but excluding the chords of K drawn outside of K) and G2

the subgraph of G drawn outside of K (including K, but excluding the chords of
K drawn inside K). By the minimality of G, Theorem 28 holds for G1 and G2 and
their subgraphs. Therefore, there exists a coloring of G1 from the prescribed lists,
and this coloring can be extended to G2 by Corollary 29. This is a contradiction,
as G cannot be colored from the lists.

As G does not have triangles and 4-cycles adjacent to 4- and 5-cycles, a cycle
of length at most 7 does not have a chord. Therefore, Lemma 30 implies that
every cycle of length at most 7 bounds a face. Similarly, a cycle K of length 8
with an edge that does not belong to a 4-cycle in the interior of K either bounds
an 8-face, or has a chord splitting it to a 4-face and a 6-face, or two 5-faces.

Lemma 31. The graph G is 2-connected.

Proof. Obviously, G is connected. Suppose now that v is a cut vertex of G and
G1 and G2 are nontrivial induced subgraphs of G such that G = G1 ∪ G2 and
V (G1) ∩ V (G2) = {v}. Both G1 and G2 satisfy the assumptions of Theorem 28.
If v is precolored, then by the minimality of G there exist L-colorings of G1 and
G2, and they combine to a proper L-coloring of G. If v is not precolored, then
we may assume that P ⊆ G1. An L-coloring of G1 assigns a color c to v. We
change the list of v to {c}, color G2 and combine the colorings to an L-coloring
of G.

By Lemma 31, C is a cycle. A k-chord of C is a path Q = q0q1 . . . qk of length
k joining two distinct vertices of C, such that V (C) ∩ V (Q) = {q0, qk} (e.g.,
1-chord is just a chord).

Lemma 32. The cycle C has no chords.
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Proof. Suppose e = uv is a chord of C, separating G to two subgraphs G1 and
G2 intersecting in e. If both u and v are precolored, then we L-color G1 and G2

by the minimality of G and combine their colorings. We assume by symmetry
that u 6∈ V (P ), and that |V (P ) ∩ V (G1)| ≥ |V (P ) ∩ V (G2)|. In particular,
|(V (P ) ∩ V (G2)) \ {u, v}| ≤ 1. Furthermore, we may choose uv such that G2 is
as small as possible. Then, the outer face of G2 does not have a chord. Let us
find an L-coloring of G1 and change the lists of u and v to the single-element
sets containing the colors assigned to them. If G2 with these new lists satisfies
assumptions of Theorem 28, then we find its coloring and combine the colorings
to an L-coloring of G, hence assume that this is not the case.

Let X = (V (P ) ∩ V (G2)) \ {u, v}. As G2 does not satisfy assumptions of
Theorem 28, there exists a vertex z with list of size two adjacent to two precolored
vertices. As G is triangle-free, we conclude that X is not empty, say X = {w}
(see Figure 5.1), and z is adjacent to u and w. Since G2 contains no separating
4-cycles and the outer face of G2 is chordless, z ∈ V (C) implies that G2 is equal
to the cycle uvwz. Since |L(z)| = 2, the assumptions of Theorem 28 imply
|L(u)| = 3. Let c1 be the color of u in the coloring of G1, and c2 the single color
in the list of w. If L(z) 6= {c1, c2}, then we can color z and finish the coloring of
G, hence assume that L(z) = {c1, c2}. Let c be a color in L(u) \ ({c1} ∪ L(v))
(this set is nonempty, as |L(v)| = 1 and |L(u)| = 3).

Let us now color z by c1 and set the list of u to {c}. If G1 with this list at
u satisfies assumptions of Theorem 28, then we can color G1, and thus obtain an
L-coloring of G. Since G does not have such an L-coloring, the assumptions are
violated, i.e., either u is adjacent to a vertex of P other than v, or G1 contains
a vertex (with list of size two) adjacent to both u and a vertex of P . This is a
contradiction, as G would in both of these cases contain either a triangle, or a 4-
or 5-cycle adjacent to the 4-cycle uvwz.

By the previous lemma, P is a part of the facial walk of C, and C is an
induced cycle.

Lemma 33. `(C) ≥ 8.

Proof. Suppose that `(C) ≤ 7. Let ϕ be a proper L-coloring of C (such a coloring
exists, as if V (C) 6= V (P ), then C contains at least one vertex with list of size
three). Let L′ be the list assignment defined by L′(v) = {ϕ(v)} for v ∈ V (C)
and L′(v) = L(v) for v ∈ V (G) \ V (C). If 5 ≤ `(C) ≤ 7, then the proof of
Corollary 29 implies that G has an L′-coloring (the proof only uses Theorem 28
for proper subgraphs of G, which satisfy it by the assumption that G is a minimal
counterexample). Such a coloring is also an L-coloring of G.

If `(C) = 4, then we delete one of the vertices of C and remove its color from
the lists of its neighbors. It is easy to verify that the resulting graph satisfies the
assumptions of Theorem 28, hence it has a proper coloring by the minimality of
G. This coloring extends to an L-coloring of G, which is a contradiction.
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Figure 5.3: A 2-chord of C

Lemma 34. No 4-cycle shares an edge with another 4- or 5-cycle.

Proof. Suppose that C1 = v1v2v3v4 and C2 = v1v2u3 . . . ut are cycles sharing the
edge v1v2, `(C1) = 4 and t = `(C2) ∈ {4, 5}. Note that C1 6= C and C2 6= C
by Lemma 33. By Lemma 30, both C1 and C2 bound a face. If v3 = u3, then
v2 would be a 2-vertex with list of size three. Thus, v3 6= u3 and by symmetry,
v4 6= ut. As G does not contain triangles, v3 6= ut and v4 6= u3, and in case that
t = 5, v3 6= u4 and v4 6= u4. Therefore, C1 and C2 are adjacent, contradicting the
assumptions of Theorem 28.

Note that we can assume that |V (P )| = 4, as otherwise we can prescribe color
for more of the vertices of C, without violating the assumptions of Theorem 28.
Let P = p1p2p3p4. We say that a k-chord Q of C splits off a face F from G
if F 6= C is a face of both G and C ∪ Q. See Figure 5.2 for an illustration of
2-chords splitting off a face.

Lemma 35. Every 2-chord uvw of C splits off a k-face F such that

(a) |V (F ) ∩ V (P )| ≤ 2 and {u,w} 6⊆ V (P ),

(b) k ≤ 5, and

(c) if |V (F ) ∩ V (P )| ≤ 1, then k = 4.

In particular, the cycle C has no 2-chord with |L(w)| = 2 and u 6= p2, p3.
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Proof. Suppose first that u,w ∈ V (P ). By Lemma 30, the 2-chord uvw together
with a part of P bounds a face K. Color v by a color different from the colors of
u and w, and remove V (K)\{u, v, w} from G, obtaining a graph G′. Note that a
path of length at most three is precolored in G′. Since G cannot be L-colored, we
may assume that G′ does not satisfy the assumptions of Theorem 28, i.e., there
exists z with |L(z)| = 2 adjacent to both v and a vertex y ∈ V (P ) ∩ V (G′). As
G is triangle-free, y 6∈ {u,w}. It follows that yuvz or ywvz is a 4-face. This is a
contradiction, as K would be an adjacent 4-face. Therefore, {u,w} 6⊆ V (P ), and
by symmetry we assume that w 6∈ V (P ).

The 2-chord uvw splits G to two subgraphs G1 and G2 intersecting in uvw.
Let us choose G2 such that |V (P ) ∩ V (G2)| ≤ |V (P ) ∩ V (G1)|, see Figure 5.3.
Note that |V (P ) ∩ V (G2)| ≤ 2. Let us consider the 2-chord uvw such that
|V (P ) ∩ V (G2)| is minimal, subject to the assumption that G2 is not a face.
By the minimality of G, there exists an L-coloring ϕ of G1. Let L′ be the list
assignment for G2 such that L′(u) = {ϕ(u)}, L′(v) = {ϕ(v)}, L′(w) = {ϕ(w)}
and L′(x) = L(x) for x ∈ V (G2) \ {u, v, w}. Let P ′ be the precolored path in G2

(consisting of u, v, w, and possibly one other vertex p of P adjacent to u). As C
has no chords and G2 is not a face, P ′ is an induced subgraph. Since G cannot
be L-colored, we conclude that G2 cannot be L′-colored, and thus G2 with the
list assignment L′ does not satisfy the assumptions of Theorem 28. Therefore,
there exists a vertex z with |L(z)| = 2, adjacent to two vertices of P ′.

Since G2 is not a face, Lemmas 30 and 32 imply that z is not adjacent to both
w and p. Similarly, z is not adjacent to both u and w. It follows that z is adjacent
to v and p, and thus |V (P )∩ V (G2)| = 2. Since we have chosen the 2-chord uvw
so that |V (P ) ∩ V (G2)| = 2 is minimal among the 2-chords for that G2 is not
a face, the 2-chord wvz splits off a face F ′ from G. Let x be the neighbor of z
in F ′ other than v. Since |L(z)| = 2, it holds that |L(x)| = 3. As F ′ is a face,
deg(x) = 2, which is a contradiction. It follows that for every 2-chord, G2 is a
face. The choice of G2 establishes (a).

Let wvuv4 . . . vk be the boundary of the face G2. Note that V (P ) ∩ V (G2) ⊆
{u, v4}, and v4, . . . , vk have degree two. If k > 5, then at least one of v5 and v6
has list of size three, which is a contradiction, proving (b). Similarly, if |V (F ) ∩
V (P )| ≤ 1 and k = 5, then at least one of v4 and v5 would be a 2-vertex with list
of size three, proving (c).

Consider now a 2-chord uvw such that |L(w)| = 2 and u 6∈ {p2, p3}, and let
x be the neighbor of w in G2 distinct from v. As u 6∈ {p2, p3}, no vertex of
V (P )\{u} lies in G2. Therefore, |L(x)| = 3 and deg(x) = 2, a contradiction. We
conclude that no such 2-chord exists.

Let us now consider the 3-chords of C:

Lemma 36. Every 3-chord Q = uvwx of C such that u, x 6∈ {p2, p3} splits off a
4- or 5-face.
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Proof. Suppose that Q splits G into two subgraphs G1 and G2 intersecting in
uvwx, such that V (P ) ∩ V (G2) ⊆ {u, x}. Let us L-color G1 and consider the
vertices u, v, w and x of G2 as precolored according to this coloring. If ux were
an edge, then Q would split off a 4-face. It follows that Q is an induced path
thus this precoloring of Q is proper. Similarly, as Q does not split off a 5-face,
u and x do not have a common neighbor with list of size two. Neither v nor w
is adjacent to a vertex with list of size 2 by Lemma 35. Therefore, G2 satisfies
assumptions of Theorem 28, and the coloring can be extended to G2, giving an
L-coloring of G. This is a contradiction.

Let x1x2x3x4 be the part of the facial walk of C such that x1 is adjacent to
p4 and x2 6= p4. By Lemma 33, {x1, x2, x3, x4} ∩ V (P ) = ∅. Let us now show a
few properties of the vertices x1, x2, x3, x4 and their neighbors.

Lemma 37. Let Q = v0v1 . . . vk be a k-chord starting and ending at a vertex of
x1x2x3x4, or a cycle intersecting C in a single vertex x ∈ {x1, x2, x3, x4}. The
following holds (for some i ∈ {1, 2, 3, 4}):

• If `(Q) = 2, then Q = xiv1xi+2 splits off a 4-face.

• If `(Q) = 3, then Q splits off either a 4-face xixi+1v1v2, or a 5-face xixi+1xi+2v1v2.

• If `(Q) = 4, then Q forms a boundary of a 4-face xiv1v2v3, or splits off a
5-face xixi+1v1v2v3, or splits off a 6-face xixi+1xi+2v1v2v3.

Proof. By a simple case analysis. The details are left to the reader.

Note also that ifQ splits off a face of form xixi+1xi+2v1 . . . vk−1, then deg(xi+1) =
|L(xi+1)| = 2.

Lemma 38. If Q is a k-chord with k ≤ 3, starting at a vertex xi (where 1 ≤ i ≤
4) and ending at a vertex with list of size two, then k = 3 and Q bounds a 4-face.

Proof. Let Q = q0q1 . . . qk, where q0 ∈ {x1, x2, x3, x4} and |L(qk)| = 2. By
Lemmas 32 and 35, k > 2. If k = 3, then by Lemma 36, Q splits off a 4- or
5-face. However, the latter is impossible, as |L(q3)| = 2, so the remaining vertex
of the 5-face, whose degree is two, would have a list of size three.

Lemma 39. There is no 2-chord from {p1, p2} to {x1, x2, x3, x4}.

Proof. Suppose Q = pivxj is such a 2-chord, and let K be the cycle formed by
Q and pi . . . p4x1 . . . xj. Note that `(K) ≤ 9. Let us choose Q such that `(K) is
minimal. By Lemma 35, Q splits off a face F such that `(F ) ≤ 5. Furthermore,
if `(K) = 9, then i = 1, and hence |V (P ) ∩ V (F )| = 1. In that case, the claim
(c) of Lemma 35 implies `(F ) = 4. See Figure 5.4 for illustration. It follows that
the edges piv and vxj are not incident with a 4-cycle inside K, and if `(K) = 9,
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p1 p2 p3 p4 x1 x2 x3 x4

v

F

K

Figure 5.4: A 2-chord from p1 or p2 to {x1, x2, x3, x4}

p4 x1 x2 x3

(C1)
p4 x1 x2 x3 x4 x5

(C2)

p4 x1 x2 x3 x4 x5

(C3a)
p4 x1 x2 x3 x4

(C3b)
x5 = p1

p4 x1 x2 x3 x4

(C4)
p4 x1 x2 x3 x4

(C5)

Figure 5.5: The construction of the set X1

then they are not incident with a 5-cycle. By Lemma 30, K is not separating.
If `(K) ≤ 7, then K bounds a face, and deg(v) = 2, which is a contradiction.
Similarly, if `(K) > 7, then K has a chord incident with v. By the minimality of
`(K), v is adjacent to p3 or p4. However, this contradicts Lemma 35(a).

If both x1 and x2 have lists of size three, then we remove one color from
L(x1) and find a coloring by the minimality of L (note that x1 is not adjacent
to any vertex with list of size two, and has only one neighbor in P , as C does
not have chords). Therefore, exactly one of x1 and x2 has a list of size two.
Let x5 be the neighbor of x4 in C distinct from x3. We now distinguish several
cases depending on the lists of vertices in {x1, x2, x3, x4}, in order to choose a set
X1 ⊆ {x1, x2, x3, x4} of vertices that we are going to color (and remove).

(C1) If |L(x1)| = 2 and |L(x2)| = |L(x3)| = 3 (see Figure 5.5(1)), then we set
X1 = {x1}.

(C2) If |L(x1)| = 2, |L(x2)| = 3, |L(x3)| = 2, |L(x4)| = 3 and |L(x5)| = 3 (see
Figure 5.5(2)), then we set X1 = {x1, x2, x3}.

(C3) If |L(x1)| = 2, |L(x2)| = 3, |L(x3)| = 2, |L(x4)| = 3 and |L(x5)| ≤ 2 (see
Figure 5.5(3)), then we set X1 = {x2, x3, x4}.
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r(z) = xi
xi+1 xi+2

z

R(z)

a)

r(z) = xi xi+1 = r(v)

z v

R(z) = R(v)
b)

r(z) = xi
xi+1 xi+2 = r(v)

z v

R(z) = R(v)
c)

r(z) = xm−1
xm xm+1

z

R(z)

d)

Figure 5.6: The construction of the set X2

(C4) If |L(x1)| = 3, |L(x2)| = 2, |L(x3)| = 3 and |L(x4)| = 3 (see Figure 5.5(4)),
then we set X1 = {x1, x2}.

(C5) If |L(x1)| = 3, |L(x2)| = 2, |L(x3)| = 3 and |L(x4)| = 2 (see Figure 5.5(5)),
then we set X1 = {x1, x2, x3}.

Let m = max{i : xi ∈ X1}. Note the following properties of the set X1:

• |X1| ≤ 3.

• If |L(xm)| = 2, then m ≤ 3 and |L(xm+1)| = |L(xm+2)| = 3.

• If |L(xm)| = 3, then |L(xm+1)| ≤ 2.

Let F be the set of faces of G incident with the edges of the path induced by
X1 (F = ∅ in the case (C1)). We define a set X2 ⊆ V (G) \ V (C), together with
functions r : X2 → X1 and R : X2 → F . A vertex z ∈ V (G) \ V (C) belongs to
X2 if

• z is adjacent to two vertices in X1 (see Figure 5.6(a) as an example). By
Lemma 37, z lies in a (uniquely determined) 4-face F = xixi+1xi+2z, where
xi, xi+1, xi+2 ∈ X1. We define r(z) := xi and R(z) := F . Or,

• there exists a path xzvy such that x, y ∈ X1 and v 6∈ {p1} ∪ X1 (see Fig-
ure 5.6(b), (c) and (d) for examples). If v = xm+1, then by Lemma 35, the
2-chord xzv splits off a 4-face F . Otherwise the 3-chord xzvy splits off a
4- or 5-face F by Lemma 37. We define r(z) := x and R(z) := F . Note
that v 6= x1: otherwise, x1 6∈ X1 and we are in case (C3), hence |L(x1)| = 2
and the 2-chord x1zx would contradict Lemma 35. It follows that v also
belongs to X2, unless v = xm+1.
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Let us now show that r(z) and R(z) are well-defined. As a 4-face cannot
be adjacent to a 4- or 5-face and G is triangle-free, z does not have another
neighbor in X1. Also, if there existed another path xzv′y′ with y′ ∈ X1

splitting off a face F ′, then both F and F ′ would be 5-faces; however,
that would imply |X1| ≥ 5, which is a contradiction. Therefore, r and R
are defined uniquely. Furthermore, v is the only neighbor of z in X2, and
R(v) = R(z) (assuming that v 6= xm+1).

We now find an L-coloring of X1 ∪X2 that we aim to extend to a coloring of
G.

Lemma 40. Let H = G[V (P ) ∪ X1 ∪ X2] be the subgraph of G induced by
V (P )∪X1 ∪X2. There exist an L-coloring ϕ1 of X1 and an L-coloring ϕ2 of X2

such that

• the coloring of H given by ϕ1, ϕ2 and the precoloring of P is proper,

• if |L(xm+1)| ≤ 2, then ϕ1(xm) 6∈ L(xm+1),

• if x1 6∈ X1 (i.e., in the case (C3) of the definition of X1), then L(x1) 6=
L(p4) ∪ {ϕ1(x2)}, and

• if z ∈ X2 is adjacent to xm+1, then |L(xm+1) \ {ϕ1(xm), ϕ2(z)}| ≥ 2.

Proof. Suppose first that there exists z ∈ X2 adjacent to xm+1. Note that z is
unique, m ≥ 2 and R(z) = xm−1xmxm+1z is a 4-face. As G does not contain a
2-vertex with list of size three, |L(xm)| = 2 and |L(xm−1)| = |L(xm+1)| = 3. This
happens only in the cases (C2) and (C4) of the definition of X1, thus x1 ∈ X1 and
m ≤ 3. Furthermore, xm−1 is the only neighbor of z in X1 and z is not adjacent
to any other vertex of X2. As R(z) is a 4-face and G does not contain 4-cycles
adjacent to 4- or 5-cycles, z is not adjacent to p3 and p4. By Lemma 39, z is not
adjacent to p1 and p2, either, thus any choice of the color for z is consistent with
the precoloring of P . Let us distinguish the following cases:

• If L(z)∩L(xm) 6= ∅, then choose c ∈ L(z)∩L(xm) and let ϕ1(xm) = ϕ2(z) =
c.

• If L(z) 6= L(xm+1), then choose ϕ2(z) ∈ L(z)\L(xm+1) and ϕ1(xm) ∈ L(xm)
arbitrarily.

• Finally, consider the case that L(z) ∩ L(xm) = ∅ and L(z) = L(xm+1),
i.e., the lists of xm and xm+1 are disjoint. We choose ϕ1(xm) ∈ L(xm) and
ϕ2(z) ∈ L(z) arbitrarily.
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On the other hand, suppose that no vertex of X2 is adjacent to xm+1. If
|L(xm+1)| = 2, then choose ϕ1(xm) ∈ L(xm) \ L(xm+1). Otherwise, choose
ϕ1(xm) ∈ L(xm) arbitrarily (in case that m = 1, choose a color different from the
one in L(p4))

In both of these cases, the precoloring of xm (and possibly z) can be extended
to a proper coloring ψ of the subgraph induced by {x1, . . . , xm, z} consistent with
the precoloring of P . We fix ϕ1 as the restriction of ψ to X1.

Let us now construct (the rest of) the coloring ϕ2. Consider a vertex u ∈ X2

that is not adjacent to xm+1. As u 6∈ V (C), it holds that |L(u)| = 3. If u has
no neighbor in X2, then it has two neighbors in X1, say r(u) and x, and R(u)
is a 4-face. We claim that u is not adjacent to any pi ∈ V (P ). Otherwise, we
obtain i ≥ 3 by Lemma 39. By Lemma 35, the 2-chord piur(u) splits off a 4- or
5-face. This face shares an edge with R(u), which is a contradiction. Therefore,
any choice of ϕ2(u) ∈ L(u) \ {ϕ1(x), ϕ1(r(u))} is consistent with the precoloring
of P .

Finally, suppose that u has a neighbor w ∈ X2. As we argued in the definition
of X2, each of u and w has exactly one neighbor in X1, and u and w do not have
any other neighbors in X2. Also, w is not adjacent to xm+1, as otherwise G would
contain a triangle or two adjacent 4-cycles. By Lemma 35(a), each of u and w
has at most one neighbor in P . If one of them does not have any such neighbor,
then we can easily color u and w, hence assume that piu and pjw are edges. By
Lemma 39, i, j ≥ 3. Without loss of generality, j = 3 and i = 4. This is a
contradiction, as the 4-face p3p4uw shares an edge with R(u).

Consider the colorings ϕ1 and ϕ2 constructed in Lemma 40. Let G′ = G −
(X1 ∪ X2) and let L′ be the list assignment such that L′(v) is obtained from
L(v) by removing the colors of the neighbors of v in X1 and X2 for v 6= x1, and
L′(x1) = L(x1) if x1 6∈ X1. Suppose that G′ with the list assignment L′ satisfies
assumptions of Theorem 28. Then there exists an L′-coloring ϕ of G′, which
together with ϕ1 and ϕ2 gives an L-coloring of G: this is obvious if x1 ∈ X1. If
x1 6∈ X1, then |L(x1)| = 2, and L(p4) ⊆ L(x1) by the minimality of G (otherwise,
we could remove the edge p4x1). By the choice of ϕ1, it holds that ϕ1(x2) 6= ϕ(x1).
Since no other vertex of X1 ∪X2 may be adjacent to x1 by Lemmas 32 and 35,
ϕ together with ϕ1 and ϕ2 is a proper coloring of G. As G is a counterexample
to Theorem 28, it follows that L′ violates assumptions of Theorem 28, i.e.,

(a) a vertex v ∈ V (G′) with |L′(v)| = 2 is adjacent to two vertices of P ; or

(b) |L′(v)| ≤ 1 for some v ∈ V (G′) \ V (P ); or

(c) two vertices u, v ∈ V (G′) with |L′(u)| = |L′(v)| = 2 are adjacent.

Let us now consider each of these possibilities separately.
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(a) A vertex v ∈ V (G′) with |L′(v)| = 2 is adjacent to two vertices of P . By
Lemmas 32 and 35(a), this is not possible.

(b) |L′(v)| ≤ 1 for some v ∈ V (G′) \ V (P ). If |L(xm+1)| = 2, then xm+1 does
not have any neighbor in X2 by Lemma 35 and hence |L′(xm+1)| = 2 by
the choice of ϕ1. If |L(xm+1)| = 3, then the choice of ϕ1 and ϕ2 according
to Lemma 40 ensures |L′(xm+1)| ≥ 2. Therefore, v 6= xm+1.

Since C has neither chords nor 2-chords starting in X1 and ending at a
vertex with list of size two by Lemma 38, it holds that |L(v)| = 3. Therefore,
v has at least two neighbors u1, u2 ∈ X1 ∪ X2. If at least one of u1 and
u2 belonged to X1, then v would be included in X2, hence we may assume
that u1, u2 ∈ X2.

Consider the path xiu1vu2xj, where xi = r(u1) and xj = r(u2). We may
assume that i ≤ j. The cycle xi . . . xju2vu1 has length at most six, thus
it bounds a face F . Note that i = j, as each of R(u1) and R(u2) shares
at least one edge with the path induced by X1 and F 6= R(u1) 6= R(u2) 6=
F . Therefore, F is a 4-face sharing an edge with 4-face R(u1) (and also
with R(u2)), which is a contradiction. Therefore, |L′(v)| ≥ 2 for every
v ∈ V (G′) \ V (P ).

(c) Two vertices u, v ∈ V (G′) with |L′(u)| = |L′(v)| = 2 are adjacent. As the
vertices with lists of size two form an independent set in G, we may assume
that |L(u)| = 3. Let y1 be a neighbor of u in X1 ∪X2.

Consider first the case that |L(v)| = 2. If u 6∈ V (C), then by Lemma 35,
y1 6∈ V (C), and thus y1 ∈ X2 and vuy1r(y1) is a 3-chord. By Lemma 38,
this 3-chord splits off a 4-face F . Note that F 6= R(y1), as u 6∈ X2. This
is impossible, as the 4-face F would share an edge with R(y1). Therefore,
u ∈ V (C), and hence v 6= x1. If y1 ∈ X2, then uy1r(y1) is a 2-chord,
and by Lemma 35, it splits off a 4-face adjacent to R(y1), which is again a
contradiction. Assume now that y1 ∈ X1. As C does not have chords, it
follows that y1 = xm and u = xm+1. However, in that case v = xm+2 and
|L(xm+2)| = 2, which contradicts the choice of X1.

Consider now the case that |L(v)| = 3. Let y2 be a neighbor of v in X1∪X2.
As u, v 6∈ X2, at least one of y1 and y2, say y1, belongs to X2. Let us consider
the possibilities y2 ∈ X1 and y2 ∈ X2 separately:

• y2 ∈ X1: The cycle formed by r(y1)y1uvy2 and a part of the path
x1x2x3x4 between r(y1) and y2 has length at most six, thus it bounds
a face F . Note that R(y1) shares an edge with F . Let k1 and k2 be the
number of edges that R(y1) and F , respectively, share with the path
induced by X1, k1 ≥ `(R(y1)) − 3 ≥ 1 and k2 = `(F ) − 4 ≥ 0. Since
|X1| ≤ 3, it holds that k1 + k2 ≤ 2. If k1 = 1, then R(y1) is a 4-face.
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Since 4- and 5-faces cannot be adjacent to R(y1), we obtain `(F ) ≥ 6.
It follows that k2 ≥ 2, which is a contradiction. Similarly, if k1 = 2,
then F cannot be a 4-face, hence `(F ) ≥ 5 and thus k2 ≥ 1. This is
again a contradiction.

• y2 ∈ X2: Let F be the cycle bounded by r(y1)y1uvy2r(y2) and the
part of the path x1x2x3x4 between r(y1) and r(y2). As `(F ) ≤ 7, F
bounds a face. Note that R(y1) 6= R(y2) and `(R(y1)) = `(R(y2)) = 4,
as each of R(y1) and R(y2) shares an edge with the path induced by
X1. Since F shares edges with both R(y1) and R(y2), `(F ) ≥ 6. It
follows that F shares at least one edge with the path induced by X1

as well. However, this is impossible, since |X1| ≤ 3.

Therefore, the assumptions of Theorem 28 are satisfied by G′ and L′. We
conclude that we can find a proper coloring of G, which contradicts the choice of
G as a counterexample to Theorem 28.
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Chapter 6

Separating (≤ 4)-cycles in
embedded 4-critical graphs

The results of this chapter are part of Dvořák et al. [27], where we give bound
on the size of 4-critical graphs of girth at least five embedded in a fixed surface.
As outlined in Section 2.3, one issue that we need to deal with is the presence
of short non-contractible cycles, and in particular the case that we have many
such short cycles drawn around a cylinder. To simplify the arguments, we allow
presence of triangles and 4-cycles, as long as they are non-contractible.

In this chapter, we give an auxiliary result regarding this particular case; i.e.,
we have a graph G embedded in a cylinder whose boundary is formed by two
cycles C1 and C2 of length at most four, all contractible cycles have length at
least five and G is (C1 ∪C2)-critical. We will call the cycles C1 and C2 the rings
of G. For technical reasons, we also allow the case that C1 or C2 is only a single
vertex, in which case we call it a vertex ring.

We will need the following result on graphs embedded in the disk with the
ring of length at most twelve, which follows from the results of Thomassen [71].

Theorem 41. Let G be a graph of girth 5 embedded in the disk with a ring R
such that |R| ≤ 12. If G is R-critical and R is an induced cycle, then

(a) |R| ≥ 9 and G− V (R) is a tree with at most |R| − 8 vertices, or

(b) |R| ≥ 10 and G− V (R) is a connected graph with at most |R| − 5 vertices
containing exactly one cycle, and the length of this cycle is 5, or

(c) |R| = 12 and every second vertex of R has degree two and is contained in a
facial 5-cycle.

A graph H embedded in the cylinder with (vertex-disjoint) rings C1 and C2

of length 4 is basic if every contractible cycle in H has length at least five, H is
(C1 ∪ C2)-critical, and one of the following holds:
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• H contains a triangle, or

• H is not 2-connected, or

• the distance between C1 and C2 is one and |V (H) \ V (C1 ∪ C2)| ≤ 2.

Using Theorem 41, observe that all 2-connected triangle-free basic graphs are
subgraphs of the graphs drawn in Figure 6.1. Note that these graphs have the
following properties.

(22) Let C1 and C2 be the rings of a triangle-free 2-connected basic graph H.
There exists a 3-coloring ψ of C1, vertices v1, v2 ∈ V (C2) and colors c1 6= c2 such
that if φ is a 3-coloring of C1 ∪ C2 matching ψ on C1 and satisfying φ(vi) 6= ci
for i ∈ {1, 2}, then φ extends to a 3-coloring of H.

(23) Let C1 and C2 be the rings of a triangle-free 2-connected basic graph H, v1
and v2 two distinct vertices of C1 and c1 6= c2 two colors. There exists a vertex
v ∈ V (C2) and a color c such that every 3-coloring ψ of C2 such that ψ(v) 6= c
extends to a 3-coloring φ of H satisfying φ(v1) 6= c1 and φ(v2) 6= c2.

For a 4-cycle C = x1x2x3x4, the type of its 3-coloring λ is the set of the
vertices xi of C such that λ(xi) 6= λ(xi+2). Note that the type of λ is ∅, {x1, x3}
or {x2, x4}. In (22), any coloring of the same type as ψ has the same property
(with different colors c1 and c2).

Let G and H be graphs with common rings {C1, C2}. We say that H subsumes
G if every precoloring of C1 ∪ C2 that extends to a 3-coloring of H also extends
to a 3-coloring of G.

Lemma 42. Let G be a graph embedded in the cylinder with rings {R1, R2} of
length at most 4. If every cycle of length at most 4 in G is non-contractible, then
there exists a basic graph H with rings {R1, R2} that subsumes G.

Proof. Suppose for a contradiction that G is a counterexample such that |V (G)|+
|E(G)| is minimal. It follows thatG is (R1∪R2)-critical, 2-connected and triangle-
free, and in particular |R1| = |R2| = 4. Let R1 = a1a2a3a4 and R2 = b1b2b3b4,
where the labels are assigned in the clockwise order. Since G is triangle-free and
all 4-cycles are non-contractible, it follows that every internal vertex has at most
one neighbor in each of the rings.

Suppose that G contains a 5-face C = v1v2v3v4v5 such that all its vertices are
internal and have degree three. For 1 ≤ i ≤ 5, let xi be the neighbor of vi different
from vi−1 and vi+1 (where v0 = v5 and v6 = v1). Observe that if x1 = x3, then
x2 6= x4, thus by symmetry assume that x1 6= x3. Let G′ = (G − V (C)) + x1x3.
Suppose that K ′ is a cycle of length at most 4 in G′ that contains the edge x1x3.
Then G contains a cycle K of length at most 7 obtained from K ′ by replacing
x1x3 by x1v1v2v3x3. Since v1 and v2 have neighbors on the opposite sides of
this path, K does not bound a face. By Theorem 41, we conclude that K and

74



Figure 6.1: Maximal basic graphs.

K ′ are non-contractible. Therefore, all (≤ 4)-cycles in G′ are non-contractible.
Furthermore, every precoloring of R1 and R2 that extends to a 3-coloring of G′

also extends to a 3-coloring of G (the 3-coloring of G′ assigns different colors to x1
and x3, thus it can be extended to C). Thus, G′ subsumes G, and consequently
it contradicts the minimality of G. We conclude that

(24) every 5-face in G is incident with a ring vertex or a vertex of degree at
least 4.

It follows that the distance between R1 and R2 is at least two: otherwise, if say
a1 is adjacent to b1, then apply Theorem 41 to the subgraph bounded by the walk
a1a2 . . . a1b1b2 . . . b1. The outcome (b) is excluded by (24), thus G− V (R1 ∪ R2)
would have at most two vertices and G would be basic.

Suppose that G contains a face C = v1v2 . . . vk of length k ≥ 7. We may
assume that v1 is an internal vertex. Let G′ be the graph obtained from G by
identifying v1 with v3 to a vertex v. Consider a cycle K ′ ⊆ G′ of length at
most 4 that does not appear in G. Such a cycle corresponds to a cycle K in
G of length at most 6, obtained by replacing v by v1v2v3. Note that v2 cannot
have degree two, thus K does not bound a face and it is non-contractible by
Theorem 41. Therefore, all (≤ 4)-cycles in G′ are non-contractible. Furthermore,
every 3-coloring of G′ extends to a 3-coloring of G, and we obtain a contradiction
with the minimality of G. Therefore, each face of G has length at most 6.

Suppose that G contains a face C = v1v2 . . . v6 of length 6. We can assume
that v1 is an internal vertex. If v3 or v5 is an internal vertex, then let G′ be the
graph obtained from G by identifying v1, v3 and v5 to a single vertex. As in the
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previous paragraph, we obtain a contradiction. It follows that v3 and v5 are ring
vertices, and by a symmetrical argument, two of v2, v4 and v6 are ring vertices.
If v2 is internal, then since the distance between R1 and R2 is at least two, we
can assume that V (R1) = {v3, v4, v5, v6}, and thus v3 and v6 are adjacent. In
this situation, we consider the graph obtained from G by identifying v1 with v5
and v2 with v4 (which is isomorphic to G − {v4, v5}, and thus contains no non-
contractible (≤ 4)-cycles), and again obtain a contradiction with the minimality
of G. By symmetry, v6 is not internal either. Therefore, v4 is internal and v2 and
v6 are ring vertices. Since the distance between R1 and R2 is at least two, we may
assume that v2 = a2, v3 = a3, v5 = b4 and v6 = b1. We apply Theorem 41 to the
10-cycle B = a1a2v1b1b2b3b4v4a3a4. The case (b) is excluded by (24), thus either
B is not induced or (a) holds. If B is not induced, then its chord joins v1 with v4.
However, then the precolorings ψ of the rings that do not extend to 3-colorings of
G satisfy ψ(a2) = ψ(b4), and we can set H to be the graph consisting of R1, R2

and the edge between a2 and b4. Therefore, B is an induced cycle and G− V (B)
is a tree F with at most two vertices. If F has only one vertex w, then w cannot
be adjacent to both v1 and v4, hence one of these vertices has degree two, which
is a contradiction. If V (F ) = {x, y}, then since v1 and v4 have degree at least
three, we can assume that x is adjacent to v1 and a4 and y is adjacent to b2 and
v4. However, then G is subsumed by the graph consisting of R1, R2, the edge
a2b4, two vertices z1 and z2 and edges z1z2, z1a4, z1b4, z2a2 and z2b2, which is
isomorphic to the last graph in Figure 6.1. Therefore,

(25) all internal faces of G have length 5.

Suppose that G contains a 4-cycle C = v1v2v3v4 different from R1 and R2.
By the assumptions, C is non-contractible; let Gi be the subgraph of G drawn
between Ri and C. By the minimality of G, we can assume that the distance di
between C and Ri is at most one, and if it is exactly one, then Gi is basic, for
i ∈ {1, 2}. Let us choose the labels of R1 and R2 and the cycle C so that d1 is as
small as possible. In particular, d1 ≤ d2. Let us discuss the possible cases:

• d1 = d2 = 0: Since the distance between R1 and R2 is at least two, we
conclude that |V (R1) ∩ V (C)| = |V (R1) ∩ V (C)| = 1. We can assume that
v1 = a1 and v3 = b3. By Theorem 41, the open disks bounded by closed
walks a1v2v3v4a1a4a3a2 and b3b4b1b2b3v4a1v2 contain no vertices, and since
v2 and v4 have degree at least three, we may assume that v2 is adjacent
to a4 and v4 to b2. However, then G contains a triangle a1v2a4, which is a
contradiction.

• d1 = 0, d2 = 1: We may assume that a1 = v1. Since all internal faces of
G have length 5 and G is triangle-free, we have |V (C) ∩ V (R1)| = 1 and
a3v3 ∈ E(G). Since d2 = 1, G2 is a basic graph with all internal faces of
length 5, and thus it has two adjacent vertices not belonging to V (C ∪R).
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Let w1w2 = G2 − V (C ∪ R2). Up to symmetry, there are two cases to
consider:

– b3 is adjacent to v3. Since v2 and v4 have degree at least three, we
can assume that w1 is adjacent to v4 and b2 and w2 is adjacent to v2
and b4. In this case, we let H be the graph consisting of R1, R2 and a
vertex z, with a1 adjacent to b2 and z to b2, b3 and a3.

– b3 is adjacent to v4. Since v4 has degree at least three, we can assume
that w1 is adjacent to b1 and v4 and w2 is adjacent to b3 and v2. We
let H be the graph consisting of R1, R2, adjacent vertices z1 and z2,
and edges a1b3, a1z1, b1z1, b3z2 and a3z2.

• d1 = 1, d2 = 1: By the choice of C, G does not contain a 4-cycle distinct
from R1 and R2 that intersects one of them. Additionally, all internal faces
of G have length 5 and G1 and G2 are basic graphs, hence we can assume
that a1 is adjacent to v1 and G1 − V (R1 ∪ C) = w1w2 with w1 adjacent to
a4 and v4 and w2 adjacent to a2 and v2, and G2 is isomorphic to G1. Since
v3 has degree at least three, v1 cannot have a neighbor in R2, thus there
are up to symmetry two possible cases:

– b1 is adjacent to v2, G2−V (R2∪C) = w3w4, and w3v1, w3b2, w4v3, w4b4 ∈
E(G). Then, let H be the graph consisting of R1, R2 and the edge
a1b2.

– b1 is adjacent to b3, G2−V (R2∪C) = w3w4, and w3v2, w3b2, w4v4, w4b4 ∈
E(G). But then every precoloring of R1 and R2 extends to a 3-coloring
of G, contrary to the assumption that G is (R1 ∪R2)-critical.

Therefore,

(26) R1 and R2 are the only 4-cycles in G.

Suppose that G has a face C = v1v2v3v4v5 such that v2, . . . , v5 are internal
vertices of degree three. For 2 ≤ i ≤ 5, let xi be the neighbor of vi that is not
incident with C. By (26), the vertices xi are distinct. If at least one of x3 and
x4 is internal, then let G′ be the graph obtained from G − {v2, . . . , v5} + x2x5
by identifying x3 with x4 to a new vertex x. Observe that every 3-coloring of G′

extends to a 3-coloring of G. Furthermore, suppose that K ′ is a cycle of length at
most 4 in G′ that does not appear in G, and let K be the corresponding cycle in
G obtained by replacing x2x5 by x2v2v1v5x5 or x by x3v3v4x4 or both. If |K| ≤ 7,
then since K cannot bound a face, Theorem 41 implies that K and K ′ are non-
contractible. If |K| ≥ 8, then K contains both x2v2v1v5x5 and x3v3v4x4, and
since |K ′| ≤ 4 and G is embedded in the cylinder, it follows that x4 is adjacent
to x5 or x3 is adjacent to x2. This is excluded by (26). Therefore, G′ is a smaller
counterexample than G, which is a contradiction. Let us now consider the case
that both x3 and x4 are ring vertices. Here, we exclude the possibility that x3
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and x4 belong to different rings: If that were the case, then we can assume that
x3 = a1 and x4 = b1. Since all internal faces of G have length 5, it follows that x4
and x5 have a common neighbor v. We apply Theorem 41 to the disk bounded
by the closed walk a1a2a3a4a1vb1b2b3b4b1v of length 12. By (24), the case (b) is
excluded. Since v has degree at least three, a1vb1 cannot be incident with two
5-faces and the case (c) is excluded as well. Therefore, G− V (R1 ∪R2)− {v} is
a tree with four vertices v2, v3, v4 and v5. By (26), v is not equal to x2, x5 or v2,
hence two of these vertices belong to the same ring. Since G is triangle-free, (26)
implies that no internal vertex has two neighbors in the same ring, thus we can
assume that v2 ∈ V (R1) and x2, x5 ∈ V (R2). However, the path x2v2v3v4v5x5
together with a subpath of R2 forms a cycle that separates v2 from R1, which
contradicts the assumption that G is embedded in the cylinder. Therefore,

(27) if C = v1v2v3v4v5 is a face such that v2, . . . , v5 are internal vertices of
degree three, then for some i ∈ {1, 2}, both v3 and v4 have a neighbor in Ri.

Let us now assign charge to vertices and faces of G as follows: each face f gets
charge |f |−4 and each vertex v gets charge deg(v)−4. The sum of the charges is
−8. Let us redistribute the charge: each 5-face sends 1/3 to each incident vertex
v such that v is internal and has degree three. Furthermore, for each ring vertex
w of degree two, if there exists a face f = v1v2v3v4v5 such all vertices incident
with f except for v1 are internal of degree three and if v3v4 is incident with the
same face as w, then w sends 1/3 to f . Note that all vertices and faces have
non-negative charge, with the following exceptions: the ring vertices of degree
two have charge at most −7/3 and the ring vertices of degree three have charge
−1. For i ∈ {1, 2}, let ci be the sum of the charges of the vertices of Ri, together
with the charges of the faces that share an edge with Ri (such a face cannot share
an edge with R3−i, since the distance between R1 and R2 is at least two and all
internal faces have length 5). Note that c1 + c2 ≤ −8, and we may assume that
c1 ≤ −4.

For i ∈ {1, 2, 3, 4}, let fi denote the face sharing the edge aiai+1 with R1. If
a vertex ai has degree three, then let xi denote its internal neighbor. Since G is
2-connected, at most two vertices of R1 have degree two. Let us discuss several
cases;

• R1 contains two vertices of degree two: Since all faces have length 5 and G is
triangle-free, these two vertices are non-adjacent, say a2 and a4. Similarly,
since G does not contain a 4-cycle different from R1 and R2, both a1 and a3
have degree at least four, and since the sum of the charges of the vertices
of R1 is at most −4, we conclude that deg(a1) = deg(a3) = 4. Let f2 =
a1a2a3x

′
3x
′
1 and f4 = a1a4a3x

′′
3x
′′
1. Note that both f2 and f4 send charge to

at most two vertices, hence their final charge is 1/3, and since c1 ≤ −4, it
follows that the charge of a2 and a4 is −7/3. Therefore, the vertices x′1,
x′′1, x′3, x

′′
3 and their neighbors distinct from a1 and a3 are internal vertices
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of degree three. However, these vertices form an 8-cycle, contradicting the
criticality of G.

• R1 contains one vertex of degree two, say a2, and a1, a3 and a4 have degree
three: by (25), x1 is adjacent to x3, x1 and x4 have a common neighbor
x41 and x3 and x4 have a common neighbor x43. Suppose that x1 and x3
have degree three. The path x41x1x3x43 is a part of a boundary of a 5-face
f ; let y be the fifth vertex of f . Then x41x4x43y is a 4-cycle, contradicting
(26). Therefore, we may assume that x1 has degree greater than three.
This implies that a2 does not send any charge and its final charge is −2.
Furthermore, f2 has charge at least 2/3 and f4 has charge at least 1/3, and
thus c1 = −4. Furthermore, x3, x4, x41 and x43 are internal and have degree
three.

• R1 contains one vertex of degree two, say a2, and at least one vertex of R1

has degree at least four: note that the sum of the charges of a2 and f2 is
at least −2. It follows that exactly one vertex of R1 has degree four, two
vertices have degree three, and c1 = −4.

• R1 contains no vertices of degree two. Since c1 ≤ −4, it follows that
all vertices of R1 have degree three and all internal vertices of the faces
sharing an edge with R1 have degree three. But then G contains an 8-cycle
of internal vertices of degree 3, contradicting the criticality of G.

We conclude that c1 = −4, and by symmetry, c2 = −4. It follows that all
charges that are not counted in c1 and c2 are equal to zero. Let us now go over the
possible cases for the neighborhood of R1 again, keeping the notation established
in the previous paragraph:

• R1 contains one vertex of degree two, say a2, and a1, a3 and a4 have degree
three: Since all internal vertices have zero charge, x1 has degree exactly
four. Let y1, y41 and y43 be the neighbors of x1, x41 and x43, respectively,
not incident with f2, f3 and f4. By (25), y43 is adjacent to y1 and to y41,
and the vertices y1 and y41 have a common neighbor z distinct from y43.
By (26), we have R2 = y1y43y41z. However, then we can set H to be the
graph consisting of R1, R2 and a vertex w, with edges a4y41, wy1, wa1 and
wa4.

• R1 contains one vertex of degree two, say a2, one vertex of degree four and
two of degree three. Let ai be the vertex of degree four and x′i and x′′i its
internal neighbors. Since c1 = −4, all internal vertices incident with the
faces f2, f3 and f4 have degree three, and by (25) they form a path P with
ends x′i and x′′i . Furthermore, x′i and x′′i have adjacent neighbors y′i and y′′i.
We let G′ consist of G−V (P ) and a new vertex w adjacent to y′i, y

′′
i and ai,

and observe that every 3-coloring of G′ extends to a 3-coloring of G. This
contradicts the minimality of G.
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A finite graph G is an (e1, e2)-chain if either G is the complete graph on four
vertices and e1 and e2 form a matching in G, there exists a (e1, u1u2)-chain H,
e2 = y1y2 and G consists of H − u1u2, vertices y1, y2 and u′2 and edges y1y2,
u2u

′
2, u1y1, u1y2, u

′
2y1 and u′2y2. Let us note that each (e1, e2)-chain is a planar

graph with chromatic number 4 containing exactly four triangles (two incident
with each of e1 and e2), and all other faces of G have length 5. The graph G can
be embedded in the Klein bottle by putting crosscaps on the edges e1 and e2;
we call such an embedding canonical. Note that no cycle of length less than 5 is
contractible in a canonical embedding of G. Thomas and Walls [63] proved the
following:

Theorem 43. If G is a 4-critical graph embedded in the Klein bottle so that no
cycle of length at most 4 is contractible, then G is a canonical embedding of an
(e1, e2)-chain, for some edges e1, e2 ∈ E(G).

For the torus, Thomassen [68] showed that the situation is even simpler.

Theorem 44. If G is embedded in the torus so that no cycle of length at most 4
is contractible, then G is 3-colorable.

Also, the results of Aksionov [2] imply the following:

Theorem 45. There exists no R-critical graph embedded in the cylinder with one
ring R such that R is a cycle of length at most four and every cycle of length at
most four in G is non-contractible.

Let us now give a description of (R1 ∪ R2)-critical graphs on cylinder, where
each of R1 and R2 is either a vertex ring or a triangle:

Lemma 46. Let G be a (R1 ∪R2)-critical graph embedded in the cylinder, where
each of rings R1 and R2 is either a vertex ring or a triangle. If every cycle of
length at most 4 in G is non-contractible, then one of the following holds:

• G consists of R1, R2 and an edge between them, or

• R1 and R2 are triangles and G consists of R1, R2 and two edges between
them, or

• R1 and R2 are triangles and G consists of R1, R2 and two adjacent vertices
of degree three, each having a neighbor in R1 and in R2.

Proof. By Theorem 45, we have that G is connected. We may assume that at
least one of R1 and R2 is a triangle, since if both R1 and R2 are vertex rings, we
can add a triangle containing R2 to G. If the distance between R1 and R2 is at
most two, then we apply Theorem 8 to the closed walk tracing the rings and a
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Figure 6.2: Arbitrarily large critical graph with rings of length four.

shortest path between them. The resulting graph G′ is embedded in a disk and
critical with respect to the cycle contained in its boundary, which has length at
most 10, and thus it is described by Theorem 41. In the case that G′ satisfies (b)
of Theorem 41, observe that G is not (R1 ∪ R2)-critical, and if G′ satisfies (a),
then G satisfies one of the outcomes of Lemma 46. Therefore, assume that the
distance between R1 and R2 is at least three.

Since G is (R1∪R2)-critical, there exists a precoloring ψ of R1∪R2 that does
not extend to a 3-coloring of G. We identify the vertices of R1 and R2 that ψ
assigns the same color to and we obtain a graph G′ embedded in the torus or
in the Klein bottle (in the latter case, we can assume that both R1 and R2 are
triangles). Note that G′ has no loops, since R1 and R2 are not adjacent. Observe
also that G′ contains no contractible (≤ 4)-cycle. Since G′ is not 3-colorable,
Theorems 43 and 44 imply that G′ is embedded in the Klein bottle and contains
a canonical embedding of an (e1, e2)-chain as a subgraph. Therefore, G′ contains
a separating non-contractible 4-cycle C. The subgraph of G corresponding to C
contains at least two paths joining R1 and R2. However, this implies that the
distance between R1 and R2 is at most two, which is a contradiction.

The main result of this chapter is a similar characterization for (R1 ∪ R2)-
critical graphs, where each of R1 and R2 has length at most four. A broken chain
is a graph obtained from an (e1, e2)-chain by removing the edges e1 and e2, see
Figure 6.2 for an illustration. Note that if A and B have different colors, then
the colors of C and D must differ as well, hence there exist (R1 ∪ R2)-critical
graphs embedded in the cylinder, where R1 and R2 are arbitrarily distant 4-
cycles. Dvořák and Lidický [29] gave a complete list of (R1 ∪R2)-critical graphs
that are not broken chains; in particular, they showed that the there are only
finitely many such graphs. However, their proof is computer assisted. In this
paper, we give a much weaker bound on the size of the graphs, which however
suffices for our purposes.

Theorem 47. Let G be an (R1 ∪R2)-critical graph embedded in the cylinder Σ,
where each of R1 and R2 is either a vertex ring or a facial ring of length at most
four. Suppose that every cycle of length at most 4 in G is non-contractible. If G
contains at least 34 cycles of length at most 4, then G is a broken chain.
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Proof. The graph G is connected by Theorem 45. Let C1 and C2 be distinct
cycles of length at most 4 in G. We claim that C1 bounds a closed disk in Σ̂
that contains C2. Indeed, otherwise each of the open disks in Σ̂ bounded by C1

contains a vertex of C2, and we conclude that the set X = V (C1) ∩ V (C2) has
size two. But then there exist three disjoint paths of length at most two between
the vertices of X, and one of the (≤ 4)-cycles in this θ-graph is contractible in
Σ, contradicting the assumptions.

We write C1 < C2 if the closed disk bounded by C1 in Σ + R̂2 contains
C2. Note that < is a linear ordering of the cycles of length at most four in G.
Let K1, K2, . . . , Km be the list of all cycles of length at most four in G sorted
according to this ordering. Suppose that Ki and Kj are triangles for some i < j.
By Theorem 41, if V (Ki) ∩ V (Kj) 6= ∅, then j = i + 1. If Ki and Kj are
vertex-disjoint, then Lemma 46 implies that j ≤ i+ 3.

For any i < j, if V (Ki) ∩ V (Kj) 6= ∅, then by Theorem 41 the area between
Ki and Kj consists either of one face or of two 5-faces, thus either j = i + 1, or
j = i+ 2 and Ki+1 is a triangle. In particular, Ki and Ki+3 are vertex-disjoint.

For i < j, let Gij be the subgraph of G drawn between Ki and Kj. Note that
if Ki and Kj are vertex-disjoint, then Gij is (Ki ∪Kj)-critical, and by Lemma 42
it is subsumed by a (Ki, Kj)-critical basic graph Hij. If Ki and Kj are not
vertex-disjoint, then we define Hij = Gij. Consider indices i < j < k and a graph
B ∈ {Gij, Hij}, and suppose that B ∪Hjk contains a non-contractible cycle C of
length at most 4. By the definition of a basic graph, C 6⊆ B and C 6⊆ Hjk, thus
C has length 4 and C = v1v2v3v4, where v2, v4 ∈ V (Kj), v1 ∈ V (B) \ V (Kj) and
v3 ∈ V (Hjk)\V (Kj). Furthermore, v2 and v4 must be consecutive vertices of Kj,
thus both B and Hjk contain a triangle incident with an edge of Kj.

Let U be the set of indices i such that either there exists t ≥ max(1, i − 1)
such that Kt is a triangle or there exists j such that i < j ≤ m and Hij contains a
cutvertex or a triangle. Let L be the set of indices j such that either there exists
t ≤ min(m, j + 1) such that Kt is a triangle or there exists i such that 1 ≤ i < j
and Hij contains a cutvertex or a triangle. Suppose that a ∈ L and b ∈ U satisfy
b ≥ a + 6. If there exists t ≤ min(m, a + 1) such that Kt is a triangle, then let
G1 = G1a. Otherwise, there exists k < a such that Hka contains a cutvertex or a
triangle, and we set G1 = G1k ∪Hka. Similarly, if there exists t ≥ max(1, b− 1)
such that Kt is a triangle, then let G2 = Gbm, otherwise let G2 = Hbl ∪ Glm for
l > b such that Hbl contains a cutvertex or a triangle. For i ∈ {1, 2}, let Ti be a
triangle or a cutvertex in Gi. Let G′ = G1 ∪ Gab ∪ G2. By the choice of G1 and
G2, every (≤ 4)-cycle in G′ is non-contractible. By Lemma 46, every precoloring
of T1 ∪T2 extends to a 3-coloring of the subgraph of G′ between T1 and T2. Note
that G′ contains no non-contractible (≤ 4)-cycles, and thus by Theorem 45, every
precoloring of Ri extends to a 3-coloring of the subgraph of G′ between Ri and
Ti, for i ∈ {1, 2}. Therefore, every precoloring of R1 ∪R2 extends to a 3-coloring
of G′. However, G′ subsumes G, hence every precoloring of R1 ∪R2 also extends
to a 3-coloring of G. This contradicts the criticality of G. We conclude that if
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a ∈ L and b ∈ U , then b ≤ a + 5. Let X be the set of indices i such that i ∈ U
and i+ 2 ∈ L. Observe that if X is nonempty, then maxX −minX ≤ 7.

Since m ≥ 34, there exist indices 1 ≤ i1 < i2 < . . . < i8 ≤ m such that
ij+1 = ij+2 for 1 ≤ j ≤ 4 and for 5 ≤ j ≤ 8, i5 ≥ i4+9 and i1, i2, i3, i5, i6, i7 6∈ X.
Note that Gi1i4 and Gi5i8 are triangle-free, and Kij and Kij+1

are vertex-disjoint
and Hijij+1

is 2-connected and triangle-free for 1 ≤ j ≤ 3 and 5 ≤ j ≤ 7.
Combining (22) and (23) shows that there exists a precoloring ψ of Ki4 , a

vertex v ∈ V (Ki2) and a color c such that every precoloring φ2 of Ki2 ∪Ki4 that
matches ψ on Ki4 and satisfies φ2(v) 6= c extends to a 3-coloring of Hi2i3 ∪Hi3i4 .
Observe that every 3-coloring of Ki1 extends to a 3-coloring of Hi1i2 that assigns
v a color different from c. It follows that every precoloring φ of Ki1 ∪ Ki4 that
matches ψ on Ki4 extends to a 3-coloring of Hi1i4 , and thus also to a 3-coloring
of Gi1i4 . In fact, it is sufficient to assume that φ has the same type S1 on Ki4 as
ψ; thus, every precoloring of Ki1 ∪Ki4 whose type on Ki4 is S1 extends to a 3-
coloring of Gi1i4 . Symmetrically, there exists a type S2 such that every precoloring
of Ki5 ∪Ki8 whose type on Ki5 is S2 extends to a 3-coloring of Gi5i8 .

Let G′ = Gi4i5 with rings L1 = Ki4 = a1a2a3a4 and L2 = Ki5 = b1b2b3b4.
Since i5 ≥ i4 + 9, the distance between L1 and L2 is at least three. Let G′′

be the graph obtained from G′ in the following way: If S1 = {ai, ai+2} for some
i ∈ {1, 2}, then add the edge aiai+2 to the face bounded by L1 and add a crosscap
to the middle of this edge. If S1 = ∅, then identify a1 with a3 to a vertex a13 and
a2 with a4 to a vertex a24. Observe that at most two vertices of L1 are incident
with a (≤ 4)-cycle distinct from L1 in G′, and if there are two such vertices, then
they are adjacent. By symmetry, we can assume that L1 is the only (≤ 4)-cycle
incident with a2 and a3. We add a crosscap on the edge a13a24 and draw the
edges from a13 to the neighbors of a3 and the edges from a24 to the neighbors of
a2 through the crosscap. Transform L2 in the same way according to S2. Note
that G′′ is embedded in the Klein bottle and it has no loops.

Consider a cycle C of length at most 4 in G′′. Since the distance between
L0 and L1 is at least three, we may assume that C does not contain any of the
vertices b1, . . . , b4, b13 or b24. Let us first consider the case that S1 = {ai, ai+2} for
some i ∈ {1, 2}. If C does not contain the edge aiai+2, then C is non-contractible
in G, and thus it separates the crosscaps in G′′. If C contains the edge aiai+1,
then C is one-sided. Suppose now that S1 = ∅; as in the construction of G′, we
assume that L1 is the only (≤ 4)-cycle incident with a2 and a3 in G′. If C contains
the edge a13a24, then C corresponds to a (≤ 4)-cycle in G′ containing one of the
edges of L1, which necessarily must be a1a4, and C separates the crosscaps. If
C contains neither a13 nor a24, then C is non-contractible in G and separates
the crosscaps in G′′. If C contained both a13 and a24, but not the edge a13a24,
then since a2 and a3 are not incident with (≤ 4)-cycles in G′, we conclude that
a1a4 is incident with two triangles in G′, contradicting Theorem 41. It remains
to consider the case that C contains exactly one of a13 and a24. By symmetry,
assume that C contains a13. Let e′1 and e′2 be the edges incident with a13 in C,
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and let e1 and e2 be the corresponding edges in G. Since no (≤ 4)-cycle different
from L1 is incident with a3, we may assume that e1 is incident with a1. If e2 is
incident with a3, then C is one-sided. If e2 is incident with a1, then C separates
the crosscaps. We conclude that every (≤ 4)-cycle in G′′ is non-contractible.

If G′′ is 3-colorable, then the corresponding 3-coloring of G′ has type S1 on
L1 and type S2 on L2. It follows that every precoloring of Ki1 ∪Ki8 extends to
a 3-coloring of the subgraph Gi1i8 , contradicting the criticality of G.

Therefore, G′′ is not 3-colorable and it contains a 4-critical subgraph F . By
Theorem 43, F is a (x1x2, y1y2)-chain, for some vertices x1, x2, y1, y2 ∈ V (G′′),
and its embedding derived from the embedding of G′′ is canonical. Suppose that
S1 = ∅ and that L1 is the only (≤ 4)-cycle in G′ incident with a2 and a3. By
symmetry, we can assume that x1 = a13 and x1x2 corresponds to an edge a3v
in G′. Since x1x2 is incident with two triangles x1x2v1 and x1x2v2 in F , but
a3 is not incident with a triangle, we have a1v1, a1v2 ∈ E(G′). Note that the
4-cycle a1v1vv2 is non-contractible in G′, thus by Theorem 41, say a1a2a3vv1 and
a1a4a3vv2 are faces of G′ and a2 and a4 have degree two. On the other hand, if
S1 = {ai, ai+2} for some i ∈ {1, 2}, then one of x1x2, y1y2 is equal to aiai+2 and
L1 is a subgraph of F . A symmetrical claim holds at L2. Using Theorem 41,
observe that every non-triangular face of F is also a face of G′. We conclude that
G′ is a broken chain.

Let us consider the subgraph G1 of G drawn between R1 and Ki4 . We choose
the labelling of L1 and L2 so that a1 and b1 are vertices of degree four in G′.
Observe that a precoloring ψ of L1 ∪L2 extends to a 3-coloring of G′ if and only
if ψ(a1) 6= ψ(a3) or ψ(b1) 6= ψ(b3). Let φ be a precoloring of R1 ∪Ki5 that does
not extend to a 3-coloring of the subgraph G2 of G drawn between R1 and Ki5 .
Let G′1 be the graph obtained from G1 in the following way: first, we add the
edge a1a3 and put a crosscap on it. If R1 is a vertex ring or a triangle, then we
paste a crosscap over the cuff incident with R1. If R1 is a 4-cycle, then we either
add an edge between two of its vertices or identify its opposite vertices according
to the type of φ on R1 and put a crosscap in the appropriate place, using the
same rules as in the construction of G′′. Note that G′1 is embedded in the Klein
bottle so that all contractible cycles have length at least five. If G′1 is 3-colorable,
then its 3-coloring corresponds to a 3-coloring of G1 that matches φ on R1 and
assigns a1 and a3 different colors. Hence, this coloring extends to a 3-coloring of
G2 that matches φ on R1 ∪Ki5 , which is a contradiction.

Therefore, G′1 is not 3-colorable, and by Theorem 43, G′1 contains a canonical
embedding of a (e1, e2)-chain F1, for some vertices e1, e2 ∈ E(G′1). Since F1

contains four one-sided triangles, it follows that |R1| = 4. However, as in the
analysis of G′, we conclude that then G1 is a broken chain. By symmetry, the
subgraph of G drawn between Ki5 and R2 is a broken chain as well. This implies
that G is a broken chain.
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Part II

Weight technique
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The ideas described in Section 2.4 are usually sufficient for determining the
exact list of critical graphs. However, occasionally this either is not practical
(when the list is too large and complicated to describe) or not possible (when the
considered class of graphs is parameterized, say by a surface in that the graphs
are embedded, and thus the set of critical graphs depends on the parameter in
a nontrivial way). In such a case, we might want to at least prove that the list
of critical graphs is finite, i.e., that the critical graphs in the given class have a
bounded size.

In such a case, an attempt to prove the claim by a straightforward application
of the method of reducible configurations fails: suppose that we want to prove that
all critical graphs in the class have at most B vertices, and for a contradiction,
consider a counterexample G with the smallest number of vertices (or edges).
Using the fact that |V (G)| > B, we may be able to find a reducible configuration
in G, and by reducing it (and possibly restricting to a critical subgraph of the
result), we obtain a smaller critical graph G′. By the minimality of G, we have
|V (G′)| ≤ B. However, reducing the configuration typically decreases the number
of vertices by some constant k, and thus the best that we can argue is that
|V (G)| ≤ B + k.

The weight technique sidesteps this problem: instead of bounding the number
of vertices of a critical graph, we bound a different quantity, which we call weight.
The exact definition of the weight depends on the considered class of graphs.
The most typical setting is as follows: suppose that we consider k-colorability
of graphs in a subclass G of planar graphs with a special facial cycle C, and we
would like to bound the size of C-critical graphs from G. We pick a function
s : N → R+ and to each face f 6= C of a graph G ∈ G, we assign the weight
s(`(f)). The weight w(G) of G is defined as the sum of these weights. The choice
of s depends on the particular situation, and it determines the dependence of
the bound on the number of vertices compared to the length of C (e.g., if s is
asymptotically quadratic, the obtained bound is |V (G)| ≤ O(`2(C)). For the
method to have a chance to succeed, the bound of form w(G) ≤ s(`(C)) has to
hold. However, often a stronger bound of form w(G) ≤ s(`(C) − k) (for some
constant k) is necessary to give a better basis for induction (this may require
excluding some special cases, e.g. the case when G is C with a single chord).
Also, it is typically convenient for s to be increasing and (non-strictly) convex.

Suppose that we aim to prove that every C-critical graph G satisfies w(G) ≤
s(`(C)− k) ≤ s(`(C)) by the method of reducible configurations. By induction,
assume that this claim holds for all graphs with fewer than |V (G)| vertices.
Suppose first that G is not strongly C-critical, and let G′ ⊃ T be a C-critical
subgraph of G. We have w(G′) ≤ s(`(C)− k). By Theorem 8, if f 6= C is a face
of G′ and Gf is the subgraph of G drawn in Gf , then Gf = f or Gf is f -critical,
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and thus w(Gf ) ≤ s(`(f)). It follows that

w(G) =
∑

f∈F (G′)

w(Gf ) ≤
∑

f∈F (G′)

s(`(f)) = w(G′) ≤ s(`(C)− k)

as required.
If G is strongly C-critical, then let ϕ be a coloring of C that extends to

every proper subgraph of G including C, but not to G. By discharging technique
(comparing the charges with the weights of faces), we argue that if w(G′) >
s(`(C) − k), then G contains a reducible configuration. Let G′ be the graph
obtained from G by reducing the configuration, and let G′′ ⊃ C be the smallest
subgraph of G′ to that ϕ does not extend. Note that G′′ is (strongly) C-critical.
Let G′′′ be a subgraph of G whose faces correspond to the faces of G′′, where G′′′

is obtained from G′′ by adding some paths through the reduced configuration.
The constant k needs to be chosen so that if f is a face of G′′ and K is the
corresponding cycle in G′′′, then `(K) ≤ `(f) + k, and if `(K) > `(f) (which
may only happen for cycles passing through the reduced configuration), then K
is not a face of G. Hence, if `(K) > `(f), then GK is K-critical and w(GK) ≤
s(`(K)− k) ≤ s(`(f)) by induction. It follows that we again have

w(G) =
∑

K∈F (G′′′)

w(GK) ≤
∑

f∈F (G′′)

s(`(f)) = w(G′′) ≤ s(`(C)− k),

finishing the proof.
Once we have the proof of the bound on the weight, it is easy to use it

to bound the number of vertices using Euler formula. Let us give an example
of an application of the technique for plane graphs critical for 6-coloring. Let
s(3) = 1/8 and s(d) = d− 3 for d > 3.

Lemma 48. Let G be a plane graph and T its facial cycle of length t. Let
w(G) =

∑
f∈F (G),f 6=T s(`(f)). If G is T -critical for 6-colorability and G does not

consist of T with at most two chords, then t ≥ 6 and w(G) ≤ s(t− 3) + 5s(3).

Proof. Let us note that if G is T with one chord, then w(G) ≤ s(t−1)+s(3) and if
G is T with two chords, then w(G) ≤ s(t−2)+2s(3). Suppose for a contradiction
that G is a counterexample with the smallest number of edges not belonging to
T , and subject to that with the smallest total number of vertices. Note that G
is 2-connected. Furthermore, T is an induced cycle: otherwise, consider a chord
e of T and let T1 and T2 be the cycles in T + e distinct from e. Let G1 and G2

be the subgraphs of G drawn inside T1 and T2, respectively, and note that either
Gi = Ti or Gi is Ti-critical for i ∈ {1, 2}. Let ti denote the length of Ti. If say
G1 = T1, then G2 is not T2 with at most one chord. It follows that t2 ≥ 5, and
thus t ≥ 6. Furthermore, w(G) = w(G1) + w(G2) ≤ s(t1) + s(t2 − 2) + 2s(3) ≤
(t1 − 3 + s(3))) + (t2 − 5 + s(3)) + 2s(3) = t1 + t2 − 8 + 4s(3) < s(t− 3) + 5s(3).
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This is excluded, since G is a counterexample; hence G1 6= T1 and by symmetry,
G2 6= T2. It follows that t1, t2 ≥ 4, t ≥ 6 and w(G) = w(G1) + w(G2) ≤ (s(t1 −
1)+s(3))+(s(t2−1)+s(3)) ≤ (t1−4+2s(3))+(t2−4+2s(3)) < s(t−3)+5s(3),
a contradiction.

As outlined in the introduction to the weight technique, we can assume that
G is strongly T -critical, and thus there exists a precoloring ϕ of T that extends
to a 6-coloring of every proper subgraph of G including T , but not to a 6-coloring
of G. Furthermore, G has no separating cycles of length at most five. Let us
note that since every plane graph is 4-colorable and thus every precoloring of a
triangle extends to a 4-coloring of the whole planar graph, T has length at least
four.

No vertex of T has degree two: otherwise, consider a subpath t1t2t3 of T
such that t2 has degree two. Note that since T is an induced cycle and G is
2-connected, t2 is not incident with a triangle and t ≥ 5. If ϕ(t1) 6= ϕ(t3), then
let G′ = G − t2 + t1t3 and T ′ = T − T2 + t1t3. If ϕ(t1) = ϕ(t3), let G′ be the
graph obtained from G− t2 by identifying t1 with t3 and let T ′ be obtained from
T in the same way; note that only one parallel edge may arise (if t2 is incident
with a 4-face) and we suppress it. Observe that G′ is strongly T ′-critical and T ′

is an induced cycle; hence, `(T ′) ≥ 6 and w(G′) ≤ s(`(T ′) − 3) + 5s(3). Let m
be the length of the face of G incident with t2 distinct from T . If ϕ(t1) 6= ϕ(t3),
then t = `(T ′) + 1 ≥ 7. Furthermore note that G′ has a face of length m − 1,
and thus m − 1 ≤ `(T ′) − 3; hence, s(m) − s(m − 1) ≤ s(t − 3) − s(t − 4).
We have w(G) = w(G′) + s(m) − s(m − 1) ≤ s(t − 4) + 5s(3) + s(m) − s(m −
1) ≤ s(t − 3) + 5s(3). If ϕ(t1) = ϕ(t3), then t = `(T ′) + 2 ≥ 8 and we have
w(G) = w(G′) + s(m) − s(m − 2) if m > 4 and w(G) = w(G′) + s(4) if m = 4.
Again, we have s(m) − s(m − 2) ≤ s(t − 3) − s(t − 5) (where s(2) = 0) and we
conclude that w(G) ≤ s(t− 3) + 5s(3).

Observe that T does not contain two consecutive vertices of degree three such
that all incident faces different from T are triangles. Otherwise, T would contain
a subpath P = t1t2t3t4 and there would exist a vertex x ∈ V (G)\V (T ) adjacent to
all vertices of P . Let G′ be the subgraph of G drawn inside the cycle K consisting
of a subpath of T different from P and of t1xt4. Since x has degree at least 6, G′

is not K with at most one chord, and thus w(G′) ≤ s(`(K) − 2) + 2s(3). Since
`(K) = t− 1 and w(G) = w(G′) + 3s(3), it follows that w(G) ≤ s(t− 3) + 5s(3),
which is a contradiction.

We claim that G contains a vertex z of degree 6 incident only with triangular
faces. We prove this by discharging. Suppose that every vertex z 6∈ V (T ) is
incident with a non-triangular face. Let the initial charge of each vertex v ∈ V (G)
be c(v) = deg(v)− 6 and the charge of each face f be c(f) = 2`(f)− 6. The sum
of the charges is −12. We now redistribute the charge according to the following
rules:

• each vertex incident to a triangular face f of G sends 1/20 to f .

89



• each face distinct from T of length at least four sends 1/4 to each incident
vertex.

Let us now discuss the final charge of vertices and faces. By the criticality of G,
each vertex v 6∈ V (T ) has degree at least six. If v has degree at least 7, then it
sends at most deg(v)/20 to the neighboring triangular faces, and its final charge
is at least 19 deg(v)/20 − 6 > 0. If v has degree six, then it is incident with a
face of length at least four, v sends at most 5/20 to the incident triangular faces
and receives at least 1/4 from the non-triangular faces, and the final charge of
v is non-negative. Each vertex v ∈ V (T ) has degree at least three and sends
charge to at most deg(v)− 1 triangular faces, and thus its final charge is at least
deg(v)− 6− (deg(v)− 1)/20 = 19 deg(v)/20− 119/20 ≥ −31/10. Furthermore,
if deg(v) > 3 or v is incident with a (≥ 4)-face other than T , then the final
charge of v is at least −31/10 + 1/4 = −57/20. Hence, the sum of charges of
two consecutive vertices of T is at least −119/20, and the sum of charges of all
vertices of T is at least −119t/40.

Consider a face f 6= T . If f is a triangle, then it receives 3/20 from the
incident vertices. Otherwise, it sends `(f)/4, and its final charge is 7`(f)/4− 6.
In both cases, the final charge of f is at least s(`(f)). The final charge of T is
equal to its initial charge. Combining these inequalities, we have

−12 ≥ −119t/40 + (2t− 6) +
∑
f 6=T

s(f),

and thus w(G) ≤ 39t/40− 6 < s(t− 3) + 5s(3). This is a contradiction.
Therefore, there exists z ∈ V (G) \ V (T ) of degree 6 such that all incident

faces are triangles. Let Q be the set of neighbors of z that belong to T and let
q = |Q|. Consider the case that q ≥ 2. Let C1, . . . , Cq and T be the faces of the
subgraph of G induced by V (T ) ∪ {z}. For 1 ≤ i ≤ q, let ti = `(Ci). We apply
induction to the subgraphs of G drawn inside the induced cycles C1, . . . , Cq. If
each of the cycles bounds a face, then since z has degree six, we have q = 6. If
t = 6, then w(G) = 6s(3) = s(t− 3) + 5s(3). If t > 6, then we can assume that
C1 is not a triangle, and thus

w(G) ≤
6∑
i=1

s(ti)

≤ −s(3) +
6∑
i=1

(ti − 3 + s(3))

= t− 6 + 5s(3)

= s(t− 3) + 5s(3).

Otherwise, say C1 does not bound a face, t1 ≥ 6 and

w(G) ≤ s(t1 − 3) + 5s(3) +

q∑
i=2

s(ti)
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≤ t1 − 6 + 5s(3) +

q∑
i=2

(ti − 3 + s(3))

= t+ 2q − 6 + (s(3)− 3)(q − 1) + 5s(3)

= t− 3− q + (q − 1)s(3) + 5s(3).

Since w(G) > s(t − 3) + 5s(3), we have q ≤ 3. Furthermore, if q = 3, then a
similar calculation shows that C2 and C3 bound a face.

Let z1, . . . , z6 be the neighbors of z in the cyclic order according to their
drawing around z. By the previous paragraph, we can assume that z1, z3 6∈ V (T ).
Note that z1 and z3 are not adjacent and have no common neighbor other than
z2, as otherwise G would contain a separating cycle of length at most four. Let
G′ be the graph obtained from G − z by identifying z1 with z3 to a new vertex
x and suppressing the resulting parallel edge between x and z2. Note that T is
an induced cycle in G′. Furthermore, ϕ does not extend to a 6-coloring of G′,
as otherwise it would give a 6-coloring of G − z assigning z1 and z3 the same
color, which would extend to a 6-coloring of G. Let G′′ be a strongly T -critical
subgraph of G′. Since ϕ extends to every proper subgraph of G including T ,
we have that x ∈ V (G′′). Let G′′′ be the subgraph of G obtained from G′′ by
splitting x to z1 and z3 and by adding the path z1zz3; if xz2 ∈ E(G′), we put the
edge z1z2 to E(G′′′), but we do not include edges z2z and z2z3. Note that z3 has
degree at least two in G′′′, as otherwise G′′ would be a subgraph of G, contrary to
the fact that G is strongly T -critical. Let f1 and f2 be the faces of G′′′ incident
with z, where the edge zz2 is drawn inside f1 in G. Since G′′ is T -critical, it is
2-connected, and thus f1 6= f2. Let us note that every face f of G′′′ corresponds
to a face f of G′′ in a natural way, `(fi) = `(fi) + 2 for 1 ≤ i ≤ 2 and `(f) = `(f)
for any other face f of G′′′. Let Gi denote the subgraph of G drawn inside fi,
for 1 ≤ i ≤ 2. Observe that G2 is not f2 with at most two chords, as the degree
of z in G2 is at least 5. Similarly, G1 is not f1 with at most one chord, since
zz2, z2z3 6∈ E(G1). By induction, we have

w(G) ≤ s(`(f1)− 2) + 2s(3) + s(`(f2)− 3) + 5s(3) +
∑

f∈F (G′′′)\{f1,f2,T}
s(`(f))

= w(G′′) + 7s(3) + s(`(f2)− 3)− s(`(f2)− 2)

≤ w(G′′) + 8s(3)− 1

≤ w(G′′)

≤ s(t− 3) + 5s(3).

This contradicts the assumption that G is a counterexample to the lemma, and
finishes the proof.

Let us remark that Lemma 48 is tight, with the equality achieved for graphs
consisting of T and a vertex with 6 neighbors in T , with five triangular faces
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and one face of length t − 3. It is possible (and sufficient) to prove a weaker
bound of form w(G) ≤ s(t − 2). However, the analysis of the last case is a bit
more involved, as we cannot compensate for the extra 2s(3) from f1 by using
the stronger bound for f2 (so, if G1 were f1 with two chords, we would need to
consider the graph drawn inside the cycle bounded by z1z2z3 and a subpath of
f2, instead of G2).

On the other hand, the numeric value of s(3) is certainly not optimal and
could be improved by a more detailed analysis.

Theorem 49. Let G be a plane graph and T its facial cycle of length t. If G is
T -critical for 6-colorability, then G has at most 5t− 21 vertices.

Proof. The claim clearly holds if V (G) = V (T ). If V (G) 6= V (T ), then by
Lemma 48 we have t ≥ 6 and w(G) ≤ t− 6 + 6s(3). Let us give a charge s(`(f))
to each face f 6= T of G, so that the sum of the charges is w(G). Then, each
face other than T sends s(3)/3 to each incident vertex. The final charge of each
vertex v 6∈ V (T ) is at least 2s(3), and the charge of faces is nonnegative, thus

2s(3)(|V (G)|−t) ≤ t−6+6s(3). It follows that |V (G)| ≤
(

1 + 1
2s(3)

)
t− 3−3s(3)

s(3)
=

5t− 21.

So far, we have presented the technique for plane graphs with a precolored
facial cycle. This is the simplest setting and it is a prerequisite for dealing with
more complicated cases (we need it to apply Theorem 8 to switch between the
critical graph and its subgraphs). However, what we really would like to obtain
using the weight technique is a bound on the weight (and consequently, the
size) of critical graphs embedded in a fixed surface. Such an extension is fairly
straightforward, although numerous technical details complicate the exposition.
For concreteness, suppose that we want to extend Lemma 48 to show that the
weight of a graph embedded in a surface of genus at most g is at most linear in
g:

• When identifying z1 with z3, loops could arise if z1 and z3 are adjacent,
i.e., if z1zz3 form a non-contractible cycle. In this case, we apply Lemma 9
and cut the surface along z1zz3 instead, decreasing its genus (and possibly
splitting it to two pieces) and introduce two new precolored triangles (or
one precolored 6-cycle, if z1zz3 is one-sided). Thus, we will need to consider
a T -critical graph G embedded in a surface Σ with boundary, where T is
the intersection of G with the boundary of Σ and each component of the
boundary of Σ is a cycle in G. Let g denote the genus of Σ and k the
number of components of its boundary. We will prove a bound of form

w(G) ≤ |E(T )|+ C1g + C2k − C3,

where C1, C2 and C3 are appropriately chosen constants. For the ideas of
this paragraph to work, we need C1 > C2: cutting along a non-separating
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cycle decreases the genus by a and increases the number of components of
the boundary by a, where a = 1 if the cycle is one-sided and a = 2 if it is
two-sided. Furthermore, cutting along a separating cycle does not change
the sum of genera of the resulting surfaces and increases the number of
components of the boundary by 2, thus we need C3 > 2C2. Both inequalities
must be strict, since cutting along triangle also increases |E(T )| by 6.

• We run into problems in the cases that the term C1g+C2k−C3 is negative.
As we will see later, the constants C1, C2 and C3 need to be rather large;
hence, at least for the small values of |E(T )| the resulting inequality would
be violated for some critical graphs. By the inequalities of the previous
paragraph, the term C1g + C2k − C3 is negative if g = 0 and k ≤ 2. There
are no ∅-critical plane graphs for 6-colorability, hence the case g = k = 0
is fine. The case g = 0 and k = 1 was dealt with in Lemma 48 (and in
the argument of the preceding paragraph, it only arises when we cut the
projective plane along a one-sided cycle; however, there are no ∅-critical
projective planar graphs for 6-colorability, thus this does not happen). That
leaves us with the case g = 0 and k = 2, i.e., when Σ is the cylinder. In
this case, we will need to prove an inequality w(G) ≤ |E(T )|+C4 for some
constant C4, instead.

• Consequently, the argument that we used to deal with non-contractible
triangles will fail if the triangle K surrounds one of the components of the
boundary, i.e., if it becomes contractible after we cap the component with
a disk (this is natural, since cutting along K splits Σ to a cylinder and
a surface homeomorphic to Σ, thus this does not simplify the problem).
However, by Lemma 3, there are at most 18k such triangles in G, and if
C2 � 18, we can increase the charge of the vertices incident with them in
the discharging phase of the argument and thus ensure that no such triangle
passes through the vertex z forming the considered reducible configuration.

• Another way how the reduction could fail is if all the neighbors of z belong
to T . The arguments in Lemma 48 exclude this case unless either two of
the neighbors z1 and z2 of z belong to different components of T , or if they
belong to the same component of T , but the path z1zz2 is not homotopic
to any of the two paths joining z1 with z2 in T . Both of the cases are dealt
with by cutting along the path z1zz2. In the latter case, the analysis is
the same as in the case of non-contractible triangles. In the former case,
we are decreasing the number of components of the boundary by 1, which
compensates the increase in |E(T )|.

• The analysis of the relationship between the weights of G′′ and G is some-
what more complicated, since G′′ can have faces that are not homeomorphic
to open disks. However, it turns out that the inductive argument still goes
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through and the non-disk faces actually result in a stronger bound on the
weight of G. Thus, the most difficult case is the one where all faces of G′′

are open disks. Then, the analysis from the plane cases goes through, with
a single exception: it is possible that f1 = f2. In that case, the difference
between the length of the face in G′′ and the length of the corresponding
cycle in G′′′ would be 4, and if we applied the bound of Lemma 48 to it, we
would not be able to show that the weight of the subgraph of G′′′ drawn in
it is bounded by s(`(f1)).

In this case, note that there exists a closed simple curve intersecting G′′ only
in x. We aim to improve the bound on the weight of G′′ by first cutting
along this curve and applying the induction hypothesis to the resulting
graph(s) instead of G′′. To enable this, we need to allow the graph intersect
a component of the boundary of Σ also in a single vertex, and actually
to get a better bound in this case. That is, if k′ is the number of the
components of the boundary that intersect G only in one vertex, then we
will be proving a bound of form w(G) ≤ |E(T )|+C1g+C2k−C5k

′−C3 if
g > 0 or k > 2 and w(G) ≤ |E(T )|+ C4 − C5k

′ if g = 0 and k = 2. Again,
there is a problematic case when we cut along the closed curve intersecting
G in a single vertex, one of the resulting surfaces is a cylinder and the other
one is homeomorphic to Σ. Still, because of the extra term −C5, we obtain
an improved bound, assuming that 2C5 > C4. In the case that g = 0,
k = 2 and k′ = 2, this implies a negative bound on w(G). Hence, this case
(planar graph with T consisting of two isolated vertices) needs to be dealt
with separately. It turns out that the only T -critical graph in this case is
an edge joining the two vertices of T . We can avoid creating this case in
the inductive argument by ensuring that the identified neighbors of z are
not adjacent to an isolated vertex of T , which is possible by modifying the
discharging phase of the proof.

In Chapter 7, we give an example of the application of the technique to 4-critical
graphs of girth at least 5 embedded in surfaces, in which the issues and approaches
described in the preceding paragraphs are worked out in details.

The weights technique is not limited to the method of reducible configurations.
In Chapter 8, we show its usage it in combination with the precoloring extension
method. The chapter also demonstrates the use of the weight technique with a
non-linear weight function.
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Chapter 7

4-critical graphs of girth 5 on
surfaces1

Thomassen [71] proved the following.

Theorem 50. For every surface Σ there are only finitely many 4-critical graphs
of girth at least five that can be embedded in Σ.

This important result shows that it is possible to decide whether a graph
of girth at least five embedded in a fixed surface is 3-colorable in polynomial
(actually, linear) time by checking for the presence of one of the finitely many
4-critical subgraphs. To prove Theorem 50, Thomassen gives a bound on the size
of a 4-critical graph embedded in Σ. However, this bound is double-exponential
in the genus of Σ. In this chapter, we give a different (somewhat simpler) proof
of the result, which additionally improves the bound to linear.

Theorem 51. There exists a constant C with the following property. If G is a
4-critical graph of Euler genus g and girth at least 5, then |V (G)| ≤ Cg.

In the exposition of the proof of Theorem 51, we essentially follow the outline
presented in the introduction to Part II using the method of reducible configu-
rations. In the following section, we give some definitions. In Section 7.2, we
describe more precisely what we mean by a reducible configuration, its appear-
ance in the considered graph and its reduction. In Section 7.3, we show that the
reductions preserve 3-colorings. In Section 7.4, we give the discharging argument
used to show the existence of a reducible configuration. In Section 7.5, we argue
that the reductions preserve the assumptions of the theorem. In Section 7.6, we
analyze the change of the weights during the reduction. The Section 7.7 is de-
voted to the case of a plane graph with one precolored facial cycle. In Section 7.9,
we similarly consider the special case of a plane graph with two precolored facial
cycles. We finish the proof for a general surface in Section 7.10.

1The results of this chapter are based on Dvořák et al. [28, 26, 27].
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7.1 Definitions

All graphs that in this paper are simple, with no loops or parallel edges.
A surface is a compact 2-manifold with (possibly null) boundary. Each com-

ponent of the boundary is homeomorphic to the circle, and we call it a cuff. For
non-negative integers a, b and c, let Σ(a, b, c) denote the surface obtained from
the sphere by adding a handles, b crosscaps and removing interiors of c pairwise
disjoint closed discs. A standard result in topology shows that every connected
surface is homeomorphic to Σ(a, b, c) for some choice of a, b and c. Note that
Σ(0, 0, 0) is a sphere, Σ(0, 0, 1) is a closed disk, Σ(0, 0, 2) is a cylinder, Σ(1, 0, 0)
is a torus, Σ(0, 1, 0) is a projective plane and Σ(0, 2, 0) is a Klein bottle. The
Euler genus g(Σ) of the surface Σ = Σ(a, b, c) is defined as 2a + b. For a cuff C
of Σ, let Ĉ denote an open disk with boundary C disjoint from Σ, and let Σ + Ĉ
be the surface obtained by gluing Σ and Ĉ together, that is, by closing C with a
patch. Let Σ̂ = Σ + Ĉ1 + . . . + Ĉc, where C1, . . . , Cc are the cuffs of Σ, be the
surface without boundary obtained by patching all the cuffs.

Consider a graph G drawn in the surface Σ; when useful, we identify G with
the topological space consisting of the points corresponding to the vertices of
G and the simple curves corresponding to the edges of G. A face f of G is a
maximal connected subset of Σ̂−G. The boundary of a face is equal to a union
of closed walks of G, which we call the boundary walks of f .

An embedding of G in Σ is normal if each cuff C that intersects G either
does so in exactly one vertex v or is equal to a cycle B in G. In the former case,
we call v a vertex ring and the face of G that contains C the cuff face of v. In
the latter case, note that B is the boundary walk of the face Ĉ of G; we say
that B is a facial ring. A face of G is a ring face if it is equal Ĉ for some ring
C, and internal otherwise. We write F (G) for the set of internal faces of G. A
vertex v of G is a ring vertex if v is incident with a ring (i.e., it is drawn in the
boundary of Σ), and internal otherwise. A cycle K in G is separating the surface
if Σ̂−K has two components, and K is non-separating otherwise. A cycle K is
contractible if there exists a closed disk ∆ ⊆ Σ with boundary equal to K. A
cycle K surrounds the cuff C if K is not contractible in Σ, but it is contractible
in Σ + Ĉ. We say that K surrounds a ring R if K surrounds the cuff incident
with R.

An embedding of G in Σ with rings R is a triple (G,R,W ), where G is a
normal embedding of G in Σ, R is the set of rings of G and W is a subset of
vertex rings. The elements of W are called weak vertex rings. At this point, let
us remark that weak vertex rings (which behave slightly differently with respect
to coloring, see the next paragraph) are just a technicality devised to deal with
cutvertices in the case of general surfaces; thus, the reader may ignore them for
the moment. Unless explicitly specified otherwise, we assume that every cuff of
Σ is incident with a ring in R.

The length |R| of a facial ring is the length of the corresponding face. For
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a vertex ring R, we define |R| = 0 if R is weak and |R| = 1 otherwise. For an
internal face f , by |f | we mean the sum of the lengths of the boundary walks of
f (in particular, if an edge appears twice in the boundary walks, it contributes
2 to |f |); if a boundary walk consist just of a vertex ring R, it contributes |R| to
|f |.

Let G be a graph with rings R. A precoloring of R is a proper 3-coloring of
the graph H =

⋃R. Note that H is a (not necessarily induced) subgraph of G.
A precoloring of R extends to a 3-coloring of G if there exists a proper 3-coloring
φ of G such that φ(v) 6= ψ(v) for every weak vertex ring v and φ(v) = ψ(v) for
every other vertex v incident with one of the rings. The graph G is R-critical if
G 6= H and for every proper subgraph G′ of G that contains R, there exists a
precoloring of R that extends to a 3-coloring of G′, but not to a 3-coloring of G.
For a precoloring φ of the rings, the graph G is φ-critical if φ does not extend
to a 3-coloring of G, but it extends to a 3-coloring of every proper subgraph of
G that contains R. Let us remark that if G is φ-critical for some φ, then it is
R-critical, but the converse is not true (for example, consider a graph consisting
of a single facial ring with two chords). On the other hand, if φ is a precoloring
of the rings of G that does not extend to a 3-coloring of G, then G contains a
(not necessarily unique) φ-critical subgraph.

7.2 Reducible configurations

By a plane graph we mean a graph G drawn in the plane with no crossings. Thus
G has exactly one unbounded face, called the infinite face; all the other faces are
called finite. An isomorphism of plane graphs maps finite faces to finite faces and
the infinite face to the infinite face.

A configuration is a quintuple γ = (G,F , d, I,A), where

• G is a plane graph,

• F is a set of finite faces of G,

• d is a function that maps a set dom(d) ⊆ V (G) to {3, 4, . . .},

• A is a subset of V (G) of size zero or two, and

• I is a subset of V (G).

If γ is a configuration, then we define Gγ := G, Fγ := F , dγ := d, Iγ := I and
Aγ := A.

Two configurations γ and γ′ are isomorphic if there exists an isomorphism
φ of the plane graphs Gγ and Gγ′ that maps Fγ to Fγ′ , Iγ to Iγ′ , Aγ to Aγ′ ,
dom(dγ) to dom(dγ′) and dγ(v) = dγ′(φ(v)) for every v ∈ dom(dγ). Figure 7.1
contains the depictions of several configurations, using the following conventions.
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The graph Gγ is drawn in the figure (ignoring the “half-edges” and dashed edges
for a moment), Fγ consists of all the finite faces of Gγ that do not include any
half-edges in their interior, the elements of Iγ are indicated by I next to them,
if u, v ∈ Aγ are distinct, then they are joined by a dashed edge, the set dom(dγ)
consists of vertices drawn by empty circles, and the value dγ(v) is equal to the
number of edges and half-edges incident with v in the figure. A configuration is
good if it is isomorphic to one of the configurations depicted in Figure 7.1.

Let γ be a good configuration and either let H = Gγ, or let H be a plane
graph obtained from Gγ by identifying two vertices of V (Gγ) \ dom(dγ) that are
at distance at least five in Gγ. (The latter is only possible when γ is R7 or R7′′.)
In those circumstances we say that H is an imprint of γ. It follows that every
face in Fγ may be regarded as a face of H, and that dom(dγ) ⊆ V (H).

Let G be a graph in a surface Σ with rings R. We say that a configuration γ
faintly appears in the pair (G,R) if

• some imprint H of γ is a subgraph of G,

• every face in Fγ is an internal face of G,

• dom(dγ) ∩ V (R) = ∅,

• if v ∈ dom(dγ), then degG(v) = dγ(v),

• at most one vertex of Iγ belongs to V (R), and

• no cuff face of a vertex ring belongs to Fγ.

If a configuration γ faintly appears in (G,R), then we say that a subgraph J of
G touches γ if an edge of J is incident with a face in Fγ. We say that γ weakly
appears in the pair (G,R) if it faintly appears and

• no cycle of length at most four distinct from facial rings touches γ and if γ
is R7, then x3 6= x7 or x1 6= x6,

• if u, v ∈ dom(dγ) are adjacent in G, then u, v are adjacent in Gγ,

• if γ is isomorphic to R4 and the vertices corresponding to x4 and x5 both
belong to R, then the vertex corresponding to v2 does not belong to R.

Let a good configuration γ weakly appear in (G,R). We wish to define a new
graph G′ in Σ with rings R. For the definition we need to distinguish several
cases. Assume first that γ is not isomorphic to R4. Let the graph G′ be obtained
from G\dom(dγ) by adding an edge joining the vertices in Aγ if Aγ 6= ∅ and by
identifying the vertices in Iγ. If parallel edges are created, remove all edges but
one from each bunch of parallel edges, so that each edge of G′ corresponds to a
unique edge of G. Since no cycle of length at most four touches γ and if γ is R7,
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Figure 7.1: Reducible configurations.
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then x3 6= x7 or x1 6= x6, it follows that G′ has no loops. It also follows that
R is a set of rings for G′. We will refer to the added edge as the new edge and
to the vertex that resulted from the identification of vertices as the new vertex.
If two vertices u, v ∈ Iγ have a common neighbor x ∈ V (Gγ) \ dom(dγ) and w
is the new vertex arising by identification of u and v, then we call the edge wx
squashed.

We also need to specify an embedding of G′ in Σ. There is a unique natural
way to make the edge additions and vertex identifications inside the faces of Fγ,
and that is how the embedding of G′ will be defined. Formally, for every pair
u, v ∈ Aγ∪Iγ of distinct vertices we define the replacement u, v-path as the short-
est path from u to v in Gγ. It follows by inspecting all the good configurations
that the replacement path is unique. Now we identify u and v or join them by
an edge along the replacement u, v-path P , with the proviso that if P includes
a vertex v ∈ V (Gγ) \ dom(dγ) (specifically, vertex v4 or v6 of R3 or vertex z of
R7), then prior to making the edge addition or vertex identification we shift P
slightly into the unique face f of Fγ incident with v. By the conditions of weak
appearance, f is not a cuff face of v, hence P stays in Σ and its homotopy does
not change by such a shift. This completes the definition of G′ when γ is not R4.

Now let γ be R4. If not both x4 and x5 belong to R, then we proceed as
above, treating the configuration as if {x4, x5} belonged to Iγ; that is, identifying
those vertices. We may therefore assume that both x4, x5 belong to R. Let φ be
a 3-coloring of R; the definition of G′ will now depend on φ. If φ(x4) = φ(x5),
then we define G′ exactly as in the previous two paragraphs; in particular, we
do not identify x4 and x5. If φ(x4) 6= φ(x5), then we let G′ be obtained from
G\{v1, v3, v4, v5} by identifying v2 and x5 along the “replacement path” v2v1v5x5.
Let us remark that the last condition in the definition of weak appearance guar-
antees that in this case v2 does not belong to R. Then G′ is a graph in Σ with
rings R, and we say that it is the γ-reduction of G. When we wish to emphasize
the dependence on φ we will say that G′ is the γ-reduction of G with respect to
φ.

7.3 Colorings

In this section, we show that each 3-coloring of the γ-reduction of a graph G
extends to a 3-coloring of G. Most of the reductions were used earlier [43, 68],
but R5, R7 and their variants seem to be new. For the sake of completeness we
include proofs of extendability for all good configurations.

Lemma 52. Let G be a graph in a surface Σ with rings R, let γ be a good
configuration that weakly appears in (G,R), let φ0 be a 3-coloring of R, and let
G1 be the γ-reduction of G with respect to φ0. If φ0 extends to a 3-coloring of
G1, then it extends to a 3-coloring of G.
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Proof. Let γ be as stated, and let the vertices of Gγ be labeled as in Figure 7.1.
Let φ be a 3-coloring of G1 that extends the coloring φ0. Then φ can be regarded
as a 3-coloring of G \ dom(dγ), and our objective is to extend it to a 3-coloring
of G. For each vertex vi ∈ dom(dγ) that has a unique neighbor outside of the
configuration, let this neighbor be denoted by xi. We will use the following easy
observations:

(28) Suppose that u1, u2 ∈ V (G) are adjacent vertices of degree three, w1 and
w2 are the neighbors of u1 distinct from u2 and w3 and w4 are the neighbors of
u2 distinct from u1. A 3-coloring ψ of w1, . . . , w4 extends to u1 and u2, unless
ψ(w1) = ψ(w3) 6= ψ(w2) = ψ(w4) or ψ(w1) = ψ(w4) 6= ψ(w2) = ψ(w3).

(29) Let P = u1u2 . . . uk be a path in G and L1, . . . , Lk lists of colors of size
two, such that Li 6= Lj for some 1 ≤ i < j ≤ k. Then there exist colorings ψ1,
ψ2 and ψ3 of P such that ψi(vj) ∈ Lj for 1 ≤ i ≤ 3 and 1 ≤ j ≤ k, and for each
1 ≤ i < j ≤ 3 either ψi(u1) 6= ψj(u1) or ψi(uk) 6= ψj(uk).

Let us now consider each configuration separately.

Configurations R1 and R2. Each of the vertices of the cycle v1v2 . . . vk (where
k = 5 for the configuration R1 and k = 7 for R2) has a list of two available colors,
and the lists of v1 and v3 are not the same. By ((29)), there exists a coloring of
the path v1 . . . vk from these lists such that the colors of v1 and vk are not the
same, giving a coloring of G, as desired.

Configuration R3. The vertices v1, v3 and v5 inherit the color of the new vertex.
Then we can color the vertices x2 and v2 in order, because at the time each of
those vertices is colored it is adjacent to vertices of at most two different colors.

Configuration R4. Suppose first that at least one of x4 and x5 is internal, or
that both belong to R and φ0(x4) = φ0(x5). If φ(x1) = φ(v2), then color the
vertices in the order v3, v4, v5 and v1 (each of them has neighbors of at most
two different colors when it is being colored). The case that φ(x3) = φ(v2) is
symmetric. Therefore, we may assume that φ(x1) = 1, φ(v2) = 2 and φ(x3) = 3.
Set φ(v1) = 3 and φ(v3) = 1 and extend the coloring to v4 and v5 by ((28)). Then
φ is a desired 3-coloring of G.

We may therefore assume that both x4 and x5 belong to R and φ0(x4) 6=
φ0(x5). In this case, the definition of γ-reduction ensures that φ(v2) = φ(x5). We
may assume that φ(v2) = φ(x5) = 1 and φ(x4) = 2. Let us set φ(v4) = 1 and
color v3, v1 and v5 in this order.

Configuration R5. The reduction ensures that φ(v2) 6= φ(x8) and φ(v4) =
φ(x6). If φ(v2) = φ(v4), then φ extends—color the vertices in the order v1, v8, v5,
v6, v7 and v3, and observe that for each of these vertices, at most two different
colors appear on already colored neighbors. Thus we may assume that φ(v2) = 1
and φ(v4) = φ(x6) = 2. We set φ(v3) = 3 and φ(v7) = 2, and color the vertices
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v5 and v6. As φ(x8) 6= φ(v2) 6= φ(v7), ((28)) implies that the coloring extends to
v1 and v8.

Configurations R6 and R6′. In both cases, the reduction ensures that φ(x1) 6=
φ(x5), say φ(x1) = 1 and φ(x5) = 2. If φ(x6) = 1, then set φ(v5) = 1, and color
the vertices in order v4, v3, v2, v1, v8, v7 and v6. Therefore, we may assume
that this is not the case. By symmetry, we may also assume that φ(x4) 6= 1 and
φ(x2), φ(x8) 6= 2. If φ(x2) = φ(x8) = 3, then set φ(v1) = 3, φ(v5) = 1 and color v6,
v7, v8, v4, v3 and v2 in this order. Otherwise, by symmetry we may assume that
φ(x2) = 1. If v3 and v7 are adjacent, or if φ(x3) 6= 1, then set φ(v3) = φ(v5) = 1
and color v4, v6, v7, v8, v1 and v2 in this order. Therefore, assume that v3 and v7
are not adjacent and φ(x3) = 1.

If φ(x6) = 3, then set φ(v4) = 1, φ(v1) = φ(v3) = 2 and φ(v2) = φ(v5) = 3
and color v8, v7 and v6 in this order. Thus, assume that φ(x6) = 2. By the
argument symmetrical to the one used for x3, we conclude that φ extends unless
φ(x7) = 2. If φ(x8) = 3, then set φ(v4) = φ(v6) = φ(v8) = 1, φ(v1) = φ(v3) = 2
and φ(v2) = φ(v5) = φ(v7) = 3. Thus assume that φ(x8) = 1 and by symmetry,
φ(x4) = 2. In this case, set φ(v5) = φ(v7) = 1, φ(v1) = φ(v3) = 2 and φ(v2) =
φ(v4) = φ(v6) = φ(v8) = 3.

Configuration R7. The reduction ensures that φ(x1) 6= φ(x3), say φ(x1) = 1
and φ(x3) = 2. To preserve the symmetry of the configuration, let us for a while
ignore the identification of x6 and x7.

Suppose first that φ(x8) = 1. By ((29)), there exists a coloring ψ of the path
v1v2 . . . v8 such that ψ(v1) = ψ(v8) ∈ {2, 3}. We can extend ψ to v12 and v11. By
((28)), if φ(x9) 6= φ(x10), then ψ extends to v9 and v10 as well. Consider the case
that φ(x9) = φ(x10) = c. Set φ(v11) = 1. If φ(x2) = 1, then color v3 by 1, and
color the vertices v4, v5, . . . , v10, v1, v2, v12 in this order. If φ(x6) = 2, then color
v12 by 2 and extend the coloring to the 10-cycle v1 . . . v10. Therefore, assume that
φ(x2) 6= 1 and d = φ(x6) 6= 2. Let us distinguish several cases:

• d = 3, φ(x4) = 1 and φ(x5) = 3: In this case, set φ(v12) = 3, φ(v3) = 1 and
color v2, v1, v10, v9, . . . , v4 in order.

• d = 1 and φ(x4) = φ(x5): Set φ(v3) = 1 and color the vertices v2, v1, v10,
v9, . . . , v6, v12 in order. Note that φ(v3) = 1 6= φ(v6), thus φ extends the
coloring to v4 and v5 by ((28)).

• Otherwise, set φ(v2) = 1, φ(v3) = 3, φ(v12) = 2, φ(v6) = 4 − d, and color
vertices v7, . . . , v10, v1 in order. By ((28)), this coloring extends to v4 and
v5.

We conclude that if φ does not extend to the empty-circle vertices, then φ(x8) =
c1 6= 1, and by the symmetry, φ(x6) = c2 6= 2.

There are four possible colorings of v1 and v8 (two choices of colors for each
of these vertices, so that the color of v1 is not 1 and the color of v8 is not c1). By

102



((28)), out of these four colorings, all but at most one extend to v9 and v10; if such
a coloring of v1 and v8 exists, let it be denoted by ω1; otherwise, set ω1(v1) = 1
and ω1(v8) = c1. Symmetrically, let ω2 be the unique coloring of v3 and v6 such
that ω2(v3) 6= 2, ω2(v6) 6= c2 and ω2 does not extend to v4 and v5, if such a
coloring exists, and ω2(v3) = 2 and ω2(v6) = c2 otherwise.

If φ(x2) = 2, then let a = 2, otherwise let a = 3. Note that any color c 6= 2 =
φ(x3) satisfies |{a, c, φ(x2)}| = 2. In the following cases, we can extend φ to a
coloring ψ of the path v1v10v9v8v7v6 such that ψ(v1) = a and b = ψ(v6) 6= ω2(v6):

• ω1(v1) 6= a: choose b 6∈ {φ(x6), ω2(v6)}, color v7 and v8, and note that we
can extend this coloring to v9 and v10 by the definition of ω1.

• ω2(v6) = c2: color the vertices v10, v9, . . . , v6 in this order.

• φ(x7) 6∈ {c1, ω1(v8)} ∩ {c2, ω2(v6)} or {c1, ω1(v8)} = {c2, ω2(v6)}: excluding
the previous two cases, we may assume that c1 6= ω1(v8) and c2 6= ω2(v6).
Color v8 by the color d 6∈ {c1, ω1(v8)} and v6 by the color b 6∈ {c2, ω2(v6)},
extend the coloring to v9 and v10 by the definition of ω1, and observe that
|{φ(x7), b, d}| ≤ 2, thus v7 can be colored as well.

If such a coloring ψ exists, then choose a color c 6= φ(x3) such that c = b or
{b, c} 6= {a, ψ(v8)}; this ensures that the coloring extends to v11 and v12 by ((28)).
Since b 6= ω2(v6), this coloring extends to v4 and v5 as well. Finally, the choice of
a ensures that |{a, c, φ(x2)}| = 2, hence the coloring extends to v2. Therefore, we
may assume that such the coloring ψ does not exist, i.e., ω1(v1) = a, ω2(v6) 6= c2,
{c1, ω1(v8)} 6= {c2, ω2(v6)} and φ(x7) ∈ {c1, ω1(v8)} ∩ {c2, ω2(v6)}.

Let us now distinguish two cases:

• φ(x9) 6= φ(x10): By ((28)), a = ω1(v1) = φ(x9). If c1 6= a, then set
φ(v1) = φ(v8) = a and color v10, v9, v7, v6, . . . , v2 in this order (v2 can
be colored by the choice of a), and color v12 and v11; hence, assume that
c1 = a.

If φ(x10) = 5−a, then set φ(v1) = φ(v8) = 5−a, φ(v10) = a, and φ(v9) = 1.
Note that φ(x7) ∈ {c1, ω1(v8)} = {a, 5 − a} and {c2, ω2(v6)} = {1, φ(x7)}.
Set φ(v7) = 1 and choose φ(v6) 6∈ {c2, ω2(v6)}, i.e., φ(v6) = 5− φ(x7). Ex-
tend the coloring to v2, v3, v12 and v11 in this order. Asφ(v6) 6= ω2(v6), this
coloring extends to v4 and v5, giving a coloring of the whole configuration.

Therefore, assume that φ(x10) = 1. Then ω1(v8) = 1 and φ(x7) ∈ {1, a}.
Let us set φ(v1) = φ(v7) = φ(v9) = 5 − a, φ(v10) = a and φ(v8) = 1.
Let us choose color φ(v6) 6∈ {c2, ω2(v6)}; note that φ(v6) 6= 5 − a, since
{c2, ω2(v6)} 6= {c1, ω1(v8)} = {1, a}. Color v2 and v3, and extend the color-
ing to v4 and v5 (this is possible, since φ(v6) 6= ω2(v6)). We may assume that
this coloring does not extend to v11 and v12, i.e., {φ(v3), φ(v6)} = {1, 5−a},
hence φ(v3) = 5 − a and φ(v6) = 1. As φ(v6) 6∈ {c2, ω2(v6)}, we get
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{c2, ω2(v6)} = {a, 5 − a} and φ(x7) = a. Since c2 6= 2, we have c2 = 3
andω2(v6) = 2. As ω2(v3) 6= 2, it follows that φ(x4) = 2 and φ(x5) 6= 2.

Consider the coloring ψ with ψ(v8) = 5 − a, ψ(v7) = ψ(v9) = 1, ψ(v6) =
2, ψ(v3) = ψ(v5) = 4 − φ(x5) and ψ(v4) = φ(v5), and assume that this
coloring does not extend to the coloring of the whole configuration. On
one hand, we may color v1 by a and v10 by 5 − a; then ψ extends to v2
by the definition of a, and since it does not extend to v11 and v12, we
have {a, 5 − a} = {2, 4 − φ(x5)}, and φ(x5) = 1. On the other hand,
we may color v1 by 5 − a, v12 by 1 and v10 and v11 by a. Since this
coloring does not extend to v2, we have |{5 − a, 3, φ(x2)}| = 3, and a = 3
and φ(x2) = 1. In that case, we can color the configuration by setting
φ(v3) = φ(v6) = φ(v8) = 1, φ(v1) = φ(v5) = φ(v7) = φ(v9) = φ(v12) = 2
and φ(v2) = φ(v4) = φ(v10) = φ(v11) = 3.

• φ(x9) = φ(x10): By symmetry, we may also assume that φ(x4) = φ(x5).
At this point, we use the second relation guaranteed by the reduction,
φ(x7) = c2. If c2 6= 3, then set φ(v7) = 3, φ(v8) = 1 and φ(v6) = 2, color
the 5-cycle v1v2v3v12v11, and extend the coloring to v4, v5, v9 and v10 by
((28)). Thus, assume that c2 = 3.

If φ(x2) 6= 1, then set φ(v2) = φ(v6) = φ(v8) = 1, φ(v1) = φ(v7) = φ(v12) =
2 and φ(v3) = φ(v11) = 3, and extend the coloring to v4, v5, v9 and v10 by
((28)).

Finally, if φ(x2) = 1, then set φ(v2) = φ(v8) = 5 − c1, φ(v1) = c1, φ(v3) =
φ(v7) = φ(v11) = 1, φ(v6) = 2 and φ(v12) = 3, and extend the coloring to
v4, v5, v9 and v10 by ((28)).

Configuration R7′. If φ(v3) = φ(v6), then first color the 6-cycle v2v1v10v9v8v7
(this is possible, as each of the vertices has at most one colored neighbor), and
then color v11 and v12. Thus, assume that φ(v3) = 1, φ(v6) = 2 and φ(v12) = 3.
Color the 5-cycle v1v11v8v9v10 (this is possible, as φ(x1) 6= φ(x9)). Note that in
this coloring, φ(v1) 6= 2 or φ(v8) 6= 1, as φ(v11) 6= φ(v12) = 3. Therefore, the
coloring extends to v2 and v7 by ((28)).

Configuration R7′′. The reduction ensures that φ(x1) 6= φ(x3), say φ(x1) = 1
and φ(x3) = 2. Also, by symmetry, we may assume that c = φ(x2) 6= 1. Suppose
first that φ(v8) 6= 1. Then try coloring v11 and v3 by 1 and v1 by c. By ((28)), this
coloring extends unless φ(v9) = 1 and φ(v5) = c. If φ(v6) 6= 2, then set the color
of v3 to 3, instead, and observe that the coloring extends. Otherwise, φ(v6) = 2,
and set φ(v12) = φ(v2) = 1, φ(v3) = 3, and color v11 and v1. The coloring extends
to v10 and v4 by ((28)).

Therefore, we may assume that φ(v8) = 1. Suppose that φ(v6) 6= c. Then try
coloringv1 and v12 by c, v11 and v2 by 5− c and v3 by 1. By ((28)), this coloring
extends to v4 and v10 unless φ(v5) = c and φ(v9) = 1. In that case, set φ(v2) = 1,
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φ(v3) = 3, color v12, v11 and v1 in this order, and extend the coloring to v4 and
v10 by ((28)). Thus, we may assume that φ(v6) = c.

If c 6= 2, then set φ(v3) = c and color v4, v10, v1, v2, v11 and v12 in this
order; hence, assume that c = 2. Consider the coloring that assigns 1 to v2
and v12, 3 to v11 and v3 and 2 to v1. If this coloring does not extend to v4
and v10, then ((28)) implies that φ(v5) = 2 and φ(v9) = 3. In that case, set
φ(v2) = φ(v4) = φ(v12) = 1, φ(v10) = φ(v11) = 2 and φ(v1) = φ(v3) = 3.

Configuration R7′′′. The reduction ensures that φ(x1) 6= φ(x3), say φ(x1) = 1
and φ(x3) = 2. If φ(v8) 6= 1 and φ(v6) 6= 2, then color v11 by 1, v12 by 2 and
extend the coloring to the 6-cycle v10v1v2v3v4v5.

Assume now that φ(v8) = 1 or φ(v6) = 2. Suppose first that φ(v6) 6= 2, and
thus φ(v8) = 1. Then try setting the color of v1, v5 and v12 to 2 and coloring v11
and v10. If φ(x2) = 2 or φ(x4) = 2 or φ(x2) = φ(x4), then the coloring extends to
v2, v3 and v4, thus assume that {φ(x2), φ(x4)} = {1, 3}. If φ(v9) 6= 2 or φ(v6) 6= 3,
then set φ(v2) = φ(v4) = φ(v11) = 2, φ(v1) = 3, color v12 and v3 and extend the
coloring to v5 and v10 by ((28)). Otherwise, φ(v9) = 2 and φ(v6) = 3 and we set
φ(v5) = 1, φ(v1) = φ(v4) = φ(v12) = 2, φ(v10) = φ(v11) = 3, φ(v2) = φ(x4) and
φ(v3) = φ(v2).

Therefore, it suffices to consider the case that φ(v6) = 2. If φ(x4) 6= 2, then
set φ(v4) = 2, color the 5-cycle v1v2v3v12v11, and color v10 and v5. So we have
φ(x4) = 2. Suppose that φ(x2) 6= 2. Then set φ(v2) = 2 and φ(v1) = 3. If
φ(v8) 6= 2, then color v11 by 2 and color v10, v5, v4, v3 and v12 in this order.
On the other hand, if φ(v8) = 2, then note that φ(v9) 6= 2, and set φ(v10) = 2,
φ(v3) = φ(v5) = φ(v11) = 1 and φ(v4) = φ(v12) = 3. Thus, assume that φ(x2) =
2.

Try setting φ(v2) = φ(v4) = φ(v12) = 1 and φ(v3) = φ(v5) = 3. If φ(v9) 6= 1,
then set φ(v10) = 1 and color v11 and v1; thus assume thatφ(v9) = 1. If φ(v8) 6= 2,
then set φ(v10) = φ(v11) = 2 and φ(v1) = 3.

Finally, consider the case that φ(v9) = 1 and φ(v8) = 2. Then, we set φ(v3) =
φ(v5) = φ(v11) = 1, φ(v1) = 2 and φ(v2) = φ(v4) = φ(v10) = φ(v12) = 3.

Configuration R7′′′′. The reduction ensures that φ(x3) 6= φ(v6), say φ(v6) = 1
and φ(x3) = 2. Suppose first that φ(v8) 6= φ(v10). If φ(v10) 6= 2, then let
φ(v12) = 2, φ(v11) = φ(v10) and extend the coloring to the 5-cycle v1v2v3v4v5;
thus assume that φ(v10) = 2. If φ(x2) 6= 2, then set φ(v2) = 2, φ(v3) = 1, and
color v4, v5, v1, v11 and v12 in this order. If φ(x2) = 2, then set φ(v1) = φ(v3) = 1,
φ(v2) = 3, and color v11, v12, v4 and v5, in this order.

Therefore, assume that φ(v8) = φ(v10) = c. If c = 2, then color v12 by 2,
extend the coloring to the 5-cycle v1 . . . v5, and color v11. If c = 3, then set
φ(v1) = φ(v3) = 1, φ(v11) = 2, φ(v12) = 3, and color v2, v4 and v5 in this order.
Thus, assume that c = 1. Try setting φ(v1) = φ(v12) = 2 and φ(v11) = φ(v5) = 3.
If φ(x4) 6= 2, then set φ(v4) = 2 and color v2 and v3. If φ(x4) = 2 and φ(x2) 6= 1,
then set φ(v2) = φ(v4) = 1 and φ(v3) = 3.
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Finally, consider the case that φ(x2) = 1 and φ(x4) = 2. Then, set φ(v3) = 1,
φ(v2) = φ(v5) = φ(v11) = 2 and φ(v1) = φ(v4) = φ(v12) = 3.

7.4 Discharging

Let G be a graph in a surface Σ with rings R. A face is open 2-cell if it is
homeomorphic to an open disk. A face is closed 2-cell if it is open 2-cell and
bounded by a cycle. A face f is omnipresent if it is not open 2-cell and each of its
boundary walks is either a vertex ring or a cycle bounding a closed disk ∆ ⊆ Σ̂\f
containing exactly one ring. We say that G has an internal 2-cut if there exist
sets A,B ⊆ V (G) such that A∪B = V (G), |A∩B| = 2, A−B 6= ∅ 6= B −A, A
includes all vertices of R, and no edge of G has one end in A−B and the other
in B − A.

We wish to consider the following conditions that the triple G,Σ,R may or
may not satisfy:

• (I0) every internal vertex of G has degree at least three,

• (I1) G has no even cycle consisting of internal vertices of degree three,

• (I2) G has no cycle C consisting of internal vertices of degree three, and
two distinct adjacent vertices u, v ∈ V (G)− V (C) such that both u and v
have a neighbor in C,

• (I3) every internal face of G is closed 2-cell and has length at least 5,

• (I4) if a path of length at most two has both ends inR, then it is a subgraph
of R,

• (I5) no two vertices of degree two in G are adjacent.

• (I6) if Σ is the sphere and |R| = 1, or if G has an omnipresent face, then
G does not contain an internal 2-cut,

• (I7) the distance between every two distinct members of R is at least four,

• (I8) every cycle in G that does not separate the surface has length at least
seven,

• (I9) if a cycle C of length at most 9 in G bounds an open disk ∆ in Σ̂ such
that ∆ is disjoint with all rings, then ∆ is a face, a union of a 5-face and a
(|C| − 5)-face, or C is a 9-cycle and ∆ consists of three 5-faces intersecting
in a vertex of degree three.

Let G be a graph in a surface Σ with rings R satisfying (I3). We say that
a good configuration γ appears in (G,R) if it faintly appears and the following
conditions hold:
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• no vertex ring belongs to Iγ,

• if γ is isomorphic to R3, then either I contains a vertex of R or there exists
a vertex v ∈ I such that v and all its neighbors are internal,

• if γ is isomorphic to R4, then the vertex that corresponds to v2 is internal
and has degree at least 4, and neither x4 nor x5 is a vertex ring,

• if γ is isomorphic to R5, then v4 is an internal vertex and the face whose
boundary contains the path corresponding to v6v7v8 has length at least
seven,

• if γ is isomorphic to R6 or R6′, then both vertices of Aγ are internal, and
all neighbors of at least one of them are internal,

• if γ is isomorphic to one of R7,R7′,R7′′,R7′′′,R7′′′′, then all vertices in
Aγ ∪ Iγ and all their neighbors are internal, and

• if γ is isomorphic to R7, then the vertex corresponding to x8 and all its
neighbors are internal.

Let G be a graph in a surface Σ with rings R, and let M be a subgraph of G.
We define the initial charge of the triple (G,Σ,R) as follows. The faces bounded
by facial rings get charge 0. Every internal face f gets charge |f | − 4. A vertex
of degree two belonging to a facial ring gets charge −1/3, a vertex of degree d
forming a vertex ring gets charge d, any other vertex of R of degree d gets charge
d − 3, and all internal vertices get charge d − 4. Finally, we increase the charge
of each face incident with an edge of M by 5/3.

Lemma 53. Let G be a graph in a surface Σ with rings R, let g be the Euler
genus of Σ, let n2 be the number of vertices of degree two in facial rings, and let
M be a subgraph of G. Then the sum of initial charges of all vertices and faces
of G is at most 4g + 4|R|+ 2n2/3 + 10|E(M)|/3− 8.

Proof. By Euler’s formula, the sum of the initial charges of all vertices and faces
is at most

∑
f∈F (G)(|f | − 4) +

∑
v∈V (G)(deg(v)− 4) + 4|R|+ 2n2/3 + 10|E(M)|/3

≤ 4g + 4|R|+ 2n2/3 + 10|E(M)|/3− 8,

as desired.

A 5-face f is k-dangerous if f is not incident with an edge of M and f is
incident with exactly k internal vertices of degree three. Let f1 = uvawb be a
4-dangerous face, where w is the unique incident vertex that is not internal of
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degree three. Let f2 be the face incident with uv distinct from f1. We say that
f2 is linked to f1 (through the edge uv). Let xy be an edge such that y has degree
three, and let g1, g2, g3 be the faces incident with y such that xy is incident with
q1 and g2. Then the face g3 is opposite to x. A 4-dangerous face f is extremely
4-dangerous if it is neither incident with a vertex of R nor opposite to any vertex
ring.

Let us apply the following primary discharging rules, resulting in the primary
charge:

Rule 1: Every internal face f sends 1/3 to each incident vertex v such that
deg(v) = 2 and v belongs to a facial ring, or deg(v) = 3 and v is internal.

Rule 2: Every vertex v belonging to a facial ring sends 1/3 to each 4-dangerous
face incident with v. Every vertex ring sends 1/3 to each non-cuff incident
face, 8/9 to its cuff face and 1/3 to each opposite face.

Rule 3: Let f be a face linked to an extremely 4-dangerous face f ′ through an
edge uv. If f has length at least 6, or f is incident with an edge of M , or f
is the cuff face of a vertex ring, then f sends 1/3 to f ′ across the edge uv.

Rule 4: Let v1v2v3v4 be a subwalk of the boundary walk of an internal face f ′ of
length at least seven, such that f ′ is linked to extremely 4-dangerous faces
through both v1v2 and v3v4. Let f be the other face incident with the edge
v2v3. If f has length at least six, then f sends 1/9 to f ′ across the edge
v2v3.

Lemma 54. Let G be a graph in a surface Σ with rings R satisfying (I0) and
(I3) and let M be a subgraph of G. Then the primary charge of each vertex is
non-negative, the primary charge of a vertex of degree d forming a vertex ring is
at least d/18, and the primary charge of a vertex of degree d ≥ 3 incident with
a facial ring is at least 2(d − 3)/3. Moreover, the primary charge of a vertex of
degree d ≥ 4 that does not belong to R is exactly d− 4.

Proof. This is ensured by Rule 1 for internal vertices of degree three. The charge
of internal vertices of degree d ≥ 4 is unchanged, i.e., d−4 ≥ 0. A vertex forming
a vertex ring has initial charge d and sends at most (6d+5)/9 by Rule 2. By (I3),
we have d ≥ 2; thus its primary charge is at least (3d − 5)/9 ≥ d/18. Consider
now a vertex v of degree d that belongs to a facial ring. If d = 2, then the initial
charge of v is −1/3 and v receives 1/3 by Rule 1. Observe that v sends nothing
by Rule 2, since both neighbors of v belong to R; thus the primary charge of v
is 0. If d ≥ 3, then v sends charge by Rule 2 to at most d − 3 faces, and hence
its primary charge is at least d− 3− (d− 3)/3 = 2(d− 3)/3, as desired.

The primary charge of a face corresponding to a facial ring R is zero, as it
is equal to its initial charge. Let us now estimate the primary charge of internal
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faces. A subgraph M ⊆ G captures (≤4)-cycles if M contains all cycles of G of
length at most 4 and furthermore, M is either null or has minimum degree at
least two.

Lemma 55. Let G be a graph in a surface Σ with rings R satisfying (I0), (I1),
(I3), (I4), (I5) and (I7), let M be a subgraph of G that captures (≤4)-cycles and
assume that if a configuration isomorphic to one of R1, R2, . . . , R5 appears in
G, then it touches M . If f is an internal face of G, then the primary charge of
f is non-negative. Furthermore, if the primary charge of f is zero, then f has
length exactly five and

• (a) f is 3-dangerous, or

• (b) f is incident with a vertex of R, or

• (c) f is 4-dangerous and a face of length at least 6 is linked to f , or

• (d) f is 4-dangerous, the a face h linked to f has length five and either h
is incident with an edge of M or h is the cuff face of a vertex ring, or

• (e) f is 4-dangerous and is opposite to a vertex ring.

Otherwise, the primary charge of f is least 2/9, and if |f | ≥ 8, then the primary
charge of f is at least 5|f |/9− 4. Also, if f is a 6-face incident with a vertex of
degree two belonging to a facial ring, then f has primary charge at least 2/3.

Proof. Suppose first that f has length five. Let us consider the case that f is
incident with an edge of M . Then f sends charge by Rules 1 and 3. If f sends
charge across an edge uv by Rule 3 to a face f ′, then both u and v have degree
three and no edge of f ′ belongs to M . Since M has minimum degree at least
two, it follows that no edge incident with u or v belongs to M ; hence f sends
charge by Rule 3 to at most two faces. The primary charge of f is at least
1 + 5/3− 5/3− 2/3 = 1/3 > 2/9.

Therefore, we may assume that f is not incident with any edge of M , and in
particular, f does not share an edge with any cycle of length at most 4. Suppose
that f is the cuff face of a vertex ring v. Then f sends charge by Rules 1 and
3; however, f is linked to at most one extremely 4-dangerous face and f receives
8/9 from v. The primary charge of f is at least 1 + 8/9 − 4/3 − 1/3 = 2/9, as
desired.

If f is not the cuff face of a vertex ring, then f sends charge only by Rule 1.
Let us distinguish several cases according to the number of internal vertices of
degree three incident with f .
• All vertices incident with f are internal and have degree three. Then f and its
incident vertices form a configuration isomorphic to R1 that appears in G, which
is a contradiction.
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• The face f is incident with exactly four internal vertices of degree three. Let
f = v1v2v3v4v5 and suppose that all these vertices except for v2 are internal and
have degree three. If v2 is not internal, then either v2 is a vertex ring or it has
degree at least four, since v1 and v3 are internal. The charge of f after applying
Rule 1 is −1/3.

The face f is incident with no edge of M , hence f is 4-dangerous. If v2 belongs
to a ring, then f receives 1/3 by Rule 2, making its charge zero, and hence f
satisfies (b). Thus we may assume that v2 is internal and of degree at least 4.
Similarly, if f is opposite to a vertex ring, then f receives 1/3 by Rule 2 and f
satisfies (e), hence it suffices to consider the case that f is extremely 4-dangerous.

If the face h with that f shares the edge v4v5 has length five, then the faces
f and h form an imprint of R4 (v2 is distinct from the vertices incident with h,
since f does not share an edge with a cycle of length at most 4). If h is the cuff
face of a vertex ring, then f receives 1/3 from h by Rule 3, the primary charge of
f is zero and f satisfies (d). Otherwise, a configuration isomorphic to R4 appears
in G. By hypothesis the face h is incident with an edge of M .

We conclude that h either has length at least 6 or is incident with an edge of
M . In both cases, h sends 1/3 to f by Rule 3. Thus the primary charge of f is
zero, and f satisfies (c) or (d).
• The face f is incident with exactly three internal vertices of degree three. In
this case f sends 1/3 to each of the three incident internal vertices of degree three
by Rule 1, making its charge zero. (The face f is not incident with a vertex of
R of degree two belonging to a facial ring, since both neighbors of such a vertex
belong to R). Since f does not share an edge with M , f is 3-dangerous and
satisfies (a).
• The face f is incident with exactly two internal vertices of degree three. Then
f sends 1/3 to each of them, and at most 1/3 to a vertex of R of degree two by
Rule 1, making its charge non-negative. Furthermore, if the charge is zero, then
f satisfies (b); otherwise the charge is at least 1/3, as desired.
• The face f is incident with at most one internal vertex of degree three. Then f
sends at most 2/3 by Rule 1 and (I5), and its primary charge is at least 1/3, as
desired.

Thus we have proved the lemma when f has length five. Let us now consider
the case that f has length six, and let f = v1v2v3v4v5v6. By (I1) not all vertices
incident with f are internal and of degree three. Thus f sends at most 5/3 by
Rule 1 and at most 4/3 by Rules 3 and 4. If f is incident with an edge of M , then
its primary charge is at least 2 + 5/3− 5/3− 4/3 = 2/3, as desired. If f does not
send charge using Rules 3 or 4, then its primary charge is at least 2− 5/3 = 1/3.
Furthermore, if say v2 is a vertex of degree two belonging to a facial ring R, then
by (I5), v1 and v3 belong to R and have degree at least three, thus the primary
charge of f is at least 2− 4/3 = 2/3.

If say v1 is a vertex ring, then the faces incident with the edges v1v2, v1v6,
v2v3 and v5v6 are not extremely 4-dangerous; hence, f sends at most 2/3 by Rule
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3 and nothing by Rule 4. Furthermore, f receives at least 1/3 from v1 by Rule 2,
thus the primary charge of f is at least 2− 5/3− 2/3 + 1/3 = 0. If f sends less
than 5/3 by Rule 1 or less than 2/3 by Rule 3, or if f is the cuff face of v1, then
the primary charge is at least 1/3, as desired. Otherwise, f forms an appearance
of γ = R3, with Iγ = {v2, v4, v6}, contradicting the hypothesis of the lemma.

We show that the situation that f is incident neither with a vertex ring nor
with an edge of M and sends charge by Rule 3 or 4 cannot occur. Suppose that
f sends charge across v2v3 by Rule 3 or 4. It follows that v2 and v3 are internal
and of degree three. Let x2 be the neighbor of v2 other than v1 and v3, and let
x3 be defined analogously. Then both x2 and x3 are internal vertices of degree
three. If v1 and v5 both belong to R, then by (I4) and (I7), v6 is a vertex of
degree two, and by (I5) v4 is an internal vertex, implying that γ = R3 appears in
G (with Iγ = {v2, v4, v6}). This contradicts the hypothesis; hence, assume that
at least one of v1 and v5 is internal, and symmetrically, at least one of v4 and v6
is internal.

If both v1 and v5 are internal, then by (I4) and (I7) at least one of v4 and v6
is internal as well. Since neither v4 nor v6 is a vertex ring, γ = R3 appears in
G with Iγ = {v2, v4, v6}. This is a contradiction, hence exactly one of v1 and v5
belongs to R. Therefore, γ = R3 appears in G with Iγ = {v1, v3, v5}. This is a
contradiction, finishing the case that |f | = 6.

Finally, we consider the case that |f | ≥ 7. Let us estimate the amount of
charge sent from f and received by f using Rules 3 a 4. If v1v2v3v4 is a subwalk
of the boundary walk of f and f sends 1/3 across v2v3 by Rule 3, then assign
1/9 of this charge to each of v1v2, v2v3 and v3v4. If f sends 1/9 across v2v3 by
Rule 4, then add 1/9 to the charge assigned to v2v3; if f receives 1/9 across v2v3,
then remove 1/9 from the charge assigned to v2v3. We claim that each edge has
at most 1/9 assigned to it, and hence that f sends at most |f |/9 by Rules 3 and
4.

Suppose for a contradiction that more than 1/9 is assigned to the edge v2v3.
By symmetry, we can assume that f sends charge by Rule 3 to the face f12
across v1v2. Let f23 6= f be the face incident with the edge v2v3. If f sends
charge across v2v3 by Rule 3, then the faces f12 and f23 form an appearance of
a configuration isomorphic to R5. It follows that f12 or f23 is incident with an
edge of M . This is a contradiction, because Rule 3 sends charge to 4-dangerous
faces only. Furthermore, f does not send charge across v2v3 by Rule 4, because
f is linked to f12 through v1v2.

Since more than 1/9 is assigned to v2v3, it follows that f sends charge across
v3v4 by Rule 3 and does not receive charge by Rule 4 across v2v3. Therefore, f23
has length five and f12 and f23 form an appearance of a configuration isomorphic
to R5 as before. Since f12 is 4-dangerous, some edge of M is incident with f23
but not with f12. Since all neighbors of v2 and v3 have degree three and M has
minimum degree at least two, it follows that some edge of M is incident with the
face f34 6= f that is incident with v3v4. This is a contradiction, because f sends
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charge to f34 by Rule 3.
We can now bound the primary charge of f . If f has length at least eight,

then f sends at most |f |/3 by Rule 1 and at most |f |/9 by Rules 3 and 4; thus its
primary charge is at least |f | − 4− |f |/3− |f |/9 = 5|f |/9− 4 > 2/9, as desired.

Finally, assume that f has length exactly seven. If f is incident with an edge
of M , then f sends at most 7/3 by Rule 1, making the primary charge of f at
least 3+5/3−7/3−7/9 = 14/9. If f is incident with no edge of M , then f and its
incident vertices do not form an appearance of a configuration isomorphic to R2,
and that in turn implies that f is incident with no more than six internal vertices
of degree three. Thus f sends at most 2 by Rule 1, and hence the primary charge
of f is at least 3− 2− 7/9 = 2/9, as desired.

We now modify the primary charges using three additional rules into what
we will call “final charges”. A vertex is safe if its degree is at least five, or if it
belongs to R, or if it is incident with a face with strictly positive primary charge.
A face f is k-reachable from a vertex v if there exists a path P of length at most
k (P may have length zero), joining v to a vertex incident with f , such that no
vertex of P\v is safe. In particular, every vertex of P\v is internal and has degree
at most four, and all faces incident with them have length 5, which implies that
the number of faces that are 3-reachable from a vertex of degree d is bounded
by 20d. Furthermore, if v is incident to a face f with strictly positive primary
charge, then two of the neighbors of v are safe, and we conclude that at most
20(d− 3) + 26 faces distinct from f are 3-reachable from v.

Let ε > 0 be a real number, to be specified later. Starting from the primary
charges we now apply the following three rules, resulting in the final charge:

Rule 5: The charge of each vertex of degree three that belongs to a facial ring
is increased by 26ε,

Rule 6: each face of strictly positive primary charge sends 46ε units of charge
to each incident vertex,

Rule 7: if v is either a vertex ring or a safe vertex of degree at least three, then
v sends a charge of ε to each internal face of zero primary charge that is
3-reachable from v.

Lemma 56. Let G be a graph in a surface Σ with rings R, let g be the Euler
genus of Σ, let n2 and n3 be the number of vertices of degree two and three,
respectively, incident with facial rings, let ε > 0, and let M be a subgraph of G.
Then the sum of final charges of all vertices and faces of G is at most 4g+4|R|+
26εn3 + 2n2/3 + 10|E(M)|/3− 8.

Proof. This follows from Lemma 53 and the description of the discharging rules.
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Lemma 57. Let G,Σ,R,M be as in Lemma 55, and let ε ≤ 1/360. Then the
final charge of every vertex is non-negative and the final charge of every vertex
of degree d ≥ 4 belonging to a facial ring is at least (2/3− 20ε)(d− 3)− 26ε.

Proof. Let v be a vertex of G of degree d. Lemma 54 tells us that the primary
charge of v is non-negative. If v is safe, then it sends at most 20εd units of charge
by Rule 7; otherwise it sends nothing using Rules 5–7. Assume first that v is not
in R. If d ≥ 5, then the primary charge of v is d − 4, and its final charge is at
least d− 4− 20εd, which is non-negative by the choice of ε. If d ≤ 4 and v is not
incident with a face of positive primary charge, then its final charge is the same
as its primary charge, and so the conclusion follows from Lemma 54. If d ≤ 4
and v is incident with a face of positive primary charge, then it receives at least
46ε units of charge using Rule 6 and sends at most 46ε units using Rule 7. Thus
v has non-negative final charge.

Let us now assume that v belongs to R. If v is a vertex ring, then v has
primary charge at least d/18, making its final charge at least (1/18− 20ε)d ≥ 0.
Suppose that v is incident with a facial ring. If d = 2, then v sends no charge
and its final charge is zero. If d = 3, then v receives 26ε units using Rule 5, and
sends at most 26ε units using Rule 7. Finally, if d ≥ 4, then v has primary charge
at least 2(d− 3)/3 by Lemma 54, and it sends at most 20(d− 3)ε+ 26ε units of
charge, and hence its final charge is at least (2/3 − 20ε)(d − 3) − 26ε, which is
non-negative by the choice of ε.

Lemma 58. Let G,Σ,R,M be as in Lemma 55, and let ε > 0 be arbitrary. Then
the final charge of every internal face of length six or seven is at least 2/9−322ε,
and the final charge of every internal face of length l ≥ 8 is at least (5/9−46ε)l−4.

Proof. Lemma 55 gives a lower bound on the primary charge of a face f , and f
sends at most 46ε|f | units of charge using Rule 6.

Lemma 59. Let G,Σ,R,M be as in Lemma 55, satisfying additionally (I8),
and assume that if a configuration isomorphic to one of R1, R2, . . . , R6 or R7
appears in G, then it touches M . Then every internal face of zero primary charge
is 3-reachable from some safe vertex.

Proof. Let f be an internal face of zero primary charge. Lemma 55 implies that
f is a 5-face, and unless f is 1-reachable from a safe vertex, we have that f
is 3-dangerous and all vertices incident with f are internal and have degree at
most four. Let f = w1w2w3w4w5, and suppose first that w1 and w5 have degree
four. In this case, we prove the following stronger claim: both w1 and w5 are in
distance at most two from a safe vertex.

Let f ′ be the other face incident with the edge w1w5. Then f ′ has primary
charge zero, because no vertex incident with f is safe. By Lemma 55 we may
assume that f ′ is 3-dangerous, for otherwise some vertex incident with f ′ is safe
and in distance at most two from w1 and w5. Since f and f ′ have zero primary
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charge, they do not share an edge with M , and in particular, they do not share
an edge with any cycle of length at most four. We deduce that the faces f and f ′

and their incident vertices form a faint appearance of a configuration isomorphic
to R6. Since f and f ′ are incident with no edge of M , this is not an appearance,
hence either w1 or w5 has a neighbor in R, or the distance from both w1 and w5

to a vertex of R is most two. In both cases, w1 and w5 are in distance at most
two from a safe vertex, as desired. This concludes the case when w1 and w5 have
degree four.

We may therefore assume that w1 and w3 have degree four. Let f1, f2, f3, f4
and f5 be the other faces incident with the edges w1w2, w2w3, w3w4, w4w5 and
w5w1, respectively. Similarly as before we may assume that f1, f2, f3, f4 and f5
are all 3-dangerous, for otherwise f is 3-reachable from a safe vertex. If any of
those faces contained two consecutive vertices x and y of degree four, then by
the previous paragraph, both x and y would be in distance at most two from a
safe vertex, and hence f would be 3-reachable from such a safe vertex. We may
therefore assume that this is not the case. Since no cycle of length at most 4 shares
an edge with f or fi for 1 ≤ i ≤ 5, we deduce that the faces f, f1, f2, f3, f4, f5
and their incident vertices and edges form a faint appearance of a configuration
γ isomorphic to R7, unless f3 and f5 are incident with a common vertex, i.e.,
unless v4 is identified with v9, or v5 is identified with v10 in the depiction of R7
in Figure 7.1. Suppose that say v4 = v9. Since this vertex has degree three, we
conclude that {v3, v5} ∩ {v8, v10} 6= ∅. As f does not share an edge with M ,
we have v3 6= v8, v3 6= v10 and v5 6= v8. However, if v5 = v10, then the cycles
v5v6v12v11v1 and v4v3v12v11v8 are non-separating, contradicting (I8).

It follows that R7 faintly appears, but not appears, in G. Thus, using the
labeling of the vertices as in Figure 7.1, one of x1, x3, x6, x7, x8 or one of
their neighbors belongs to R. Therefore, f is 3-reachable from a safe vertex, as
desired.

Lemma 60. Let G,Σ,R,M be as in Lemma 59, let ε ≤ 2/2079, and assume that
if a good configuration appears in G, then it touches M . Then the final charge of
every internal face of length five is at least ε.

Let us remark that 2079 = 9(5 · 46 + 1).

Proof. Let f be an internal face of length five. If f has positive primary charge,
then by Lemma 58, f has final charge at least 2/9− 5 · 46ε ≥ ε.

We may therefore assume that f has primary charge zero. By Lemma 59, f is
3-reachable from some safe vertex, and hence has final charge at least ε because
of Rule 7, as desired.

Let s : {5, 6, . . .} → R be an increasing convex function (that we specify later)
satisfying

• (S1) s(5) = 2ε,
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• (S2) s(7) ≤ 4/9− 644ε,

• (S3) s(l) ≤ (10/9− 92ε)l − 8 for every integer l ≥ 8.

Suppose that we are given such a function and a graph G in Σ with rings R. For
an internal face f of G, we define w(f) = s(|f |) if f is open 2-cell and |f | ≥ 5,
and w(f) = |f | otherwise. We define w(G,R) as the sum of w(f) over all internal
faces f of G.

Lemma 61. Let G be a graph in a surface Σ with rings R satisfying (I0)–(I8), let
M be a subgraph of G that captures (≤4)-cycles and assume that if a configuration
isomorphic to one of R1,R2, . . . ,R7 appears in G, then it touches M . Let ε be a
real number satisfying 0 < ε < 2/2079, and let s : {5, 6, . . .} → R be a function
satisfying (S1)–(S3). Then the final charge of every vertex is non-negative, the
final charge of every face bounded by a ring is zero, and the final charge of every
internal face f is at least s(|f |)/2.

Proof. The final charge of every face bounded by a ring is clearly zero. The
remaining assertions follow from Lemmas 57, 58 and 60 using conditions (S1)–
(S3).

Lemma 62. Let G,Σ,R,M, ε, s be as in Lemma 61, Then w(G,R) ≤ 8g+8|R|+
52εn3 + 4n2/3 + 20|E(M)|/3− 16.

Proof. By Lemma 61 the quantity w(G,R) is at most twice the sum of the
final charges of all vertices and faces of G, and hence the lemma follows from
Lemma 56.

We need the following refinement of the previous lemma.

Lemma 63. Let G,Σ,R,M, ε, s be as in Lemma 61. Then w(G,R) ≤ 8g +
8|R|+52εn3 +4n2/3+20|E(M)|/3−8b/9−16, where b is the number of internal
6-faces of G incident with a vertex of degree two contained in a facial ring, plus
the number of vertices of degree at least four incident with a facial ring.

Proof. This follows similarly as Lemma 62, since according to Lemma 55, each
6-face incident with a vertex of degree two contained in a facial ring has charge
by at least 4/9 higher than the bound used to derive Lemma 62, and since the
final charge of a vertex of degree at least four incident with a facial ring is at
least 2/3− 46ε > 4/9.

7.5 Reductions

In this section, we argue that subject to a few assumptions, reducing a good
configuration does not create cycles of length at most four.
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Let G be a graph in a surface Σ with rings R, and let P be a path of length
at least one and at most four with ends u, v ∈ V (R) and otherwise disjoint from
R. We say that P is allowable if

• u, v belong to the same ring of R, say R,

• P has length at least three,

• there exists a subpath Q of R with ends u, v such that P ∪Q is a cycle of
length at most eight that bounds an open disk ∆ ⊂ Σ,

• if P has length three, then P ∪Q has length five and ∆ is a face of G, and

• if P has length four, then ∆ includes at most one edge of G, and if it
includes one, then that edge joins the middle vertex of P to the middle
vertex of Q.

We say that G is well-behaved if every path P of length at least one and at most
four with ends u, v ∈ V (R) and otherwise disjoint from R is allowable.

We say that a configuration γ strongly appears in G if it both appears and
weakly appears in G and

• if u, v ∈ Aγ are distinct, then at least one of u, v is internal,

• if u, v ∈ Iγ are distinct, u ∈ V (R), and w ∈ V (R) is a neighbor of v, then
u and w are adjacent and uw,wv ∈ E(Gγ), and

• if γ is isomorphic to R7, then the vertices corresponding to v2 and z are
distinct, non-adjacent and have no common neighbor distinct from v1, v3,
x6 and x7.

Lemma 64. Let G be a graph in a surface Σ with rings R satisfying (I0), (I2)
and (I8), and assume that G is well-behaved. If a configuration isomorphic to one
of R1, R2, . . . , R7 appears in G and no cycle in G of length four or less touches
it, then either a good configuration strongly appears in G, or G is a planar graph
with one ring of length 2s for some s ∈ {5, 7}, such that V (G) = V (R) ∪ V (C)
for a cycle C of length s, each vertex of C is internal of degree three and has one
neighbor in R.

Proof. Let γ be a good configuration appearing in G, such that no cycle in G of
length four or less touches γ. If possible, we choose γ so that it is equal to one
of R1, R6′, R7′, R7′′, R7′′′ or R7′′′′. We claim that, possibly after relabeling the
vertices of Gγ, γ strongly appears in G. To prove that we first notice that the
first condition of weak appearance holds by hypothesis and (I8)—if x3 = x7, then
x3v3v12v6v7 is a 5-cycle separating x1 from x6. The third condition is implied by
appearance. The second condition of weak appearance our choice of γ and the
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fact that no cycle of length at most four touches γ. For example, if γ is R7, then
v2 and v7 are not adjacent, because R7′ does not appear in G by the choice of γ.
Additionally, when γ is R5, we use (I2) to show that v1 is not adjacent to v5.

It remains to prove that γ satisfies the conditions of strong appearance. Let
us discuss the configurations separately. If γ is R1 or R2, it suffices to show that
we can choose the labels of the vertices of γ so that x1 is internal. If that is not
possible, then each vertex of γ is adjacent to a vertex belonging to R. Since G is
well-behaved it follows that there exists a ring R ∈ R that satisfies the conclusion
of the lemma for s = 5 if γ is R1 and for s = 7 when γ is R2.

If γ is R3, we only need to prove the second condition of strong appearance.
Suppose that say v3 ∈ V (R) and v5 has a neighbor x5 in R other than v4. Since
G is well-behaved, v4 is an internal vertex and v3v4v5x5 together with a path in
R bound a 5-face, implying that v4 has degree two. This contradicts (I0).

If γ is R4, then note that the path x1v1v2v3x3 is not allowable, since by the
definition of appearance, v2 has degree four. Therefore, at least one of x1 and x3
is internal, and γ strongly appears.

If γ is R5, we need to prove the first and the second condition of strong
appearance. For the first one, observe that the path v2v1v8x8 is not allowable,
since v1 has degree at least three. For the second condition, since γ appears in
G, we have that v4 is internal, thus it suffices to consider the case that x6 and a
neighbor x4 of v4 belongs to R. Since v3v4v5v6v7 is not an appearance of R1 in
G, v4 has degree at least four, and thus the paths v2v3v4x4 and x4v4v5v6x6 cannot
both be allowable. It follows that v2 is internal, and similarly all neighbors of v2
are internal. However, then we can relabel the vertices of γ, switching v2 with
v4, v6 with v8, etc., and obtain a strong appearance of R5 in G.

For the configurations R6, . . . , R7′′′′, the first two conditions follow from
the definition of appearance. Therefore, suppose that γ is R7 and let us now
consider the last condition in the definition of strong appearance. Again, we we
use symmetry: if the condition does not hold for γ we swap v1 and v3, v6 and
v8, and so on. The vertex v2 cannot be equal to or adjacent to both z and z1,
since v2 6= x7 (otherwise, R7′ would appear in G), x7 has degree at least three
and no cycle of length at most four touches γ. Unless the condition holds, we can
assume that z1 6= v2, z1 is not adjacent to v2 and that z1 and v2 have a common
neighbor x2 distinct from v1, v3, x7 and x8. Since no cycle of length at most four
touches γ, we have z 6∈ {v2, v3, x2}. If z = v1, then the cycle K = v1v11v86v7x7
separates z1 from v2, thus x2 ∈ V (K). This is a contradiction, since then a cycle
of length at most four touches γ. Therefore, z is distinct from and non-adjacent
to v2. Furthermore, z is not adjacent to x2, as otherwise x2zx7z

′ touches γ.

Lemma 65. Let G be a graph in a surface Σ with rings R satisfying (I0), (I3),
(I8) and (I9), let γ be a good configuration that strongly appears in G, and let G′

be the γ-reduction of G with respect to a 3-coloring φ of R. If G is R-critical
and C ′ is a cycle in G′ of length at most four, then either C ′ is a cycle in G, or
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C ′ is noncontractible and there exists a noncontractible cycle C in G such that C
touches γ and |C| − |C ′| ≤ 3. Furthermore, all ring vertices of C ′ belong to C,
and if r1, r2 and r3 are ring vertices adjacent to mutually distinct vertices of C ′,
then r1, r2 and r3 also have mutually distinct neighbors in C.

Proof. Suppose that C ′ ⊆ G′ is a cycle of length 3 or 4 such that C ′ is not a cycle
in G. Let us discuss the possible configurations γ:

• γ is isomorphic to one of R1, R2, R6, R6′, R7′, R7′′, R7′′′ or R7′′′′, or to R4
and both x4 and x5 belong to R and φ(x4) = φ(x5). We are adding an edge
e between vertices x, x′ ∈ Aγ along the replacement path P ⊂ G of length
at most 4. Note that e ∈ E(C ′). Let C ⊆ G be the cycle obtained from C ′

by replacing e with P . Clearly, |C| ≤ |C ′| + 3 ≤ 7. Let us remark that C
is indeed a cycle (i.e., if γ is R4, then v2 6∈ V (C ′)), since no non-ring cycle
of length at most four touches γ. Note that P is not a part of a boundary
of a face in any of the configurations, thus C does not bound a face in G.
By (I9), C is not contractible, hence C ′ is not contractible, either.

• γ is R3: Let w be the vertex of G′ obtained by identifying v1 with v3 and
v5. Note that w ∈ V (C ′) and consider the edges e1, e2 ∈ E(C ′) incident
with w. Unless C ′ corresponds to a cycle of length |C ′| in G, e1 and e2 are
incident with distinct vertices a, b ∈ Iγ, and the cycle C obtained from C ′

by adding the replacement path avb between a and b has length at most
|C ′| + 2 ≤ 6. Note that C ′ and C have the same homotopy. Suppose that
they are contractible. By (I9), we conclude that implies that C ′ bounds a
face h and v has degree two. By (I0), v belongs to R, and since at least
one of a and b is internal, v is a vertex ring. However, then h is the cuff
face of v and C ′ is not contractible. This is a contradiction.

• γ is R4 and at least one of x4 and x5 is internal: Let w be the vertex
obtained by identifying x4 and x5. If x1x3 is not an edge of C ′, then the
cycle C obtained from C ′ by replacing w by the path x4v4v5x5 such that
6 ≤ |C| ≤ 7 does not bound a face, thus neither C nor C ′ is contractible.
Let us assume that x1x3 ∈ E(C ′). Similarly, we deal with the case that
w 6∈ V (C ′) or that both edges incident with w in C ′ correspond to edges
incident to one of x4 and x5.

Suppose now that the neighbors of w in C ′ are adjacent to x4 and x5. Since
no cycle of length at most four touches γ, we have x1x5, x3x4 6∈ E(G), thus
by symmetry we may assume that x1x4 ∈ E(C ′) and x3 and x5 are joined by
a path P of length at most two in C ′. By (I8), the 5-cycle K = x1v1v5v4x4
separates x3 from x5, thus P is not disjoint with K. However, then a cycle
of length at most four touches γ.

• γ is R4, neither x4 nor x5 is internal and φ(x4) 6= φ(x5): Let w be the
vertex created by identifying v2 and x5. The claim of the lemma follows
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by considering the non-facial cycle C obtained from C ′ by replacing w with
v2v1v5x5.

• γ is R5: Let w be the vertex obtained by identifying v4 and x6. Let C be
the cycle obtained from C ′ by replacing v2x8 by v2v1v8x8 or w by v4v5v6x6
or both. If we performed only one replacement, then |C| ≤ |C ′|+ 3 and the
claim follows from (I9).

Otherwise, v2x8 ∈ E(C ′) and w ∈ V (C ′), and since no cycle of length at
most four touches γ, there exist paths P1 between v2 and x6 and P2 between
v4 and x8 of total length at most three. Let K1 be the cycle consisting of
v2v3v7v6x6 and P1 and K2 the cycle consisting of v4v3v7v8x8 and P2, and
by symmetry assume that |K1| = 5 and |K2| ≤ 6. By (I8) the cycle K1

separates v4 from v8, thus P2 intersects K1. However, that contradicts the
fact that no cycle of length at most four touches γ.

• γ is R7: Let w be the vertex obtained by identifying x6 and x7. Let C1 be
the cycle obtained from C ′ by replacing x1x3 by x1v1v2v3x3 or w by x6v6v7x7
or both. If we performed only one replacement, then |C1| = |C ′| + 3 and
the claim of the lemma follows from (I9), with C = C1.

Otherwise, let C2 be the closed walk obtained from C1 by replacing x6v6v7x7
by x6zx7; we have |C2| = |C ′| + 5 ≤ 9. Since γ appears, observe that all
vertices of C ′ are internal and at most one of them has a neighbor in a
ring. Note that C2 is a cycle, since otherwise a cycle of length at most
four touching γ is a subgraph of C2. Suppose now that C2 consists of
x1v1v2v3x3, a path P1 from x3 to x7, the path x7zx6 and a path P2 from x6
to x1, where the total length of P1 and P2 is at most three. Let K1 be the
cycle consisting of P1 and x3v3v12v6v7x7 and K2 the cycle consisting of P2

and x1v1v11v12v6x6. Note that min(|K1|, |K2|) ≤ 6, and by (I8), the shorter
of the two cycles is separating. It follows that K1 and K2 intersect in a
vertex distinct from v12 and v6, This is a contradiction, since the vertices
of C2 are mutually distinct and none of them is equal to v7, v11 6∈ V (G′).

Therefore, C2 consists of x1v1v2v3x3, a path Q1 of length l1 ≥ 1 from x3
to x6, the path x6zx7 and a path Q2 of length l2 from x7 to x1, where
l1 + l2 ≤ 3. Let L1 be the cycle consisting of Q1 and x3v3v12v6x6 and L2

the cycle consisting of Q2 and x1v1v11v8v7x7. Note that neither L1 nor L2

bounds a face, |L1| = 4 + l1 ≤ 7 and |L2| = 5 + l2 ≤ 7, thus by (I9) neither
L1 nor L2 is contractible. Furthermore, |L1|+ |L2| ≤ 9 + l1 + l2 ≤ 12, thus
there exists a cycle C ∈ {L1, L2} of length at most 6 ≤ |C ′|+ 3 touching γ.

Let us now show that the cycle C ′ is not contractible. Assume for a contra-
diction that C ′, and hence also C2, is contractible. Let ∆ ⊆ Σ be an open
disk bounded by C2. Note that ∆ does not consist of a single face, since at
least one edge incident with v1 or v2 lies inside ∆. By (I9), ∆ consists of
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two or three faces, and in the latter case, |C2| = 9 and three vertices of C2

have a common neighbor.

It follows that v11, v12 6∈ ∆, and thus the edge joining v2 with its neighbor
x2 6∈ {v1, v3} lies in ∆. Since γ appears strongly in G, we have that x2 6= z
and that z is an internal vertex. We conclude that deg(z) = 3 and z has a
neighbor inside ∆ distinct from x6 and x7. By (I3) and (I9), this neighbor
is equal to x2. However, this contradicts the assumption that γ appears
strongly in G.

7.6 Contributions of faces

Let G be a graph in a surface Σ with rings R satisfying (I3). Let γ be a good
configuration that strongly appears in G, let G′ be the γ-reduction of G, and let
G′′ be a subgraph of G′ that includes all the rings and satisfies (I0).

Let f ′′ be an internal face of G′′, and let H be the subgraph of G′′ that forms
the boundary of f ′′. We wish to define a subgraph Jf ′′ of G that will correspond
to H, and a union of faces of Jf ′′ that will correspond to f ′′.

Let us recall that during the construction of the graph G′, parallel edges could
have been removed (e.g., if γ is R5 and v4 and x6 have a common neighbor), but
we have retained the correspondence of each non-squashed edge e of G′ to a
unique edge of G (which also determined the placement of e in the embedding
of G′). We now define the edge-set of Jf ′′ , by replacing pieces of the boundary
of f ′′ by appropriate replacement paths. More precisely, we apply the following
construction to each boundary walk C of f ′′. Let C be v1, e1, v2, e2, . . . , vm, em
and let em+1 = e1, vm+1 = v1, e0 = em and v0 = vm. Replace each edge ei of C
by a path Pi defined as follows:

• If ei is a new edge, then Pi is the corresponding replacement path.

• If ei is a squashed edge, then a vertex vj with j ∈ {i, i+ 1} is a new vertex.
Let e = e2j−i−1 be the other edge of C incident with vj. Note that e 6= ei,
since otherwise vj would have degree one; however, by the assumption (I0),
vj would be a vertex ring, and the corresponding vertex of G would belong
to Iγ, contrary to the definition of appearance. The edge ofG corresponding
to e is incident with a vertex v ∈ Iγ. Let Pi be the edge vv2i−j+1.

• Suppose that ei is neither new nor squashed. If vi+1 is a new vertex, ei+1

is not a squashed edge, ei is incident in G with a vertex u ∈ Iγ, ei+1 is
incident in G with v ∈ Iγ and u 6= v, then let Pi consist of ei and the
replacement path between u and v.

• Otherwise, let Pi be the path with edge-set {ei}.
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The newly constructed walk has the same homotopy as C. It should be noted
that even though f ′′ is a face of G′′, it may correspond to several faces of Jf ′′ .
Let the set of these faces of Jf ′′ be denoted by Sf ′′ . For example, suppose that
G′ was created by reducing the configuration R3, G′′ does not contain any of the
squashed edges and f ′′ is bounded by a cycle that contains the new vertex and
edges that were incident with v3 and v5, and suppose that v4 is incident with f ′′

as well. Then Jf ′′ contains the replacement path v3v4v5, which can split f ′′ to
two faces sharing the vertex v4.

Let us also remark on another somewhat subtle issue. In the definition of
“faintly appear”, we require that vertex rings do not belong to Iγ. The reason
for this restriction is the following. Later, we use the fact that the faces in Sf ′′
do not contain any rings. If say u ∈ Iγ were a vertex ring identified with another
vertex v ∈ Iγ to a new vertex w and all edges in f ′′ that are incident with w
corresponded to edges of G incident with v, then this condition could fail.

The elasticity of f ′′ is el(f ′′) =
(∑

f∈Sf ′′
|f |
)
− |f ′′|. Note that f ′′ can have

non-zero elasticity only if Jf ′′ contains at least one replacement path. Using this
fact and the inspection of the configurations, we observe the following.

Lemma 66. Let G, γ,G′, G′′ be as above. Then G′′ has at most three faces with
non-zero elasticity, and the sum of the elasticities of the faces of G′′ is at most
10. Furthermore, if an internal face f ′′ of G′′ is closed 2-cell or omnipresent,
then el(f ′′) ≤ 5, and if the inequality is strict, then el(f ′′) ≤ 3.

Let G be a graph in a surface Σ with rings R, let J be a subgraph of G, and
let S be a subset of faces of J such that

(30) J is equal to the union of the boundaries of the faces in S and whenever C
is a cuff intersecting a face f ∈ S, then C is incident with a vertex ring belonging
to J .

We define G[S] to be the subgraph of G consisting of J and all the vertices
and edges drawn inside the faces of S. Let C1, C2, . . . , Ck be the boundary walks
of the faces in S (in case that a vertex ring R ∈ R forms a component of a
boundary of a face in S, we consider R itself to be such a walk). We would like to
view G[S] as a graph with rings C1, . . . , Ck. However, the Ci’s do not necessarily
have to be disjoint, and they do not have to be cycles or isolated vertices. To
overcome this difficulty, we proceed as follows: Let Z be the set of cuffs incident
with the vertex rings that form a component of J by themselves, and let Ẑ =⋃
R∈Z R̂. Suppose that S = {f1, . . . , fm}. For 1 ≤ i ≤ m, let Σ′i be a surface

with interior homeomorphic to fi (i.e., we add cycles forming the boundary of
Σ1). Let θi : fi → Σ′i be the homeomorphism and let Σi = Σ′i \ θi(Ẑ ∩ fi). Let
Gi be the graph with a normal embedding in Σi corresponding to the subgraph
of G drawn in the closure of f ; i.e., θi(f ∩ G) ⊂ Gi and each component of the
boundary of Σ′i forms a cycle in Gi. The set {(Gi,Σi) : 1 ≤ i ≤ m} is called the
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G-expansion of S. Note that there is a one-to-one correspondence between the
boundary walks of the faces of S and the rings of the graphs in the G-expansion
of S; however, each vertex of J may be split to several copies.

We define the G-expansion of f ′′ to be the G-expansion of Sf ′′ . The following
lemma is straightforward.

Lemma 67. Let G, γ,G′, G′′ be as above, and let f be an internal face of G.
Then either there exists a unique internal face f ′′ of G′′ such that f corresponds
to an internal face of the G-expansion of f ′′ or γ is isomorphic to R3 and f is
the 6-face of Fγ.

Let us now give an informal summary of what we are trying to achieve in
this section. We assign weights to the faces of embedded graphs according to the
function s as described in Section 7.4, and we aim to show that the sum of the
weights of the faces of G is bounded by the sum of the weights of the faces of G′′.
To do so, we would like to claim that the sum w of the weights of the faces in
the G-expansion Gf ′′ of f ′′ is bounded by the weight w′′ of f ′′. In Theorem 73,
we will show that this claim holds, provided that the elasticity of f ′′ is small and
Gf ′′ is not one of a few exceptional graphs. Here, we assign a contribution c(f ′′)
to each face f ′′ of G′′ according to the criteria that we later prove to ensure that
w ≤ w′′ − c(f ′′). Furthermore, we argue that the sum of the contributions of all
faces is non-negative.

Let us now proceed more formally. We say that a plane graph G with one
ring R of length l ≥ 5 is exceptional if it satisfies one of the conditions below (see
Figure 7.2):

• (E0) G = R,

• (E1) l ≥ 8 and E(G)− E(R) = 1,

• (E2) l ≥ 9, V (G) − V (R) has exactly one vertex of degree three, and the
internal faces of G have lengths 5, 5, l − 4,

• (E3) l ≥ 11, V (G)− V (R) has exactly one vertex of degree three, and the
internal faces of G have lengths 5, 6, l − 5,

• (E4) l ≥ 10, V (G) − V (R) consists of two adjacent degree three vertices,
and the internal faces of G have lengths 5, 5, 5, l − 5,

• (E5) l ≥ 10, V (G) − V (R) consists of five degree three vertices form-
ing a facial cycle of length five, and the internal faces of G have lengths
5, 5, 5, 5, 5, l − 5,

We say that G is very exceptional if it satisfies (E1), (E2) or (E3).
Let us now show the following lemma, which we use to analyze omnipresent

faces.
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Figure 7.2: Exceptional graphs.
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Lemma 68. Suppose that γ strongly appears in a well-behaved graph G, G sat-
isfies (I0), (I4) and (I8), and let H be a component of G′′ that contains a new
edge or a new vertex. Assume that Σ is a disk and |R| = 1 and every face of
G′′ is closed 2-cell, or that G′′ has an omnipresent face. Then H is not very
exceptional. Furthermore, if γ is isomorphic to one of R6, R6′, R7, R7′, R7′′,
R7′′′ or R7′′′′, then H is not exceptional.

Proof. Let R ∈ R be the ring belonging to H. If γ is isomorphic to one of R7,
R7′, R7′′, R7′′′ or R7′′′′, then all vertices in Aγ ∪ Iγ and all their neighbors are
internal, and thus each new edge or new vertex is in distance at least two from
R. It follows that H cannot be exceptional. Similarly, we exclude the case that
γ is isomorphic to R6 or R6′. Thus, assume that γ is one of R1, . . . , R5.

Suppose that H contains a new edge xy. Note that since γ does not touch a
non-ring cycle of length at most four, neither x nor y is a new vertex. Since γ
appears strongly in G, we may assume that x is an internal vertex, thus H does
not satisfy (E1). Suppose that H satisfies (E2) or (E3). Then, in H the vertex x
has three neighbors in R. On the other hand, x has at most one neighbor in R
in G, by (I4). We conclude that x is adjacent to a new vertex in G′′ that belongs
to R. It follows that γ is R4 or R5, and in the former case at least one of x4
and x5 is internal. Let I = Iγ if γ is R5 and I = {x4, x5} if γ is R4. Note that
there exists a vertex in I belonging to R, and another vertex of I is adjacent to
x in G. If γ is isomorphic to R4, then by symmetry we may assume that x1 is
adjacent to x4 and x3 and x5 belong to R. However, by (I8), the cycle x1v1v5v4x4
consisting of internal vertices separates x3 from x5, which is a contradiction. If
γ is isomorphic to R5, then by the conditions of appearance, v4 is an internal
vertex, hence x6 belongs to R. Since v2 and v4 are not adjacent, we conclude that
v4 is adjacent to x8 and that v2 belongs to R. However, this again contradicts
(I8).

Therefore, we may assume that H contains a new vertex, but not a new edge.
Suppose first that γ is not isomorphic to R4. If H satisfied (E1), then by (I4)
there would exist vertices x ∈ Iγ ∩ V (R) and y ∈ Iγ \ V (R) and a neighbor z of
y in R, where z is not adjacent to x. However, this contradicts the assumption
that γ appears strongly in G. If H satisfies (E2) or (E3), then by (I4) we have
|Iγ| = 3 (thus γ is R3), all elements of Iγ are internal and each of them has
exactly one neighbor in R. This is excluded, since γ appears in G.

Finally consider the case that γ is R4 and H does not contain a new edge.
By (I4), H does not satisfy (E2) or (E3), thus suppose that H satisfies (E1). If
x4 is an internal vertex, this implies that x5 ∈ V (R) and x4 has a neighbor w
in R distinct from z. By (I4), z is an internal vertex. Since G is well-behaved,
the path x5zx4w forms a part of a boundary of a 5-face, thus z has degree two,
contrary to (I0). The case that x5 is internal is symmetric, thus assume that
both x4 and x5 belong to R. Then v2 is an internal vertex of degree at least four
and has a neighbor w ∈ V (R). However, since G is well-behaved, the subpaths
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v3v2w and v1v2w of the paths x4v4v3v2w and x5v5v1v2w form parts of boundaries
of faces, implying on contrary that v2 has degree three.

Suppose that all faces of G′′ are either closed 2-cell of length at least 5 or
omnipresent. Let us now define the contribution of an internal face f ′′ of G′′. Let
s : {5, 6, . . .} → R be an increasing convex function to be chosen later, such that

• (S0) 18s(5) ≤ s(6), 135s(5) ≤ s(7), 4s(6) ≤ s(7), 3s(7) ≤ s(8) and s(l) =
l − 8 for l ≥ 9.

If f ′′ is closed 2-cell, then its contribution is defined as follows.

• If Gf ′′ satisfies (E0), then c(f ′′) = −∞ if f ′′ has non-zero elasticity and
c(f ′′) = 0 otherwise.

• If Gf ′′ satisfies (E1), then c(f ′′) = −∞ if el(f ′′) = 5 and c(f ′′) = s(8 −
el(f ′′))− 2s(5) otherwise.

• If Gf ′′ satisfies (E2), then c(f ′′) = −∞ if el(f ′′) = 5 and c(f ′′) = s(9 −
el(f ′′))− 3s(5) otherwise.

• If Gf ′′ satisfies (E3), then c(f ′′) = s(11− el(f ′′))− 2s(6)− s(5).

• If Gf ′′ satisfies (E4) or (E5), or if |Sf ′′ | = 2 and Gf ′′ consists of two cycles
such that one of them has length 5, then c(f ′′) = s(10− el(f ′′))− 6s(5).

• If |S(f ′′)| = 1 and Gf ′′ is not exceptional, and

– Gf ′′ contains a path P = v1v2v3v4 such that v1, v4 ∈ V (Jf ′′), v2, v3 6∈
V (Jf ′′) and both of the open disks bounded by P and paths in Jf ′′
contain at least two vertices of G, then c(f ′′) = s(7).

– Otherwise, c(f ′′) = s(11− el(f ′′))− s(6) + 5s(5).

• If |Sf ′′ | = 2 and Gf ′′ does not consist of two cycles such that one of them
has length 5, or if |Sf ′′ | ≥ 3, then c(f ′′) = s(12− el(f ′′))− 2s(6).

Suppose now that f ′′ is an omnipresent face of G′′. Let G′′1, G′′2, . . . , G′′k be the
components ofG′′ such thatG′′i contains the ringRi ∈ R. If there exists i 6= j such
that G′′i 6= Ri and G′′j 6= Rj, then c(f ′′) = 1. Otherwise, suppose that G′′i = Ri for
i ≥ 2. If G′′1 satisfies (E0), (E1), (E2) or (E3), then c(f ′′) = −∞. If G′′1 satisfies
(E4) or (E5), then c(f ′′) = 5−el(f ′′)−5s(5), otherwise c(f ′′) = 5−el(f ′′)+5s(5).

Let c(G′′) = −δ +
∑

f ′′∈F (G′′) c(f
′′), where δ is s(6) if γ is isomorphic to R3

and 0 otherwise.
Let us remark on the following consequences of the convexity of s which we

often use:
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• If a1 ≤ a2 ≤ . . . ≤ ak and xi ≥ ai for each 1 ≤ i ≤ k, then

s(x1)+s(x2)+. . .+s(xk) ≤ s(a1)+s(a2)+. . .+s(ak−1)+s

(
k∑
i=1

xi −
k−1∑
i=1

ai

)
.

• If x ≥ a and m ≥ 0, then s(x) ≤ s(x+m)− (s(a+m)− s(a)).

Lemma 69. Let G be a well-behaved graph in a surface Σ with rings R satisfying
(I0)–(I4) and (I8), let γ be a good configuration strongly appearing in G, let G′

be the γ-reduction of G. Suppose that G′′ is a subgraph of G′ that includes R, G′′

satisfies (I6), and G′′ contains a new vertex or a new edge. If each face of G′′

is closed 2-cell or omnipresent, then c(G′′) ≥ 0. Furthermore, if each face of G′′

is closed 2-cell, then G′′ has a face of length at least six, and if Σ is a disk and
|R| = 1, then c(G′′) ≥ 10s(5).

Proof. Let us note that G′′ satisfies the assumptions of Lemma 68, and thus the
contribution of the omnipresent face (if G′′ has such a face) is not −∞.

We may assume that there exists a face of non-zero elasticity, for otherwise
all faces have non-negative contribution and the face f ′′ of G′′ that includes all
vertices of dom(dγ) satisfies c(f ′′) ≥ s(7).

Let us argue that if a face f ′′ that is closed 2-cell has non-zero elasticity, then
either Sf ′′ has at least two components or the interior of the face of Sf ′′ contains
an edge of G. Indeed, most replacement paths are incident with edges on both
of its sides, thus if such a replacement path is used in Jf ′′ , then at least one
such edge lies in Sf ′′ . The exceptions are the replacement paths in R3, R4 and
the replacement path between the vertices of R7 in Iγ. In these configurations,
the middle vertex v of the replacement path could also lie on the boundary walk
of f ′′, in which case all the edges incident with v could belong to Jf ′′ or lie
outside of Sf ′′ . However, then Sf ′′ has at least two components. We conclude
that if c(f ′′) = −∞, then el(f ′′) = 5 and two replacement paths are used in the
construction of Jf ′′ .

Let us now consider the case that either G′′ contains no new edge, or that
for every internal face f ′′ of G′′, no replacement path between vertices of Iγ
is added. Then every face bounded by a cycle has elasticity at most three,
and hence the contribution of each face is greater or equal to −s(5). If G′′

has an omnipresent face, then c(G′′) ≥ 2 − 7s(5) − s(6), hence assume that all
faces of G′′ are closed 2-cell. Observe that G has a face f ′′ such that at least
one vertex of dom(dγ) is contained inside a face of Sf ′′ . For this face, we have
c(f ′′) ≥ s(6) − 3s(5). Furthermore, if γ is R3, then the elasticity of f ′′ is at
most two, thus c(f ′′) ≥ s(7)− 3s(5), and all other faces of G′′ have non-negative
contribution. Therefore, c(G′′) ≥ min(s(6)− 4s(5), s(7)− s(6)− 3s(5)) ≥ 10s(5).

Thus we may assume that γ is R4, R5, or R7, and G′′ contains a new edge
incident with two faces of non-zero elasticity, say f1 and f2, where f2 contains all
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vertices of dom(dγ). Furthermore, G′′ contains a new vertex w incident with f2
and possibly another face f3 of non-zero elasticity.

The elasticity of f2 is 5, and by the inspection of the configurations, we
conclude that c(f2) ≥ −5s(5). Furthermore, if γ is isomorphic to R7, then
c(f2) = s(7) if f2 is closed 2-cell, and by Lemma 68, we have c(f2) = 5s(5) if f2
is omnipresent.

Assume now that either f2 is the only face of G′′ with non-zero elasticity
that is incident with w, or that f1 6= f3. Consider a face f ∈ {f1, f3} with
non-zero elasticity. Since el(f) ≤ 3, we have c(f) ≥ −s(5). Furthermore, if
f is omnipresent, then by Lemma 68, we have c(f) ≥ 2 − 5s(5) and c(G′′) ≥
2 − 11s(5) > 10s(5), thus assume that each such face f is closed 2-cell. If γ
is R5, then el(f1) = 2 and c(f1) ≥ s(6) − 2s(5). Similarly if γ is R4, then by
the assumptions v2 has degree at least 4 in Gf1 , hence c(f1) ≥ s(7) − 6s(5). In
both cases we get c(G′′) ≥ 10s(5). If γ is R7, Σ is a disk and |R| = 1, then
f2 is not omnipresent, and hence c(G′′) ≥ s(7) − 2s(5) ≥ 10s(5). Otherwise,
c(G′′) ≥ 3s(5).

Therefore, we may assume that f1 = f3 and f1 has elasticity 5. If Σ were a
disk and |R| = 1, or if f1 or f2 were omnipresent, then w together with a vertex
of the new edge would form a 2-cut in G′′, contradicting (I6). We conclude that
both f1 and f2 are closed 2-cell and that either Σ is not a disk or |R| 6= 1; hence,
it suffices to show that c(G′′) is non-negative.

Suppose that γ is R4. Since γ weakly appears in G, we have that no cycle
of length at most 4 touches γ, and thus z 6= v2. The fact that v2 has degree at
least four in Gf1 implies that c(f1) ≥ 5s(5), unless Gf1 consists of a 5-cycle and
a |f1|-cycle. In that case z would be a vertex of degree two, and by (I0) it would
form a vertex ring. However, then f1 could not be closed 2-cell, since z would be
either an isolated vertex or a vertex of degree one forming a part of the boundary
of f1. This is a contradiction, thus c(G′′) ≥ 0.

Assume next that γ is R5. By (I1) and (I2) we have that Gf1 is not an
exceptional graph (considering the cycle formed by the path v1v8v7v6v5 together
with a path in Gf1), thus again c(f1) ≥ 5s(5) and c(G′′) ≥ 0.

Finally, let γ be R7. If |Sf1 | ≥ 2, then c(f1) ≥ −5s(5). Otherwise, note that
z is not a vertex ring, thus by (I0), it is incident with an edge lying inside the
face of Sf1 . Since γ appears strongly in G, we have that v2 is not adjacent to z,
and v2 and z have no common neighbor distinct from v1, v3, x6 and x7. It follows
that Gf1 does not satisfy (E1), (E2) or (E3), and thus c(f1) ≥ −5s(5). Therefore,
c(G′′) ≥ s(7)− 5s(5) > 0.

Therefore, both inequalities from the statement of the lemma hold. Fur-
thermore, note that in all the cases, at least one face f ′′ of G′′ has positive
contribution; and if f ′′ is closed 2-cell, then |f ′′| ≥ 6.
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7.7 Plane graphs with one ring

Before we turn our attention to plane graphs with one ring, let us show several
properties of critical graphs.

Lemma 70. Let G be a graph in a surface Σ with rings R. If G is R-critical,
then it satisfies (I0), (I1) and (I2).

Proof. If G contains an internal vertex v of degree at most two, then let G′ = G−
v. If G contains a cycle C consisting of internal vertices of degree three that has
even length or two vertices of C have adjacent neighbors, then let G′ = G−V (C).
For any precoloring ψ of R that extends to a 3-coloring φ of G′, observe that φ
can be extended to a 3-coloring of G. This contradicts the assumption that G is
R-critical.

By Grötzsch’s theorem, no component of a critical graph is a triangle-free
planar graph. This observation can be strengthened as follows.

Lemma 71. Let G be a graph in a surface Σ with rings R. Suppose that each
component of G is a planar graph containing exactly one of the rings. If G is
R-critical and contains no non-ring triangle, then each component of G is 2-
connected and G satisfies (I6).

Proof. We can consider each component of G separately, thus assume that Σ is
the sphere and G has only one ring R. Firstly, observe that G is 2-connected;
otherwise, it contains proper subgraphs G1 and G2 such that G = G1 ∪ G2 and
|V (G1) ∩ V (G2)| ≤ 1. Since R is 2-connected, we can assume that R ⊆ G1.
However, G2 is 3-colorable, and since we can permute the colors arbitrarily, any
precoloring of the common vertex of G1 and G2 extends to a 3-coloring of G2. It
follows that any 3-coloring of G1 extends to a 3-coloring of G, contrary to the
criticality of G.

Suppose now that G has an internal 2-cut, i.e., there exist proper induced
subgraphs G1 and G2 of G such that G = G1 ∪ G2, V (G1) ∩ V (G2) = {u, v}
for some vertices u, v ∈ V (G), and R ⊆ G1. Since G is 2-connected and planar,
both u and v are incident with the same face of an embedding of G2 in the plane.
If u and v are adjacent, then we argue as in the previous paragraph that every
precoloring of u and v by distinct colors extends to a 3-coloring of G2, contrary
to the criticality of G. If u and v are not adjacent, then let G′2 be the graph
obtained from G2 by adding vertices z1 and z2 and edges of paths uz1v and uz2v.
The resulting graph is triangle-free, and by [43], every precoloring of the cycle
uz1vz2 by three colors extends to a 3-coloring of G′2; hence, every precoloring of
u and v extends to a 3-coloring of G2. Again, this contradicts the criticality of
G.
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Let G be a graph in a surface Σ with rings R. If Σ is the sphere and R = {R},
then we say that G is a plane graph with one ring R (we can imagine G drawn
in plane, with R bounding the infinite face of G), and we abbreviate {R}-critical
to R-critical. Such graphs are very important for the study of critical graphs on
surfaces, for the following reason:

Lemma 72. Let G be a graph in a surface Σ with rings R, and assume that G
is R-critical. Let C be a closed walk in G bounding an open disk ∆ ⊆ Σ̂ such
that ∆ is disjoint from the rings, and let G′ be the graph consisting of the vertices
and edges of G drawn in ∆, together with a cycle C ′ bounding ∆ (corresponding
to C). Then G′ may be regarded as a plane graph with one ring C ′, and as such
it is C ′-critical.

Proof. If G′ is not C ′-critical, then let e ∈ E(G′) \ E(C ′) be an edge such that
every precoloring of C ′ that extends to G′ − e also extends to G. Observe that
every precoloring of R that extends to G− e also extends to G, contrary to the
assumption that G is R-critical.

Let us recall that critical planar graphs with ring of length at most twelve
were described by Thomassen [71], see Theorem 41 In this section, we generalize
this result by giving bounds on the weight of planar critical graphs with one ring.

Theorem 73. Let ε ≤ 1/1278 be a fixed real number and let s : {5, 6, . . .} → R
be an increasing convex function satisfying conditions (S0)–(S3) formulated in
Sections 7.4 and 7.6. Let G be a plane graph with one ring R of length l ≥ 5
such that G is R-critical and has no cycle of length at most four, and let w be
the weight function arising from s as described in Section 7.4. Then

• w(G, {R}) ≤ s(l − 3) + s(5), and furthermore,

• if R does not satisfy (E1), then w(G, {R}) ≤ s(l − 4) + 2s(5),

• if (G,R) is not very exceptional, then w(G, {R}) ≤ s(l − 5) + 5s(5), and

• if (G,R) is not exceptional, then w(G, {R}) ≤ s(l − 5)− 5s(5).

Proof. If G satisfies (E1), then l ≥ 8 and G has a face of length a such that
a ≤ 7. We can assume that the other face of G is at least as long as a, that is,
l+ 2− a ≥ a. Then, w(G, {R}) = s(a) + s(l+ 2− a) ≤ s(l− 3) + s(5), where the
inequality holds by convexity. If G satisfies (E2), then it is very exceptional and
w(G, {R}) = s(l−4)+2s(5). If G satisfies (E3), then it is very exceptional, l ≥ 11
and w(G, {R}) = s(l − 5) + s(5) + s(6) ≤ s(l − 4) + 2s(5), where the inequality
follows from convexity. If G satisfies (E4) or (E5), then l ≥ 10 and w(G, {R}) ≤
s(l − 5) + 5s(5) ≤ s(l − 4) + 2s(5), where the second inequality follows from
convexity and (S0). Finally, suppose that G is not exceptional. By Theorem 41,
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we have l ≥ 11, thus s(l−5)−5s(5) ≤ s(l−5)+5s(5) ≤ s(l−4)+2s(5) by convexity
and (S0). Therefore, it suffices to prove that w(G, {R}) ≤ s(l − 5)− 5s(5).

Suppose for a contradiction that (G,R) is not exceptional, and yet w(G, {R}) >
s(l−5)−5s(5). By induction, assume that the theorem holds for all graphs with
fewer edges than G. We may assume that R bounds the outer face of G.

(31) There is no path of length at most two with both ends in R that is otherwise
disjoint from R (i.e., G satisfies (I4)).

To prove ((31)) let P be a path in G of length one or two with ends u, v ∈ V (R),
and otherwise disjoint from R. Let C1, C2 be the two cycles of R ∪ P other than
R, and for i = 1, 2 let Gi be the subgraph of G drawn in the closed disk bounded
by Ci and li = |Ci|. Note that l1 + l2 = l + 2|P |.

Since G does not satisfy (E1) and satisfies (I0), we can assume that G1 6= C1.
Hence G1 is C1-critical by Lemma 72. Assume for a moment that G2 = C2. If
G1 is not very exceptional, then using the minimality of G, we have w(G, {R}) =
w(G1, {C1})+s(l2) ≤ s(l1−5)+5s(5)+s(l2) ≤ s(l1 + l2−10)+6s(5) ≤ s(l−5)−
5s(5) by the convexity and (S0), a contradiction. Similarly, we exclude the case
that P has length one and G1 is very exceptional. Finally, if G1 is very exceptional
and |P | = 2, then G\V (R) consists of one or two adjacent vertices of degree three
in G. Let a1 ≤ a2 ≤ . . . be the lengths of the internal faces of G. In the former
case, since G does not satisfy (E2) and (E3), we have a1 ≥ 6 (and l ≥ 12) or
a1 = 5 and a2 ≥ 7 (and l ≥ 13), thus w(G, {R}) = s(a1) + s(a2) + s(a3) ≤
min(2s(6), s(5) + s(7)) + s(l − 6) ≤ s(l − 5) − 5s(5), by convexity and (S0). In
the latter case, since G does not satisfy (E4), we have a3 ≥ 6 and l ≥ 12, thus
w(G, {R}) = s(a1)+s(a2)+s(a3)+s(a4) ≤ 2s(5)+s(6)+s(l−6) ≤ s(l−5)−5s(5).
This is a contradiction.

Thus we may assume that G1 6= C1 and G2 6= C2. Therefore, G1 is C1-critical
and G2 is C2-critical by Lemma 72. Furthermore, we may assume that P cannot
be chosen so that G2 = C2. That implies that G1 and G2 are not very exceptional,
and hence w(G, {R}) ≤ s(l1− 5) + 5s(5) + s(l2− 5) + 5s(5) ≤ s(l− 5)− 5s(5). a
contradiction. This proves ((31)).

Let φ be a precoloring of R that does not extend to a 3-coloring of G.

(32) G is φ-critical.

On contrary, suppose that G is not φ-critical. Then G contains a proper φ-critical
subgraph G′. By Lemma 71, G′ is 2-connected, thus all its faces are bounded by
cycles. Note that G′ is not very exceptional by ((31)). Since G′ has fewer edges
than G, we have w(G′, {R}) ≤ s(l − 5) + 5s(5) by induction. For f ∈ F(G′) let
Gf be the subgraph of G drawn inside the closed disk corresponding to f . By
Lemma 72, Gf is either equal to the face f or it is f -critical, thus by induction,
the convexity of s and (S0), we have w(Gf , {f}) ≤ s(|f |). Furthermore, if Gf is
not equal to f , then w(Gf , {f}) ≤ s(|f | − 3) + s(5). Let f0 be a face of G′ such
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that Gf0 is not equal to f0. Note that |f0| ≥ 8 by Theorem 41. We have

w(G, {R}) =
∑

f∈F(G)

s(|f |) =
∑

f ′∈F(G′)

w(Gf ′ , {f ′})

≤ s(|f0| − 3) + s(5)− s(|f0|) +
∑

f ′∈F(G′)

s(|f ′|)

= s(|f0| − 3) + s(5)− s(|f0|) + w(G′, {R})
≤ s(|f0| − 3)− s(|f0|) + s(l − 5) + 6s(5) ≤ s(l − 5)− 5s(5),

where the last inequality holds by convexity and (S0).

(33) The graph G does not have two adjacent vertices of degree two (i.e., G
satisfies (I5)). Furthermore, every vertex of degree two is incident with a face of
length at most six.

To prove ((33)) let u and v be two adjacent vertices of degree two in R. Let G′

and R′ be the graphs obtained from G and R, respectively, by identifying u and
v into a single vertex w. Let φ′ be a 3-coloring of R′ matching φ on R′−w. Note
that G′ is φ′-critical, and by ((31)), G′ has no cycle of length at most four. Let d
be the length of the internal face f of G incident with the edge uv. By ((31)), if G′

is exceptional, then it satisfies (E5), hence G has four faces of length five, a 6-face
and a face of length l−6 and w(G, {R}) = s(l−6)+s(6)+4s(5) ≤ s(l−5)−5s(5).
Therefore, assume that G′ is not exceptional. By the minimality of G we have
w(G′, {R′}) ≤ s(l− 6)− 5s(5), and since the face corresponding to f contributes
s(d − 1) to w(G′, {R′}), we conclude that d − 1 < l − 6. Thus w(G, {R}) =
w(G′, {R′})−s(d−1)+s(d) ≤ s(l−6)−5s(5)−s(d−1)+s(d) ≤ s(l−5)−5s(5)
by convexity. The case that a vertex v of degree two is incident with a face of
length at least 7 is handled similarly, with G′ obtained either by suppressing v or
by identifying its neighbors, depending on whether the colors of these neighbors
according to φ differ or not. This proves ((33)).

(34) Some good configuration appears in G.

To prove ((34)) suppose for a contradiction that no good configuration appears
in G. By Lemma 70 the graph satisfies (I0), (I1) and (I2). By Lemma 71, the
graph G satisfies (I3) and (I6). By ((31)) and ((33)) it satisfies (I4) and (I5).
The assumptions (I7) and (I8) are trivially satisfied by planar graphs with only
one ring. Let M be the null graph. We deduce from Lemma 62 that w(G,R) ≤
4n2/3 + 52εn3− 8. By (I5) we have n2 ≤ l/2, thus 4n2/3 + 52εn3 ≤ (2/3 + 26ε)l.
If l ≥ 16, then

w(G,R) ≤ (2/3 + 26ε)l − 8 ≤ l − 13− 10ε = s(l − 5)− 5s(5)

because ε ≤ 1/1278, a contradiction. Thus we may assume that l ≤ 15, and hence
n2 ≤ 7. If l = 15, then w(G,R) ≤ 28/3+8·52ε−8 ≤ l−13−10ε = s(l−5)−5s(5),
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again a contradiction. If l = 13, then we n2 ≤ 6 and w(G,R) ≤ 7 · 52ε ≤
s(8)− 5s(5).

Suppose that l = 12, n2 = 6 and n3 = 6. By Theorem 41(c), all internal
faces sharing an edge with R have length 5, thus the internal vertices that have
a neighbor in R form a 6-cycle K. By Lemma 72 and Theorem 41, we have that
K bounds a face, thus all its vertices have degree three. This contradicts (I1). It
follows that if l = 12 and n2 = 6, then n3 ≤ 5; thus w(G,R) ≤ 260ε ≤ s(7)−5s(5)
by (S0).

Thus we may assume that l = 14. If n2 ≤ 6, then we have w(G,R) ≤
8 · 52ε ≤ s(9)− 5s(5), hence n2 = 7. Furthermore, using Lemma 63, we conclude
that b = 0, where b is as in that lemma. Then vertices of degree two and three
alternate on R, and every internal face that shares an edge with R has length
five. The neighbors of the vertices of R of degree three form a 7-cycle, which
bounds a face by Theorem 41. Then, w(G, {R}) = s(7) + 7s(5) ≤ s(9) − 5s(5).
This proves ((34)).

(35) The graph G is well-behaved.

To prove ((35)), assume to the contrary that G is not well-behaved. Thus there
exists a path P of length at most four, with ends u, v ∈ V (R) and otherwise
disjoint from R, that is not allowable. We may assume that P is such a path of
the shortest possible length. By ((31)), the path P has length at least three.

Let C1, C2, R be the three cycles of R ∪ P , and for i = 1, 2 let Gi be the sub-
graph of G consisting of all vertices and edges drawn in the closed disk bounded
by Ci. We claim that C1 and C2 are induced cycles. To prove this claim sup-
pose to the contrary that some edge has ends x, y ∈ Ci for some i ∈ {1, 2}, but
that the edge itself does not belong to Ci. Then one of x, y, say x, belongs to
the interior of P , and y does not belong to P . By ((31)), the vertex x is not a
neighbor of u or v, and hence P has length four, and x is the middle vertex of P .
Let the vertices of P be u, u′, x, v′, v, in order. Since P was chosen minimal, the
two paths uu′xy and vv′xy are allowable, hence Gi consists of two 5-faces and
the path P is allowable, a contradiction. This proves that C1 and C2 are induced
cycles.

It follows from ((31)) and ((33)) that G1 and G2 are not very exceptional and
that Gi 6= Ci. By Lemma 72 the graph Gi is Ci-critical for i = 1, 2. Let li = |Ci|.
By induction we have

w(G, {R}) = w(G1, {C1}) + w(G2, {C2})
≤ s(l1 − 5) + 5s(5) + s(l2 − 5) + 5s(5)

≤ s(l1 + l2 − 15) + 11s(5) ≤ s(l − 5)− 5s(5),

by convexity and (S0). This proves ((35)).

It follows from ((34)), ((35)) and Lemma 64 that some good configuration
strongly appears in G, for if the second outcome of Lemma 64 holds, then (G,R)
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either is exceptional or satisfies the conclusion of the theorem. Let γ be a good
configuration that strongly appears in G, and let G′ be the γ-reduction of G. By
Lemma 52 the 3-coloring φ does not extend to a 3-coloring of G′. Thus G′ has
a φ-critical subgraph G′′. By Lemma 65 the graph G′′ has no cycles of length at
most four (G satisfies (I9) by Lemma 72 and Theorem 41). By Lemma 71, the
graph G′′ satisfies (I3) and (I6). Since G is R-critical, G′′ is not a subgraph of G;
hence G′′ contains a new vertex or edge.

(36) Let f ′′ be a face of G′′ and let Gf ′′ be the G-expansion of Sf ′′ as defined in

Section 7.6. Let C1
f ′′, C

2
f ′′, . . . , C

kf ′′

f ′′ be the rings of Gf ′′ (corresponding to Jf ′′),

let G1
f ′′, G

2
f ′′, . . . , G

kf ′′

f ′′ be the components of Gf ′′ such that Ci
f ′′ ⊆ Gi

f ′′ and let
c(f ′′) be the contribution of f ′′. Then

kf ′′∑
i=1

w(Gi
f ′′ , {Ci

f ′′}) ≤ s(|f ′′|)− c(f ′′).

Note that by Lemma 72, we have that either Gi
f ′′ = Ci

f ′′ or Gi
f ′′ is Ci

f ′′-critical
for each i. To prove ((36)), let us discuss the possible cases in the definition of
the contribution of a face:

• If Gf ′′ satisfies (E0), then by Lemma 69 we have c(f ′′) 6= −∞, hence f ′′

has zero elasticity, c(f ′′) = 0 and w(G1
f ′′ , {C1

f ′′}) = s(|f ′′|).

• If Gf ′′ satisfies (E1), then similarly we have el(f ′′) < 5 and c(f ′′) = s(8 −
el(f ′′))− 2s(5). Note that by Lemma 66 we have el(f ′′) ≤ 3. By induction,
w(G1

f ′′ , {C1
f ′′}) ≤ s(|C1

f ′′ | − 3) + s(5) = s(|f ′′| + el(f ′′) − 3) + s(5), and
s(|f ′′|+ el(f ′′)− 3) + s(5) ≤ s(|f ′′|)− s(8− el(f ′′)) + 2s(5) by convexity.

• If Gf ′′ satisfies (E2), then el(f) ≤ 3, c(f ′′) = s(9 − el(f ′′)) − 3s(5), and
w(G1

f ′′ , {C1
f ′′}) = s(|C1

f ′′| − 4) + 2s(5) = s(|f ′′| + el(f ′′) − 4) + 2s(5) ≤
s(|f ′′|)− c(f ′′) by convexity.

• IfGf ′′ satisfies (E3), then c(f ′′) = s(11−el(f ′′))−2s(6)−s(5) and w(G1
f ′′ , {C1

f ′′}) =
s(|C1

f ′′ |−5)+s(5)+s(6) = s(|f ′′|+el(f ′′)−5)+s(5)+s(6) ≤ s(|f ′′|)−c(f ′′).

• If Gf ′′ satisfies (E4) or (E5), then c(f ′′) = s(10 − el(f ′′)) − 6s(5) and
w(G1

f ′′ , {C1
f ′′}) ≤ s(|C1

f ′′ | − 5) + 5s(5) = s(|f ′′| + el(f ′′) − 5) + 5s(5) ≤
s(|f ′′|)− c(f ′′).

• Suppose that kf ′′ = 2, G1
f ′′ = C1

f ′′ and G2
f ′′ = C2

f ′′ , where |C1
f ′′ | ≤ |C2

f ′′ |.
If |C1

f ′′ | = 5, then c(f ′′) = s(10 − el(f ′′)) − 6s(5) and w(G1
f ′′ , {C1

f ′′}) +
w(G2

f ′′ , {C2
f ′′}) = s(|C2

f ′′ |) + s(5) = s(|f ′′| + el(f ′′) − 5) + s(5) < s(|f ′′|) −
c(f ′′). Otherwise, c(f ′′) = s(12 − el(f ′′)) − 2s(6) and w(G1

f ′′ , {C1
f ′′}) +

w(G2
f ′′ , {C2

f ′′}) = s(|C1
f ′′ |)+s(|C2

f ′′ |) ≤ s(6)+s(|f ′′|+el(f ′′)−6) ≤ s(|f ′′|)−
c(f ′′).
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• Suppose that kf ′′ = 1 and Gf ′′ is not exceptional.

– Let us consider the case that G1
f ′′ contains a path P = v1v2v3v4 such

that v1, v4 ∈ V (C1
f ′′), v2, v3 6∈ V (C1

f ′′) and both of the open disks ∆1

and ∆2 bounded by P and paths in C1
f ′′ contain at least two vertices

of G. In this case, c(f ′′) = s(7). Let Hi be the subgraph of G1
f ′′ drawn

in ∆i and Ki the cycle bounding ∆i, for i ∈ {1, 2}. Neither H1 nor
H2 is very exceptional, thus we have w(G1

f ′′ , {C1
f ′′}) = w(H1, K1) +

w(H2, K2) ≤ s(|K1|−5) + s(|K2|−5) + 10s(5) ≤ s(|K1|+ |K2|−15) +
11s(5) = s(|f ′′|+ el(f ′′)−9) + 11s(5) < s(|f ′′|)− s(7), since el(f ′′) ≤ 5
and |f ′′|+ el(f ′′) ≥ |K1|+ |K2| − 6 ≥ 14.

– Otherwise, c(f ′′) = s(11− el(f ′′))− s(6) + 5s(5). In this case, we have
w(G1

f ′′ , {C1
f ′′}) ≤ s(|C1

f ′′ | − 5)− 5s(5) = s(|f ′′|+ el(f ′′)− 5)− 5s(5) ≤
s(|f ′′|)− c(f ′′).

• If kf ′′ = 2 and G1
f ′′ 6= C1

f ′′ , then c(f ′′) = s(12 − el(f ′′)) − 2s(6) and
w(G1

f ′′ , {C1
f ′′}) +w(G2

f ′′ , {C2
f ′′}) ≤ s(|C1

f ′′ | − 3) + s(5) + s(|C2
f ′′ |) ≤ s(|f ′′|+

el(f ′′)− 8) + 2s(5) < s(|f ′′|)− c(f ′′)

• If kf ′′ ≥ 3, then c(f ′′) = s(12− el(f ′′))− 2s(6) and
∑kf ′′

i=1 w(Gi
f ′′ , {Ci

f ′′}) ≤
s(|f ′′|+ el(f ′′)− (kf ′′ − 1)5) + (kf ′′ − 1)s(5) < s(|f ′′|)− c(f ′′).

Therefore, in all the cases, ((36)) holds.

By Lemma 67, we have w(G, {R}) ≤ δ +
∑

f ′′∈F(G′′)

∑kf ′′
i=1 w(Gi

f ′′ , {Ci
f ′′}),

where δ = s(6) if γ is isomorphic to R3 and γ = 0 otherwise, and by ((36)) this
implies that

w(G, {R}) ≤ δ +
∑

f ′′∈F(G′′)

(s(|f ′′|)− c(f ′′))

= w(G′′, {R}) + δ −
∑

f ′′∈F(G′′)

c(f ′′)

= w(G′′, {R})− c(G′′).

By Lemma 68, G′′ is not very exceptional, hence w(G′′, {R}) ≤ s(l − 5) + 5s(5)
by induction. Note that c(G′′) ≥ 10s(5) by Lemma 69, thus

w(G, {R}) ≤ w(G′′, {R})− c(G′′) ≤ s(l − 5)− 5s(5),

which is a contradiction finishing the proof of the theorem.

As a straightforward corollary, we obtain the following.
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Theorem 74. Let G be a graph of girth at least 5 drawn in plane and let C be
a cycle in G. Suppose that there exists a precoloring φ of C by three colors that
does not extend to a proper 3-coloring of G. Then there exists a subgraph H ⊆ G
such that C ⊆ H, |V (H)| ≤ 2501|C| and H has no proper 3-coloring extending
φ.

Proof. First, we choose values of ε = s(5)/2 ≤ 1/1278, s(6), s(7) and s(8) so
that (S0)–(S3) hold and s (with s(l) = l − 8 for l ≥ 9) is an increasing convex
function. A possible choice is s(8) = 1/2, s(7) = 1/6, s(6) = 1/75, s(5) = 1/1500
and ε = 1/3000. Let G be a plane graph of girth at least five with a cycle
C and φ a precoloring of C that does not extend to a 3-coloring of G. We
can assume that G is φ-critical, and thus C is a face of G. By Theorem 73,
we have w(G, {C}) < w(|C|) < |C|. Note that 3|V (G)| − 2|C| =

∑
f |f | ≤∑

f 5s(|f |)/s(5) = 5w(G, {C})/s(5), where the sum goes over the faces of G
distinct from C. Therefore, |V (G)| ≤ (5/s(5)+2)|C|/3, and since (5/s(5)+2)/3 <
2501, Theorem 74 holds.

7.8 Summary

In this section, we provide a summary of the results obtained so far, to simplify
their usage in the rest of the chapter. Let Π be a surface with boundary and
c a simple curve intersecting the boundary of Π exactly in its ends. The closed
topological space obtained from Π by cutting along c (i.e., removing c and adding
two new pieces of boundary corresponding to c) is a union of at most two surfaces.
If Π1, . . . ,Πk are obtained from Π by repeating this construction, we say that they
are fragments of Π. Consider a graph H embedded in Π with rings Q, and let f
be an internal face of H. Let us recall that f is an open subset of Π̂. For each
facial walk t of f , we perform the following: if t consists only of a vertex ring
incident with the cuff C, then we remove Ĉ from f . Otherwise, we add a simple
closed curve tracing t (if an edge appears twice in t, then it will correspond to
two disjoint parts of the curve). We define Πf to be the resulting surface. Note
that the cuffs of Πf correspond to the facial walks of f .

Theorem 75. Let G be a well-behaved graph embedded in a surface Σ with rings
R satisfying (I0)–(I9) and let M be a subgraph of G that captures (≤ 4)-cycles.
Let `(R) be the sum of the lengths of the rings in R and g the genus of Σ,
and assume that either g > 0 or |R| > 1. Let ε be a real number satisfying
0 < ε ≤ 1/1278, let s : {5, 6, . . .} → R be a function satisfying (S0)–(S3), and
suppose that w(G,R) > 8g + 8|R|+ (2/3 + 26ε)`(R) + 20|E(M)|/3− 16. If G is
R-critical, then there exists an R-critical graph G′ embedded in Σ with rings R
such that |E(G′)| < |E(G)| and the following conditions hold.

1. If G has girth at least five, then there exists a set Y ⊆ V (G′) of size at most
two such that G′ − Y has girth at least five.
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2. If C ′ is a (≤ 4)-cycle in G′, then C ′ is non-contractible and G contains
a non-contractible cycle C of length at most |C ′| + 3 such that C 6⊆ M .
Furthermore, all ring vertices of C ′ belong to C, and if r1, r2 and r3 are
ring vertices adjacent to mutually distinct vertices of C ′, then r1, r2 and r3
also have mutually distinct neighbors in C.

3. G′ has an internal face that either is not closed 2-cell or has length at least
6.

4. There exists a collection {(Jf , Sf ) : f ∈ F (G′)} of subgraphs Jf of G and
sets Sf of faces of J satisfying (30) such that

(a) no Sf is equal to the union of R, for f ∈ F (G′),

(b) for any f ∈ F (G′), the surfaces of the G-expansion of Sf are fragments
of the surface Σf .

(c) For every face h ∈ F (G) but at most one, there exists unique f ∈
F (G′) such that h is a face of the G-expansion of Sf . If there exists
a face h ∈ F (G) without a corresponding face in the G-expansions of
Sf for f ∈ F (G′), then h is a 6-face, and set δ = s(6). Otherwise, set
δ = 0.

(d) For f ∈ F (G′), let el(f) =
(∑

h∈Sf
|h|
)
− |f | and if f is closed 2-cell

or omnipresent, let its contribution c(f) be defined as in Section 7.6.
Then

∑
f∈F (G′) el(f) ≤ 10 and if G′ has an omnipresent face, then∑

f∈F (G′) el(f) ≤ 5. Furthermore, if every internal face of G′ is closed

2-cell or omnipresent and G′ satisfies (I6), then
∑

f∈F (G′) c(f) ≥ δ.

(e) if f ∈ F (G′) is closed 2-cell and G1, . . . , Gk are the components of
the G-expansion of Sf , where for 1 ≤ i ≤ k, Gi is embedded in the

disk with one ring Ri, then
∑k

i=1w(Gi, {Ri}) ≤ s(|f |)− c(f).

Proof. By Lemma 62, a good configuration γ appears in G and does not touch
M . By Lemma 64, we can assume that γ appears strongly in G. Let φ be a
precoloring of R that does not extend to a 3-coloring of G, and let G1 be a γ-
reduction of G with respect to φ. By Lemma 52, φ does not extend to a 3-coloring
of G1, and thus G1 contains a R-critical subgraph G′. Clearly, |E(G′)| < |E(G).
Let us now show that G′ has the required properties:

1. Every (≤ 4)-cycle in G′ contains a new vertex or a new edge, and thus they
can all be intersected by at most two vertices.

2. Follows from Lemma 65.

3. If (I6) is false, then G′ has an omnipresent face. Otherwise, the claim holds
by Lemma 69.
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4. For each f ∈ F (G′), we define Sf and Jf as in Section 7.6.

(a) This follows by the construction of Sf , since G′ is not equal to the
union of R.

(b) The construction of Jf and Sf ensures that the surfaces corresponding
to the faces of Sf are constructed from Σf by cutting along simple
curves with ends in cuffs, as described in the definition of fragments.

(c) The claim follows from Lemma 67.

(d) The claim follows from Lemmas 66 and 69.

(e) This was proved as ((36)) in Section 7.7.

7.9 Narrow cylinder

In this section, we consider the graphs embedded in the cylinder with two rings
of length at most 7. We start with the case that the rings have length at most 4.
The following lemma links the weights of the graph and its reduction as needed
in the inductive argument.

Lemma 76. Let G be an R-critical graph embedded in a surface Σ with rings R
so that every (≤ 4)-cycle is non-contractible, let G′ be another R-critical graph
embedded in Σ with rings R and let X ⊂ F (G) and {(Jf , Sf ) : f ∈ F (G′)} be a
cover of G by faces of G′. Let f be an open 2-cell face of G′ and let G1, . . . , Gk

be the components of the G-expansion of Sf , where for 1 ≤ i ≤ k, Gi is embedded

in the disk with one ring Ri. In this situation,
∑k

i=1w(Gi, {Ri}) ≤ s(|f |) + el(f).

Proof. By Theorem 73 and Lemma 72,

k∑
i=1

w(Gi, {Ri}) ≤
k∑
i=1

s(|Ri|) ≤ s

(
k∑
i=1

|Ri|
)

= s(|f |+ el(f) ≤ s(|f |) + el(f).

Let cyl be a function satisfying the following for all nonnegative integers x
and y:

• cyl(x, y) = cyl(y, x)

• if x > 0, then cyl(x, y) ≥ cyl(0, y) + x+ 13

• if x, y > 1, then cyl(x, y) ≥ cyl(1, x) + cyl(1, y) + 19
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• for any nonnegative integer y′ < y, we have cyl(x, y) ≥ cyl(x, y′) + s(y −
y′ + 8) ≥ cyl(x, y′) + 1

• cyl(x, y) ≥ s(x+ y + 11)

• if x ≥ 4, then cyl(x, y) ≥ 886

• 2cyl(6, 7) ≤ cyl(7, 7)

• if x ≤ 4 and 5 ≤ y ≤ 6, then cyl(x, y) ≥ (2/3 + 52ε)(x + y) + 20(10k +
5cyl(4, 4)/s(5) + 144)/3

• if x ≤ 7, then cyl(x, 7) ≥ 3/2(x+ 7) + 20(10k + 5cyl(6, 6)/s(5) + 144)/3

• if x, y ≥ 5, then cyl(x, y) ≥ cyl(4, x) + cyl(4, y) + cyl(4, 4)

Theorem 77. Let G be a graph embedded in the cylinder with rings R1 and R2

of length at most four, where R2 is a facial ring. Suppose that every (≤ 4)-cycle
in G is non-contractible. If G is {R1, R2}-critical and not a broken chain, then
w(G, {R1, R2}) ≤ cyl(|R1|, |R2|).

Proof. We proceed by induction, and assume that the claim holds for all graphs
with fewer than |E(G)| edges. By Lemma 46, we can assume that |R2| = 4.
By Theorem 45, G is connected. By Lemma 70, G satisfies (I0), (I1) and (I2).
Furthermore, we already observed that every critical graph satisfies (I9), and (I6)
and (I8) hold trivially.

If (I3) is false, then G contains a cutvertex v. Let G1 and G2 be the subgraphs
of G intersecting in v such that G = G1 ∪ G2, R1 ⊆ G1 and R2 ⊆ G2. Note
that G1 is {R1, v}-critical. By Lemma 46, we have |R1| ≥ 1. Furthermore, if
|R1| ≤ 3, then G1 consists of R1 and an edge between R1 and v. If that is the
case, then G2 is {v,R2}-critical, where v is taken as a weak vertex ring. By
induction, we have w(G2, {v,R2}) ≤ cyl(0, |R2|). Hence, if f is the cuff face
of v in G2, then w(G, {R1, R2}) ≤ cyl(0, |R2|) + s(|f | + 2 + |R1|) − s(|f |) ≤
cyl(0, |R2|) + 2 + |R1| ≤ cyl(|R1|, |R2|). Similarly, if |R1| = 4 and f1 and f2 are
the cuff faces of R1 and R2, respectively, incident with v, then w(G, {R1, R2}) ≤
2cyl(1, 4) + s(|f1|+ |f2|)− s(|f1|)− s(|f2|) ≤ 2cyl(1, 4) + 8 ≤ cyl(4, 4). Therefore,
we can assume that (I3) holds.

If (I5) is false, then since (I3) holds, we can assume that the two vertices r1
and r2 belong to a ring of length four, say to R2. If the internal face incident
with r1r2 has length five, then r1r2 is a part of a triangle T separating R1 from
R2. By applying induction to the subgraph of G drawn between R1 and T , we
conclude that w(G, {R1, R2}) ≤ cyl(|R1|, 3) + s(5) < cyl(|R1|, |R2|). Otherwise,
we apply induction to the graph obtained by contracting the edge r1r2, and obtain
w(G, {R1, R2}) ≤ cyl(|R1|, 3)+1 ≤ cyl(|R1|, |R2|). Hence, assume that (I5) holds.

Suppose now that the distance between R1 and R2 is at most four. If R1 is a
vertex ring, then add a triangle R′1 forming a boundary of the cuff incident with
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R1 and note that this operation does not decrease the weight of G; otherwise, let
R′1 = R1. Next, we use Lemma 72 to the closed walk consisting of R′1, R2 and
the shortest path between R1 and R2 traversed twice. By Theorem 73, we have
w(G, {R1, R2}) ≤ s((|R1| + 3) + |R2| + 8) ≤ cyl(|R1|, |R2|). Therefore, assume
that (I7) holds.

Furthermore, if P is a path of length at most four with both ends being ring
vertices, then both ends belong to the same ring R. By (I5), P has length at
least three. Since G is embedded in the cylinder, there exists a subpath Q of R
such that P ∪ Q is a contractible cycle. Note that |P ∪ Q| ≤ |R| + 3 ≤ 7, and
by Theorem 41, P ∪Q bounds a face. Therefore, G is well-behaved and satisfies
(I4).

Let M be the subgraph of G consisting of edges incident with a (≤ 4)-cycle.
Since G is not a broken chain, Lemma 47 implies that |E(M)| ≤ 132. Note
that M captures (≤ 4)-cycles of G. If the assumptions of Theorem 75 are not
satisfied, then w(G, {R1, R2}) ≤ (2/3 + 26ε)`({R1, R2}) + 20|E(M)|/3 < 886 ≤
cyl(|R1|, |R2|). Therefore, assume the contrary.

Then, there exists an {R1, R2}-critical graph G′ embedded in the cylinder
with rings R1 and R2 such that |E(G′)| < |E(G)|, satisfying the conditions of
Theorem 75. By (b), all (≤ 4)-cycles in G′ are non-contractible. By Theorem 45,
G′ is connected, and thus all its faces are open 2-cell. Let X ⊂ F (G) and
{(Jf , Sf ) : f ∈ F (G′)} be the cover of G by faces of G′ as in (d). For f ∈ F (G′),

letGf
1 , . . . , Gf

kf
be the components of theG-expansion of Sf , where for 1 ≤ i ≤ kf ,

Gf
i is embedded in the disk with one ring Rf

i . We have

w(G, {R1, R2}) =
∑

f∈F (G)

w(f) =
∑
f∈X

w(f) +
∑

f∈F (G′)

kf∑
i=1

w(Gf
i , {Rf

i }).

Suppose first that G′ is 2-connected, and thus it satisfies (I3). By Theo-
rem 75(c), G′ has a face of length at least 6, hence G′ is not a broken chain.
Therefore, by induction we have w(G′, {R1, R2}) ≤ cyl(|R1|, |R2|). Since each
internal face of G′ is closed 2-cell, Theorem 75(e) implies that

kf∑
i=1

w(Gf
i , {Rf

i }) ≤ s(|f |)− c(f)

for every f ∈ F (G′), and consequently

∑
f∈F (G′)

kf∑
i=1

w(Gf
i , {Rf

i }) ≤
∑

f∈F (G′)

s(|f |)− c(f)

= w(G′, {R1, R2})−
∑

f∈F (G′)

c(f)

≤ w(G′, {R1, R2})− |X|s(6).
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Putting the inequalities together, we obtain

w(G, {R1, R2}) ≤ w(G′, {R1, R2}) +

(∑
f∈X

w(f)

)
− |X|s(6)

= w(G′, {R1, R2}) ≤ cyl(|R1|, |R2|).

Finally, let us consider the case that G′ is not 2-connected, let v be a cutvertex
in G′ and let G1 and G2 be the subgraphs of G′ intersecting in v such that
G′ = G1 ∪G2, R1 ⊆ G1 and R2 ⊆ G2. As in the analysis of the property (I3), we
show that |R1| ≥ 1, if |R1| ≤ 3, then w(G′, {R1, R2}) ≤ cyl(0, |R2|) + 2 + |R1| ≤
cyl(|R1|, |R2|) − 11, and if |R1| = 4, then w(G′, {R1, R2}) ≤ 2cyl(1, 4) + 8 ≤
cyl(4, 4)− 11. By Lemma 76, we have

∑
f∈F (G′)

kf∑
i=1

w(Gf
i , {Rf

i }) ≤ w(G′, {R1, R2}) +
∑

f∈F (G′)

el(f) ≤ w(G′, {R1, R2}) + 10.

Combining the inequalities, we have

w(G, {R1, R2}) ≤ w(G′, {R1, R2}) + 10 +
∑
f∈X

w(f)

≤ cyl(|R1|, |R2|)− 1 +
∑
f∈X

w(f)

< cyl(|R1|, |R2|).

Let us now state an auxiliary result that will also be useful in the case of
general surfaces. Consider a graph embedded in a surface Σ. If K1 and K2 are
two cycles surrounding a cuff C and ∆1 and ∆2 are the open disks bounded by
K1 and K2, respectively, in Σ + Ĉ, then we say that K1 and K2 are incomparable
if ∆1 6⊆ ∆2 and ∆2 6⊆ ∆1.

Lemma 78. Let G be a graph in a surface Σ with rings R, such that G is R-
critical and every (≤ 4)-cycle is non-contractible. Let K0 be a cycle in G of length
at most seven surrounding a ring R, let C be the cuff incident with R and let ∆
be the closed disk in Σ+ Ĉ bounded by K0. In this situation, at most 10|K0| edges
of G drawn outside of ∆ are incident with a (≤ 7)-cycle surrounding R that is
incomparable with K0.

Proof. Let X be the set of edges drawn outside of ∆ that are incident with (≤ 7)-
cycles surrounding R and incomparable with K0. Initially, we give each edge of
X charge 1 and all the edges of K0 charge 0. Next, we aim to move the charge
from X to K0.
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For an edge x ∈ X, choose an incident (≤ 7)-cycle K surrounding R incom-
parable with K0. Note that at least one edge of E(K)\E(K0) is drawn in ∆. Let
K = P1∪P2, where P1 and P2 are paths intersecting only in their endvertices such
that P1 is drawn in the interior of ∆. Let K0 = P3∪P4, where P3 and P4 are paths
sharing endvertices with P1 and P2 and the closed walk P1∪P3 surrounds R. For
1 ≤ i ≤ 4, let mi be the length of Pi. Since all (≤ 4)-cycles are non-contractible,
we have m2+m3 ≥ 5 and m1+m4 ≥ 5. Since m1+m2+m3+m4 = |K0|+|K| ≤ 14,
it follows that m2 +m3 ≤ 9 and m1 +m4 ≤ 9. Note that P2 ∪ P3 is contractible,
and consequently the symmetric difference K ′ of P2 and P3 is a cycle (otherwise,
G would contain a contractible cycle of length at most four). We distribute the
charge of x among the edges of K ′ ∩K0 evenly.

Let us consider the case that K ′ does not bound a face of G. By Theorem 41,
it follows that |K ′| ≥ 8 and at most one vertex is contained in the open disk
bounded by K ′. Since m2 + m3 ≤ 9, we have that P2 and P3 are edge-disjoint
and K ′ = P2 ∪ P3. Since m1 ≥ 1, we have m2 ≤ 6 and thus m3 ≥ 2. Suppose
first that only one edge e is drawn in the open disk bounded by K ′. Let f1 and
f2 be the faces of G in this disk, and assume that f1 shares no edge with P3. In
this situation, we say that the charge sent from the edges of f1 ∩K to the edges
of P3 passes through e. Note that if m3 = 2, then m1 = 1, m2 = 6, |K ′| = 8 and
|f1| = |f2| = 5, thus in this case 4 units of charge pass through e.

Suppose now that a vertex is contained in the open disk bounded by K ′, and
let f1, f2 and f3 be the faces of G in this disk. Note that |f1| = |f2| = |f3| = 5
and m3 ≥ 3. For 1 ≤ i < j ≤ 3, let eij be the common edge of fi and fj. Let
us first consider the case that two of these faces, say f2 and f3, share an edge
with P3. We let the amount of charge of the edges of f1 ∩ K proportional to
|E(fi) ∩ E(P3)| pass through e1i, for i ∈ {2, 3}. The other possible case is that
only one face, say f3, shares edges with P3; in this situation, the charge of f1∩K
passes through f13 and the charge of f2 ∩K passes through f23.

Let us now analyze the final charge of the edges of K0. Consider e ∈ K0, let
f be the face of G incident with e not drawn in ∆ and let m = |E(f) ∩ E(K0)|.
If |f | ≥ 10, then no charge is sent to e. If 7 ≤ |f | ≤ 9, then no charge passes
through edges of f , and thus e has charge at most 8. Similarly, if |f | = 6 and
m = 1, then no charge passes through edges of f (since m3 = 1 implies m1 ≥ 2
and consequently m2 ≤ 5, hence m2+m3 ≤ 6), and thus e has charge at most 5. If
|f | = 6 andm ≥ 2, then at most four units pass through each edge of E(f)\E(K0)
and this charge is evenly divided between the edges of E(f)∩E(K0), hence e has
charge at most 10. If |f | = 5 and m = 1, then at most one unit passes through
each edge of E(f) \ E(K0), and e has charge at most 8. If |f | = 5 and m ≥ 2,
then at most five units of charge pass through each edge of E(f) \E(K0), and e
has charge at most 9.

Therefore, each edge of K0 has charge at most 10, and |X| ≤ 10|K0|.

We will also need several related claims regarding cycles near a ring.
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Lemma 79. Let G be a graph embedded in the cylinder with rings R1 and R2, such
that G is {R1, R2}-critical and every (≤ 4)-cycle is non-contractible. If |R1| = 4,
then at most 93 edges of G are incident with a non-contractible (≤ 7)-cycle that
shares a vertex with R1.

Proof. Let C1 be the cuff incident with R1. Let K0 be a non-contractible (≤ 7)-
cycle that shares a vertex with R1 such that the closed disk ∆ bounded by K0

in Σ + Ĉ is as large as possible. Observe that every edge of G incident with a
non-contractible (≤ 7)-cycle that shares a vertex with R1 is either drawn in ∆
or is incident with a non-contractible (≤ 7)-cycle that is incomparable with K0.
Theorem 41 implies that at most 23 edges of G are drawn in ∆. Together with
Lemma 78, the claim follows.

If R is a 6-cycle and C is a (≤ 6)-cycle, we say that C is bound to R if either
|V (C) ∩ V (R)| ≥ 3 or three internal vertices of C have distinct non-adjacent
neighbors in R.

Lemma 80. Let G be a graph embedded in the cylinder with rings R1 and R2,
such that every (≤ 4)-cycle is non-contractible. Suppose that |R1| = 6 and R1 is
an induced cycle, and let X ⊆ E(G) be the set of edges incident with (≤ 6)-cycles
bound to R1. If G is {R1, R2}-critical, then |X| ≤ 51.

Proof. Let C be a non-contractible (≤ 6)-cycle in G that is bound to R1. If
|V (C) ∩ V (R1)| ≥ 3, then for every edge e ∈ E(C) \ E(R1), there exists a
contractible cycle K in C ∪ R of length at most 8 that contains e, sharing at
least |K| − 4 edges with R1. By Theorem 41, K either bounds a face or a disk
consisting of two 5-faces. Since R is an induced cycle, observe that in the latter
case, both 5-faces share an edge with R. Similarly, if three internal vertices
of C have distinct non-adjacent neighbors in R1, then observe that every edge
e ∈ E(C) \E(R1) is contained in a contractible cycle K of length at most 8 that
shares two edges with R.

Assign the edges of X \ E(R1) to the edges of R1 in the following way: any
(≤ 8)-face K that shares edges with R1 divides its edges between the edges
of E(K) ∩ E(R1) evenly. If K is a 5-face that shares two edges with R1, we
additionally assign edges of all other 5-faces sharing an edge with K to the edges
of E(K)∩E(R1), divided evenly. Note that at most 15/2 edges of X \E(R1) are
assigned to each edge of R1, and thus |X| ≤ 51.

Similarly, we can prove the following.

Lemma 81. Let G be a graph embedded in the cylinder with rings R1 and R2,
such that every (≤ 4)-cycle is non-contractible. Suppose that |R1| = 7 and R1

is an induced cycle, and let X ⊆ E(G) be the set of edges incident with 7-cycles
that share at least four vertices with R1. If G is {R1, R2}-critical, then |X| ≤ 35.
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The first paper of this series [25] together with the results of Gimbel and
Thomassen [41] and Aksenov et al. [1] implies implies the following.

Theorem 82. Let G be a graph embedded in the cylinder with one ring R of
length at most 7 (the other cuff does not correspond to a ring). Suppose that
all (≤ 4)-cycles in G are non-contractible and that G has girth at least |R| − 3.
If G is R-critical and R is an induced cycle, then |R| = 6 and G contains a
triangle C such that all vertices of C are internal and have mutually distinct and
non-adjacent neighbors in R.

Finally, we can prove the main result of this section.

Lemma 83. Let G be a graph embedded in the cylinder with rings R1 and R2,
where |R1| ≤ |R2| and 5 ≤ |R2| ≤ 7. Suppose that every (≤ 4)-cycle in G is
non-contractible. Furthermore, assume that the following conditions hold:

• if |R1| = 4, then all other 4-cycles in G are vertex-disjoint with R1,

• if |R1| ≥ 5, then G contains no (≤ 4)-cycle,

• if |R2| = 7, then G contains no triangle distinct from R1 and R2 is an
induced cycle, and

• if |Ri| = 6 for some i ∈ {1, 2}, then Ri is an induced cycle and G contains
no triangle T such that all vertices of T are internal and they have mutually
distinct and non-adjacent neighbors in Ri.

If G is {R1, R2}-critical, then w(G, {R1, R2}) ≤ cyl(|R1|, |R2|).

Proof. By induction, we can assume that the claim holds for all graphs with fewer
than |E(G)| edges. By Theorems 45 and 82, G is connected. Note that G satisfies
(I0), (I1), (I2), (I6), (I8) and (I9).

If (I3) is false, then G contains a cutvertex v. Let G1 and G2 be the subgraphs
of G intersecting in v such that G = G1 ∪G2, R1 ⊆ G1 and R2 ⊆ G2. Note that
G1 is {R1, v}-critical. By Lemma 46, we have |R1| ≥ 1. Furthermore, if |R1| ≤ 3,
then G1 consists of R1 and an edge between R1 and v. If that is the case, then
G2 is {v,R2}-critical, where v is taken as a weak vertex ring. By induction, we
have w(G, {R1, R2}) ≤ cyl(0, |R2|) + s(|f |+ 2 + |R1|)− s(|f |) ≤ cyl(0, |R2|) + 2 +
|R1| ≤ cyl(|R1|, |R2|). Similarly, if |R1| ≥ 4, then w(G, {R1, R2}) ≤ cyl(1, |R1|) +
cyl(1, |R2|) + 8 ≤ cyl(|R1|, |R2|). Therefore, we can assume that (I3) holds.

If the distance between R1 and R2 is at most four, then we use Lemma 72
to the closed walk consisting of R1, R2 and the shortest path between R1 and
R2 traversed twice (replacing R1 by a triangle if R1 is a vertex ring), and by
Theorem 73, we have w(G, {R1, R2}) ≤ s((|R1|+ 3) + |R2|+ 8) ≤ cyl(|R1|, |R2|).
Therefore, assume that (I7) holds. Furthermore, if P is a path of length at most
four with both ends being ring vertices, then both ends belong to the same ring
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Ri for some i ∈ {1, 2}. Since G is embedded in the cylinder, there exists a
subpath Q of Ri such that P ∪ Q is a contractible cycle. Let Q′ be the path
with edge set E(Ri) \E(Q). If |Q| > |P |, then Q′ ∪P is a non-contractible cycle
shorter than |Ri|, and by applying the induction to the subgraph of G between
R3−i and Q′ ∪P and Theorem 73 to the subgraph drawn in the disk bounded by
Q ∪ P , we conclude that w(G, {R1, R2}) ≤ cyl(|R3−i|, |Q′ ∪ P |) + s(|Q ∪ P |) =
cyl(|R3−i|, |Q′ ∪ P |) + s(|Ri| − |Q′ ∪ P |+ 2|P |) ≤ cyl(|R3−i|, |Ri|). Therefore, we
may assume that |Q| ≤ |P | for each such path P . This implies that (I4) holds.
Furthermore, |P ∪Q| ≤ 8, and by Theorem 41, at most two faces of G are in the
disk bounded by P ∪Q.

Suppose that (I5) is false, and the ring Ri for some i ∈ {1, 2} contains ad-
jacent vertices r1 and r2 of degree two. By (I3), we have |Ri| ≥ 4, and by the
previous paragraph, the internal face incident with r1r2 has length at least 6. We
apply induction to the graph obtained by contracting the edge r1r2, and obtain
w(G, {R1, R2}) ≤ cyl(|R1|, |R2|−1)+1 ≤ cyl(|R1|, |R2|). Hence, assume that (I5)
holds. Together with the observations from the previous paragraph, this implies
that G is well-behaved.

If |R1| = |R2| = 7 and G contains a non-contractible (≤ 6)-cycle, then by
induction we have w(G, {R1, R2}) ≤ 2cyl(6, 7) ≤ cyl(7, 7), hence we can assume
that if |R1| = |R2| = 7, then all non-contractible cycles have length at least seven.

Let M be the subgraph of G containing

• edges incident with non-contractible (≤ k)-cycles, where k = 6 if |R2| = 7
and k = 4 otherwise;

• if |R1| = 4, then also include edges incident with non-contractible (≤ 7)-
cycles sharing a vertex with R1,

• if |Ri| = 6 for some i ∈ {1, 2}, then include all edges of non-contractible
(≤ 6)-cycles bound to Ri, and

• if |Ri| = 7 for some i ∈ {1, 2}, then include all edges of non-contractible
7-cycles that share at least four vertices with Ri.

Let us bound the number of edges of M . Note that if |R2| < 7, then k = 4
and by the assumptions, if G contains a (≤ k)-cycle, then |R1| ≤ 4. Suppose
that there exists a non-contractible (≤ k)-cycle C, and choose C so that the
closed subset Σ′ of Σ between R1 and C is as large as possible. Note that
|R1| ≤ k < |R2|. If |R1| = k = 4, then no 4-cycle distinct from R1 contains a
vertex of V (R1), hence the subgraph G′ of G drawn in Σ′ is not a broken chain.
All non-contractible (≤ k)-cycles in G are either drawn in Σ′ or are incomparable
with C. By Theorems 73 and 77 and by induction, we conclude that the total
weight of the internal faces of G′ is at most max(cyl(k, k), s(2k)) = cyl(k, k). In
particular, at most 5cyl(k, k)/s(5) edges of G are drawn in Σ′, and by Lemma 78,
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at most 10k+5cyl(k, k)/s(5) edges of G are incident with non-contractible (≤ k)-
cycles. By Lemmas 79, 80 and 81, we have |E(M)| ≤ 10k+5cyl(k, k)/s(5)+144.

Note that M captures (≤4)-cycles of G, and that (2/3 + 26ε)(|R1|+ |R2|) +
20(10k+5cyl(k, k)/s(5)+144)/3 ≤ cyl(|R1|, |R2|); therefore, we can assume that
we can apply Theorem 75. Let G′ be the {R1, R2}-critical graph embedded in
the cylinder with rings R1 and R2 such that |E(G′)| < |E(G)|, satisfying the
conditions of Theorem 75. In particular, (b) implies that all (≤ 4)-cycles in G′

are non-contractible; and furthermore, using the choice of M we have

• if |R2| = 7, then G′ contains no triangle distinct from R1,

• if |R1| = 4, then no 4-cycle in G′ distinct from R1 contains a vertex of
V (R1),

• if 6 ≤ |Ri| ≤ 7 for some i ∈ {1, 2}, then Ri is an induced cycle in G′, and

• if |Ri| = 6 for some i ∈ {1, 2}, then G′ contains no triangle T such that all
vertices of Ri are internal and have non-adjacent neighbors in Ri.

By Theorem 82, we conclude that G′ is connected, and thus all its faces are open
2-cell.

Let X ⊂ F (G) and {(Jf , Sf ) : f ∈ F (G′)} be the cover of G by faces of G′

as in Theorem 75(d). For f ∈ F (G′), let Gf
1 , . . . , Gf

kf
be the components of the

G-expansion of Sf , where for 1 ≤ i ≤ kf , G
f
i is embedded in the disk with one

ring Rf
i . We have

w(G, {R1, R2}) =
∑

f∈F (G)

w(f) =
∑
f∈X

w(f) +
∑

f∈F (G′)

kf∑
i=1

w(Gf
i , {Rf

i }).

Suppose first that G′ is not 2-connected, let v be a cutvertex in G′ and let G1

and G2 be the subgraphs of G′ intersecting in v such that G′ = G1∪G2, R1 ⊆ G1

and R2 ⊆ G2. As in the analysis of the property (I3), we show that |R1| ≥ 1, if
|R1| ≤ 3, then w(G′, {R1, R2}) ≤ cyl(0, |R2|)+2+ |R1| ≤ cyl(|R1|, |R2|)−11, and
otherwise w(G′, {R1, R2}) ≤ cyl(1, |R1|) + cyl(1, |R2|) + 8 ≤ cyl(|R1|, |R2|) − 11.
Using Lemma 76, we have∑
f∈F (G′)

kf∑
i=1

w(Gf
i , {Rf

i }) ≤ w(G′, {R1, R2}) +
∑

f∈F (G′)

el(f) ≤ w(G′, {R1, R2}) + 10.

Combining the inequalities, we conclude that

w(G, {R1, R2}) ≤ w(G′, {R1, R2}) +
∑

f∈F (G′)

el(f) +
∑
f∈X

w(f)

≤ cyl(|R1|, |R2|)− 1 +
∑
f∈X

w(f)

< cyl(|R1|, |R2|).
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Suppose now that G′ is 2-connected. If G′ does not satisfy the assumptions
of Lemma 83, then |R1| ≥ 5 and G′ contains a (≤ 4)-cycle. Let C1 and C2

be the (≤ 4)-cycles in G′ such that the closed subset Σ′ ⊆ Σ between C1 and
C2 is as large as possible, and observe that all (≤ 4)-cycles in G′ belong to the
subgraph Gc of G′ drawn in Σ′. By Theorem 75(a), if Gc is a broken chain,
then it has at most four internal faces. Therefore, Theorem 77 implies that the
total weight of the internal faces of Gc is at most cyl(4, 4). Applying induction
to the subgraphs of G′ between R1 and C1 and between R2 and C2, we have
w(G′, {R1, R2}) ≤ cyl(4, |R1|) + cyl(4, |R2|) + cyl(4, 4) ≤ cyl(|R1|, |R2|).

IfG′ satisfies the assumptions of Lemma 83, then the same inequality w(G′, {R1, R2}) ≤
cyl(|R1|, |R2|) follows by induction. Since each face of G′ is closed 2-cell, we con-
clude that w(G, {R1, R2}) ≤ w(G′, {R1, R2}) ≤ cyl(|R1|, |R2|) as in the proof of
Theorem 77.

7.10 Graphs on surfaces

Let gen(g, t, t0, t1) be a function defined for non-negative integers g, t, t0 and t1
such that t ≥ t0 + t1 as

gen(g, t, t0, t1) = 120g + 48t− 4t1 − 5t0 − 120.

Let surf(g, t, t0, t1) be a function defined for non-negative integers g, t, t0 and t1
such that t ≥ t0 + t1 as

• surf(g, t, t0, t1) = gen(g, t, t0, t1) + 116 − 42t = 8 − 4t1 − 5t0 if g = 0 and
t = t0 + t1 = 2,

• surf(g, t, t0, t1) = gen(g, t, t0, t1) + 114 − 42t = 6t − 4t1 − 5t0 − 6 if g = 0,
t ≤ 2 and t0 + t1 < 2, and

• surf(g, t, t0, t1) = gen(g, t, t0, t1) otherwise.

Consider a graph H embedded in a surface Π with rings Q, and let f be an
internal face of H. Let a0 and a1 be the number of weak and non-weak rings,
respectively, that form one of the facial walks of f by themselves. Let a be the
number of facial walks of f . We define surf(f) = surf(g(Πf ), a, a0, a1).

Let G1 be a graph embedded in Σ1 with rings R1 and G2 a graph is em-
bedded in Σ2 with rings R2. Let m(Gi) denote the number of edges of Gi that
are not contained in the boundary of Σi. We write (G1,Σ1,R1) ≺ (G2,Σ2,R2) if
(g(Σ1), |R1|,m(G1), |E(G1)|) is lexicographically smaller than (g(Σ2), |R2|,m(G2), |E(G2)|).

A graph G embedded in a surface Σ with rings R has internal girth at least
five if every (≤ 4)-cycle in G is equal to one of the rings. Let t0(R) and t1(R)
be the number of weak and non-weak vertex rings in R, respectively. Finally, we
are ready to prove Theorem 51, in the following more general setting.
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Theorem 84. There exists a constant C with the following property. Let G be a
graph embedded in a surface Σ with rings R. If G is R-critical and has internal
girth at least five, then w(G,R) ≤ Csurf(g(Σ), |R|, t0(R), t1(R)) + `(R).

Proof. Let C = 1867 + 67cyl(7, 7)/s(5). We proceed by induction and assume
that the claim holds for all graphs G′ embedded in surfaces Σ′ with rings R′ such
that (G′,Σ′,R′) ≺ (G,Σ,R). Let g = g(Σ), t0 = t0(R) and t1 = t1(R). By
Theorem 73, the claim holds if g = 0 and |R| = 1, hence assume that g > 0 or
|R| > 1. Similarly, if g = 0 and |R| = 2, then we can assume that t0 + t1 ≤ 1
by Lemma 46. By Lemma 70, Lemma 71 and Theorem 41, G satisfies (I0), (I1),
(I2), (I6) and (I9).

Suppose now that there exists a path P of length at most four with ends in
distinct rings R1, R2 ∈ R. By choosing the shortest such path, we can assume
that P intersects no other rings. If R1 or R2 is a vertex ring, first replace it by
a facial ring of length three by adding new vertices and edges in the incident
cuff. Let J = P ∪ ⋃R∈RR and let S = {f}, where f is the face of J incident
with edges of P . Let {(G′,Σ′)} be the G-expansion of S and let R′ be the
natural rings of G′. Note that g(Σ′) = g, |R′| = |R| − 1, `(R′) ≤ `(R) + 14
and t0(R′) + t1(R′) ≥ t0 + t1 − 2. Since (G′,Σ′,R′) ≺ (G,Σ,R), by induction
we have w(G,R) = w(G′,R′) ≤ Csurf(g, |R| − 1, t0(R′), t1(R′)) + `(R) + 14 <
Csurf(g, |R|, t0, t1) + `(R). Therefore, we can assume that no such path exists,
and in particular, (I7) holds.

Next, we aim to prove property (I3). For later use, we will consider a more
general setting.

(37) Let H be a graph embedded in Π with rings Q such that at least one internal
face of H is not open 2-cell and no face of H is omnipresent. If H is Q-critical,
has internal girth at least five and (H,Π,Q) � (G,Σ,R), then

w(H,Q) ≤ `(Q) + C

surf(g(Π), |Q|, t0(Q), t1(Q))− 7−
∑

h∈F (H)

surf(h)

 .

Proof. We prove the claim by induction. Consider for a moment a graph H ′

of girth at least 5 embedded in a surface Π′ with rings Q′ with (H ′,Π′,Q′) ≺
(H,Π,Q), such that H ′ is Q′-critical. We claim that

w(H ′,Q′) ≤ `(Q′) + C

surf(g(Π′), |Q′|, t0(Q′), t1(Q′))−
∑

h∈F (H′)

surf(h)

 .

(7.1)
If at least one internal face of H ′ is not open 2-cell and no face of H ′ is om-
nipresent, then this follows by induction (we could even strengthen the inequality
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by 3C). If all internal faces of H ′ are open 2-cell, then note that surf(h) = 0 for ev-
ery h ∈ H ′, and since (H ′,Π′,Q′) ≺ (G,Σ,R), we can apply Theorem 84 to obtain
(7.1). Finally, suppose that H ′ has an omnipresent face f , let Q′ = {Q1, . . . , Qt}
and for 1 ≤ i ≤ t, let fi be the boundary walk of f such that fi and Qi are
contained in a closed disk ∆i ⊂ Π′ + Q̂i. Since all components of H ′ are planar
and contain only one ring, Lemma 71 implies that all internal faces of H ′ dis-
tinct from f are closed 2-cell. Furthermore, each vertex ring forms component
of the boundary of f , hence surf(f) = surf(g(Π′), |Q′|, t0(Q′), t1(Q′)). If Qi is a
facial ring, then by applying Theorem 73 to the subgraph of H ′ drawn in ∆i,
we conclude that its weight is at most s(|Qi)|) and that |fi| ≤ |Qi|. Note that
s(|Qi|)− s(|fi|) ≤ |Qi| − |fi| by (S0). Therefore, we again obtain (7.1):

w(H ′,Q′) ≤ |f |+
t∑
i=1

s(|Qi|)− s(|fi|)

≤ `(Q′)

= `(Q′) + C

surf(g(Π′), |Q′|, t0(Q′), t1(Q′))−
∑

h∈F (H′)

surf(h)

 .

Let us now return to the graph H. Since H is Q-critical, no component of H
is a planar graph without rings. Let f be a face of H which is not open 2-cell.
Since H has such a face and f is not omnipresent, we have g(Π) > 0 or |Q| > 2.
Let c be a simple closed curve in f infinitesimally close to a facial walk W of f .
Cut Π along c and cap the resulting holes by disks (c is always a 2-sided curve).
Let Π1 be the connected surface obtained this way that contains W , and if c is
separating, then let Π2 be the other surface. Since f is not omnipresent, we can
choose W so that either g(Π1) > 0 or Π1 contains at least two rings of Q. Let us
discuss several cases:

• c is separating and H is contained in Π1. In this case f has only one facial
walk, and since f is not open 2-cell, Π2 is not the sphere. It follows that
g(Π1) = g(Π)− g(Π2) < g(Π), and thus (H,Π1,Q) ≺ (H,Π,Q). Note that
the weights of the faces of the embedding of H in Π and in Π1 are the same,
with the exception of f whose weight in Π is |f | and in Π1 is s(|f |) ≥ |f |−8.
By (7.1), we have

w(H,Q) ≤ `(Q)+8+C

surf(g(Π1), |Q|, t0(Q), t1(Q)) + surf(f)−
∑

h∈F (H)

surf(h)

 .

Note that surf(f) = 120g(Π2) − 72. Since f is not omnipresent, we have
either |Q| ≥ 2 or g(Π1) > 0. Observe that

surf(g(Π1), |Q|, t0(Q), t1(Q)) = surf(g(Π), |Q|, t0(Q), t1(Q))− 120g(Π2) + δ,
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where δ = 0 if |Q| ≥ 3 or g(Π1) > 0 and δ ≤ 116 − 42|Q| = 32 otherwise.
We conclude that

w(H,Q) ≤ `(Q)+C

surf(g(Π), |Q|, t0(Q), t1(Q))− 40−
∑

h∈F (H)

surf(h)

 .

• c is separating and Π2 contains a nonempty part H2 of H. Let H1 be the
part of H contained in Π1. Let Qi be the subset of Q belonging to Πi and
fi the face of Hi corresponding to f , for i ∈ {1, 2}. Note that f1 is an open
disk, hence surf(f1) = 0. Using (7.1), we get

w(H,Q) ≤ w(f)− w(f1)− w(f2) + `(Q1) + `(Q2) +

+C
2∑
i=1

surf(g(Πi), |Qi|, t0(Qi), t1(Qi)) +

+C

surf(f)− surf(f2)−
∑

h∈F (H)

surf(h)

 .

Note that w(f) − w(f1) − w(f2) ≤ 16 and `(Q1) + `(Q2) = `(Q). Also,
surf(f) − surf(f2) ≤ 48, and when g(Πf ) = 0 and f has only two facial
walks, then surf(f)− surf(f2) ≤ 6.

Recall that g(Π1) > 0 or |Q1| ≥ 2, and that H2 is not a planar graph
without rings. For i ∈ {1, 2}, let δi = |Qi| if g(Πi) = 0 and |Qi| ≤ 2, and
let δi = 116/42 otherwise. We have

2∑
i=1

surf(g(Πi), |Qi|, t0(Qi), t1(Qi)) ≤
2∑
i=1

gen(g(Πi), |Qi|, t0(Qi), t1(Qi)) + 116− 42δi

= surf(g(Π), |Q|, t0(Q), t1(Q)) + 112− 42δ1 − 42δ2

≤ surf(g(Π), |Q|, t0(Q), t1(Q))− δ,

where δ = 14 if g(Π2) = 0 and |Q2| = 1 and δ = 56 otherwise. Note
that if g(Π2) = 0 and |Q2| = 1, then g(Πf ) = 0 and f has only two facial
walks. We conclude that surf(f)−surf(f2)−δ ≤ −8. Therefore, w(H,Q) ≤
`(Q) + 16 + C

(
surf(g(Π), |Q|, t0(Q), t1(Q))− 8−∑h∈F (H) surf(h)

)
.

• c is not separating. Let f1 be the face of H (in the embedding in Π1)
bounded by W and f2 the other face corresponding to f . Again, note
that surf(f1) = 0. By (7.1) applied to H embedded in Π1, we obtain the
following for the weight of H in Π:

w(H,Q) ≤ w(f)− w(f1)− w(f2) + `(Q) +
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+Csurf(g(Π1), |Q|, t0(Q), t1(Q)) +

+C

surf(f)− surf(f2)−
∑

h∈F (H)

surf(h)

 .

Since c is two-sided, g(Π1) = g(Π)− 2, and

surf(g(Π1), |Q|, t0(Q), t1(Q)) = surf(g(Π), |Q|, t0(Q), t1(Q))− 240 + δ,

where δ = 0 if g(Π1) > 0 or |Q| > 2 and δ ≤ 32 otherwise. Since surf(f)−
surf(f2) ≤ 48 and w(f) − w(f1) − w(f2) ≤ 16, we have w(H,Q) ≤ `(Q) +

16 + C
(

surf(g(Π), |Q|, t0(Q), t1(Q))− 160−∑h∈F (H) surf(h)
)

.

The results of all the subcases imply (37).

(38) Let H be a graph embedded in Σ with rings R and let f be an omnipresent
face of H. If H is R-critical, has internal girth at least five and no component
of H satisfies (E1), (E2) or (E3), then

w(H,R) ≤ `(R)− κ = `(R)− κ+ C

surf(g, |R|, t0, t1)−
∑

h∈F (H)

surf(h)

 ,

where κ = 5− 5s(5) if H has exactly one component not equal to a ring and this
component is exceptional, κ = 5+5s(5) if H has exactly one component not equal
to a ring and this component is not exceptional, and κ = 6 otherwise.

Proof. Since H is R-critical and f is an omnipresent face, each component of
H is planar and contains exactly one ring. In particular, all internal faces of H
distinct from f are closed 2-cell. For R ∈ R, let HR be the component of H
containing R. Exactly one boundary walk W of f belongs to HR. Cutting along
W and capping the hole by a disk, we obtain an embedding of HR in a disk with
one ring R. Let fR be the face of this embedding bounded by W . Note that either
HR = R or HR is {R}-critical. If R is a vertex ring, then we have HR = R; hence,
every vertex ring in R forms a facial walk of f , and surf(f) = surf(g, |R|, t0, t1).
Consequently, surf(g, |R|, t0, t1) =

∑
h∈F (H) surf(h), and it suffices to prove the

first inequality of the claim.

Suppose that HR 6= R for a ring R ∈ R. Since HR does not satisfy (E1), (E2)
or (E3), Theorem 73 implies that w(HR, {R}) ≤ s(|R| − 5) +α, where α = 5s(5)
if HR satisfies (E4) or (E5) and α = −5s(5) otherwise. Since fR is a face of HR

and s(y) − s(x) > 5s(5) for every y > x ≥ 5 by (S0), we have |fR| ≤ |R| − 5.
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Furthermore, (S0) implies w(HR, {R}) − w(fR) ≤ s(|R) − 5) + α − s(|fR|) ≤
|R| − |fR| − 5 + α. Summing over all the rings, we obtain

w(H,R) = w(f) +
∑
R∈R

(w(HR, {R})− w(fR))

≤ |f |+
∑
R∈R

(|R| − |fR|)− κ

= `(R)− κ,

(39) Let H be a R-critical graph embedded in Σ with rings R so that all internal
faces of H are open 2-cell. If H is R-critical, has internal girth at least five,
|E(H)| ≤ |E(G)| and an internal face f of H is not closed 2-cell, then w(H,R) ≤
`(R) + C (surf(g, |R|, t0, t1)− 1/2).

Proof. Since f is not closed 2-cell, there exists a vertex v appearing at least twice
in the facial walk of f . There exists a simple closed curve c going through the
interior of f and joining two of the appearances of v. Cut the surface along c
and cap the resulting holes by disks. If c is separating, then let H1 and H2 be
the resulting graphs embedded in the two surfaces Σ1 and Σ2 obtained by this
construction; if c is not separating, then let H1 be the resulting graph embedded
in a surface Σ1. Let v1 and v2 be the two vertices to that v is split, such that
v1 ∈ V (H1). Let f1 and f2 be the faces to that f is split by c, where f1 is a face
of H1. Note that `(f1) + `(f2) = `(f), and thus w(f) − w(f1) − w(f2) ≤ 16. If
c is separating, then for i ∈ {1, 2}, let Ri consist of the rings of R contained in
Σi, and if none of these rings contains v, then also of a vertex ring vi (we drill
a new cuff next to it). Here, vi is weak if c is separating, Σ3−i is a disk and
the ring incident with its cuff is a vertex ring. If c is not separating, then let
R1 = R ∪ {v1, v2} if v is internal and let R1 = R ∪ {vi} if v is a ring vertex,
where i ∈ {1, 2} is chosen so that vi is not incident with a cuff of Σ1. We treat
v1 and v2 as non-weak vertex rings and drill cuffs next to them.

Suppose first that c is not separating. Note that H1 has at most two more
rings (of length 1) than H and g(Σ1) ∈ {g − 1, g − 2} (depending on whether c
is one-sided or not), and that H1 has at least two rings. If H1 has only one more
ring than H, then

surf(g(Σ1), |R1|, t0(R1), t1(R1)) ≤ surf(g − 1, |R|+ 1, t0, t1 + 1)

≤ surf(g, |R|, t0, t1)− 44.

Let us now consider the case that H1 has two more rings than H. If g(Σ1) = 0
and |R1| = 2, then note that both rings of H1 are vertex rings. Lemma 46 implies
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that H1 has only one edge; but the corresponding edge in H would form a loop,
which is a contradiction. Consequently, we have g > 1 or |R| > 0, and

surf(g(Σ1), |R1|, t0(R1), t1(R1)) ≤ surf(g − 1, |R|+ 2, t0, t1 + 2)

= surf(g, |R|, t0, t1)− 32.

By induction, we can apply Theorem 51 to H1 and we conclude that w(H,R) =
w(H1,R1) +w(f)−w(f1)−w(f2) ≤ `(R) + 18 +C (surf(g, |R|, t0, t1)− 32), and
the claim follows.

Next, we consider the case that c is separating. Suppose that for i ∈ {1, 2},
we have g(Σi) > 0 or |Ri| > 2, or that g(Σi) = 0, |Ri| = 2 and v is incident
with a cuff belonging to Σi (so that vi was not added to Ri as a vertex ring). We
apply Theorem 51 to H1 and H2 and obtain

w(H,R) = w(H1,R1) + w(H2,R2) + w(f)− w(f1)− w(f2)

≤ `(R) + 18 + C
2∑
i=1

surf(g(Σi), |Ri|, t0(Ri), t1(Ri))

≤ `(R) + 18 + C (surf(g, |R|, t0, t1)− 32) ,

and the claim follows.
Therefore, we can assume that say i = 1 violates the assumptions of the

previous paragraph, i.e., either g(Σ1) = 0, |R1| = 2 and R1 = {v1, R1} for some
ring R1, or g(Σ1) = 0, |R1| = 1 and v1 is incident with the ring R1 of H1. If i = 2
violates the assumptions as well, then let R2 be the ring of H2 distinct from v2
and by symmetry assume that |R1| ≤ |R2|. By Lemma 46, neither R1 nor R2 is a
weak vertex ring, since f contains at least one edge in H1 and in H2. Note that
g(Σ2) = g and |R2| = |R|.

If R1 is not a vertex ring, then we have either |R1| = 1 and t0(R1) = t1(R1) =
0 or |R1| = 2, t0(R1) = 0 and t1(R1) = 1, hence

surf(g(Σ1), |R1|, t0(R1), t1(R1)) ≤ 2.

We apply Theorem 51 to H1 and H2 and obtain w(H,R) ≤ `(R1) + `(R2) + 16 +
C (surf(g, |R|, t0, t1 + 1) + 2) = `(R) + 18 + C (surf(g, |R|, t0, t1)− 2), implying
the claim of the lemma.

Finally, if R1 is a vertex ring, then note that v1 is a ring of H1, since H1 has at
least one edge. By Lemma 46, H1 consists of a single edge joining R1 with v1. In
this case, v2 is a weak vertex ring in H2 (note that H2 is indeed R2-critical, as any
precoloring of R1 forbids exactly one color at v, thus giving a precoloring of v2).
By Theorem 51 applied to H2, We get w(H,R) ≤ `(R) + 1 + Csurf(g, |R|, t0 +
1, t1− 1) ≤ `(R) + 1 +C (surf(g, |R|, t0, t1)− 1), and again the claim follows.

By (37), (38) and (39), we can assume that G satisfies (I3).
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Suppose that G contains a path P of length at most six joining two distinct
vertices u and v of a ring R ∈ R, such that V (P ) ∩ V (R) = {u, v} and R ∪ P
contains no contractible cycle. Since the distance between any two rings in G is
at least five, all vertices of V (P ) \ {u, v} are internal. Let J be the subgraph of
G consisting of P and of the union of the rings, and let S be the set of internal
faces of J . Clearly, S and J satisfy (30). Let {(G1,Σ1), . . . , (Gk,Σk)} be the
G-expansion of S, and for 1 ≤ i ≤ k, let Ri be the natural rings of Gi. Note that∑k

i=1 t0(Ri) = t0 and
∑k

i=1 t1(Ri) = t1. Let r =
(∑k

i=1 |Ri|
)
− |R| and observe

that either r = 0 and k = 1, or r = 1 and 1 ≤ k ≤ 2 (depending on whether the
curve in Σ̂ corresponding to a cycle in R∪P distinct from R is one-sided, two-sided
and non-separating or two-sided and separating). Furthermore,

∑k
i=1 g(Σi) =

g+2k−r−3. If say g(Σ1) = g, then k = 2 and r = 1, and g(Σ2) = 0. Since R∪P
contains no contractible cycle, Σ2 is not a disk, hence |R2| ≥ 2 and |R1| < |R|.
Consequently, (Gi,Σi,Ri) ≺ (G,Σ,R) and by induction, we have w(Gi,Ri) ≤
`(Ri) +Csurf(g(Σi), |Ri|, t0(Ri), t1(Ri)), for 1 ≤ i ≤ k. Since every internal face
of G is an internal face of Gi for some i ∈ {1, . . . , k} and

∑k
i=1 `(Ri) ≤ `(R)+12,

we conclude that w(G,R) ≤ `(R) + 12 +C
∑k

i=1 surf(g(Σi), |Ri|, t0(Ri), t1(Ri)).
Note that for 1 ≤ i ≤ k, we have that Σi is not a disk and Ri contains at least
one facial ring. Since R ∪ P contains no contractible cycle, we have g > 0 or
t > 2. For 1 ≤ i ≤ k, let δi = 30 if g(Σi) = 0 and |Ri| = 2, and let δi = 0
otherwise. Note that

k∑
i=1

surf(g(Σi), |Ri|, t0(Ri), t1(Ri))

=
k∑
i=1

gen(g(Σi), |Ri|, t0(Ri), t1(Ri)) + δi

= surf(g, |R|, t0, t1) + 120(2k − r − 3) + 48r − 120(k − 1) +
k∑
i=1

δi

= surf(g, |R|, t0, t1) + 120k − 72r − 240 +
k∑
i=1

δi

≤ surf(g, |R|, t0, t1)− 12.

The inequality of Theorem 84 follows; therefore, we can assume that

(40) if P is a path of length at most six joining two distinct vertices of a ring
R, then R ∪ P contains a contractible cycle.

Let us note that since g > 0 or |R| ≥ 2, this contractible cycle is unique.
Consider now a path P of length at most four, such that its ends u and v are

ring vertices and all other vertices of P are internal. Both ends of P belong to
the same ring R; let P , P1 and P2 be the paths in R∪P joining u and v. By the
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previous paragraph, we can assume that P ∪ P2 is a contractible cycle. Suppose
that the disk bounded by P ∪P2 neither is a face nor consists of two 5-faces. By
Theorem 41, we have |P ∪ P2| ≥ 9. Let J , S, Gi, Σi and Ri (for i ∈ {1, 2}) be
defined as in the previous paragraph, where Σ2 is a disk andR2 consists of a single
ring corresponding to P ∪P2. Since g(Σ1) = g, |R1| = |R| and |E(G1)| < |E(G)|,
by induction we have w(G1, {R1}) ≤ `(R1) + Csurf(g, |R|, t0, t1). Note that
`(R1) = `(R) + |P | − |P2|. Furthermore, Theorem 73 implies w(G2, {R2}) ≤
s(|P |+ |P2|) = |P |+ |P2| − 8. Therefore, w(G,R) ≤ `(R) +Csurf(g, |R|, t0, t1) +
2|P | − 8. Since |P | ≤ 4, the claim of Theorem 84 follows. Therefore, we can
assume that the disk bounded by P ∪ P1 is either a face or consists of two 5-
faces. The same calculation also excludes the possibility that |P | ≤ 2, since
s(|P | + |P2|) ≤ |P | + |P2| − 4 for any P and P2 such that |P | + |P2| ≥ 5. In
particular, we can assume that (I4) holds for G.

Suppose that G contains two adjacent vertices r1 and r2 of degree two. By
(I7), both r1 and r2 are incident with the same facial ring R. By (I3), we have
|R| ≥ 4. By (I4), the internal face f incident with r1r2 has length at least six.
Let G′ be the graph obtained from G by contracting r1r2, let R′ be the set of
rings of G′ obtained from R by contracting edge r1r2 in R, and let f ′ be the
face of G′ corresponding to f . Observe that G′ is R′-critical. Suppose that G′

contains a (≤ 4)-cycle C ′ distinct from the rings. Then G contains a (≤ 5)-cycle
C distinct from the rings containing r1r2. Since G has internal girth at least 5, we
have |C| = 5, and we obtain a contradiction with (I4). Therefore, G′ has internal
girth at least 5. By induction, we have w(G′,R′) = `(R′) + Csurf(g, |R|, t0, t1),
and since `(R) = `(R′) + 1 and w(f) ≤ w(f ′) + 1, G satisfies the inequality of
Theorem 84. Therefore, assume that G satisfies (I5). Together with the previous
paragraph, this implies that G is well-behaved.

Suppose that G contains a non-contractible cycle C of length at most seven
that does not surround any of the rings. Observe that C intersects at most one
ring, and by (40), C shares at most one vertex with this ring. Let s = 1 if C
intersects a ring, and s = 0 otherwise. Let J be the subgraph of G consisting of C
and of the union of the rings, and let S be the set of internal faces of J . Clearly,
S and J satisfy (30). Let {(G1,Σ1), . . . , (Gk,Σk)} be the G-expansion of S, and

for 1 ≤ i ≤ k, let Ri be the natural rings of Gi. Let r =
(∑k

i=1 |Ri|
)
− |R|.

Note that either r + s = 1 and k = 1, or r + s = 2 and 1 ≤ k ≤ 2. Observe
that

∑k
i=1 g(Σi) = g− s− r+ 2k− 2. Furthermore,

∑k
i=1 t0(Ri) +

∑k
i=1 t1(Ri) ≥

t0 + t1 − s and
∑k

i=1 `(Ri) ≤ `(R) + 14. If g(Σ1) = g, then k = 2 and g(Σ2) = 0;
furthermore, Σ2 has at least two cuffs, and if s = 0, then it has at least three
cuffs, since C does not surround a ring. Thus, if g(Σ1) = g, then |R1| < |R|.
The same argument can be applied to Σ2 if k = 2, hence (Gi,Σi,Ri) ≺ (G,Σ,R)
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for 1 ≤ i ≤ k. By induction, we conclude that

w(G,R) ≤ `(R) + 12 + C
k∑
i=1

surf(g(Σi), |Ri|, t0(Ri), t1(Ri)).

For 1 ≤ i ≤ k, let δi = 72 if g(Σi) = 0 and |Ri| = 1, let δi = 30 if g(Σi) = 0 and
|Ri| = 2, and let δi = 0 otherwise. Since C does not surround a ring, if k = 2
then δ1 + δ2 ≤ 30s. Thomassen [68] proved that every projective planar graph of
girth at least five is 3-colorable, hence if g = 1, then |R| ≥ 1; and if k = 1 then
δ1 ≤ 30 + 42s. We have

k∑
i=1

surf(g(Σi), |Ri|, t0(Ri), t1(Ri))

=
k∑
i=1

gen(g(Σi), |Ri|, t0(Ri), t1(Ri)) + δi

≤ surf(g, |R|, t0, t1) + 120(2k − r − s− 2) + 48r − 120(k − 1) + 5s+
k∑
i=1

δi

= surf(g, |R|, t0, t1) + 120k − 72r − 115s− 120 +
k∑
i=1

δi

≤ surf(g, |R|, t0, t1)− 24.

This implies the inequality of Theorem 84. Therefore, assume that every non-
contractible cycle of length at most 7 surrounds a ring. In particular, G satisfies
(I8).

For each ring R ∈ R, let MR be the set of all edges incident with cycles of G of
length at most 7 that surround R, and let CR be such a cycle chosen so that the
part ΣR of Σ between R and CR is as large as possible. By Lemma 78, at most 70
edges of MR are drawn outside of ΣR. Let KR be a (≤ 7)-cycle in G∩ΣR chosen
so that the part Σ′R of Σ between R and KR is as small as possible. Analogically
to Lemma 78, we see that at most 70 edges of MR ∩ ΣR are drawn outside of
Σ′R. We claim that at most 5cyl(7, 7)/s(5)) edges of G are drawn in Σ′R: When
KR and CR are vertex-disjoint, this follows from Lemma 83. When KR intersects
CR, this is implied by Lemma 72 and Theorem 73, since cyl(7, 7) > s(14). We
conclude that |MR| ≤ 140 + 5cyl(7, 7)/s(5).

Let M consist of all rings of length at most four and of all non-contractible
cycles in G of length at most 7. Observe that M =

⋃
R∈RMR, and thus

|E(M)| ≤ (140 + 5cyl(7, 7)/s(5))|R|. Note that M captures all (≤ 4)-cycles
in G. If w(G,R) ≤ 8g + 8|R| + (2/3 + 26ε)`(R) + 20|E(M)|/3 − 16, then
w(G,R) ≤ `(R) + Csurf(g, |R|, t0, t1) by the choice of C, and Theorem 84 is
true. Therefore, assume that this is not the case, and thus the assumptions of
Theorem 75 are satisfied.
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Let G′ be the R-critical graph embedded in Σ such that |E(G′)| < |E(G)|,
satisfying the conditions of Theorem 75. In particular, (b) together with the
choice of M implies that G′ has internal girth at least five. Let X ⊂ F (G) and
{(Jf , Sf ) : f ∈ F (G′)} be the cover of G by faces of G′ as in Theorem 75(d). For

f ∈ F (G′), let {(Gf
1 ,Σ

f
1), . . . , (Gf

kf
,Σf

kf
)} be the G-expansion of Sf and let Rf

i

denote the natural rings of Gf
i . We have

w(G,R) =
∑

f∈F (G)

w(f) =
∑
f∈X

w(f) +
∑

f∈F (G′)

kf∑
i=1

w(Gf
i ,Rf

i ).

Consider a face f ∈ F (G′). We have g(Σf ) ≤ g. If g(Σf ) = g, then every
component of G′ is planar, and since G′ is R-critical, each component of G′

contains at least one ring of R; consequently, f has at most |R| facial walks
and Σf has at most |R| cuffs. Since the surfaces of the G-expansion of Sf are

fragments of Σf , we have (Gf
i ,Σ

f
i ,Rf

i ) ≺ (G,Σ,R) for 1 ≤ i ≤ kf : otherwise, we

would have m(Gf
i ) = m(G), hence by the definition of G-expansion, Sf would

have to be equal to the union of rings in R, contrary to the definition of a
cover. Therefore, we can apply Theorem 84 to Gf

i and we get w(Gf
i ,Rf

i ) ≤
`(Rf

i ) +Csurf(g(Σf
i ), |Rf

i |, t0(Rf
i ), t1(Rf

i )). Observe that since {Σf
1 , . . . ,Σ

f
kf
} are

fragments of Σf ,

kf∑
i=1

surf(g(Σf
i ), |Rf

i |, t0(Rf
i ), t1(Rf

i )) ≤ surf(f).

In case that f is open 2-cell, all fragments of f are disks and we can use Theo-
rem 73 instead of Theorem 84. Combining the inequalities, we obtain

kf∑
i=1

w(Gf
i ,Rf

i ) ≤ w(f) + el(f) + Csurf(f). (7.2)

Combining the inequalities and using Theorem 75(d), we have

w(G,R) ≤ |X|s(6) +
∑

f∈F (G′)

w(f) + el(f) + Csurf(f)

≤ w(G′,R) + s(6) + 10 + C
∑

f∈F (G′)

surf(f).

If G′ has a face that is neither open 2-cell nor omnipresent, then (37) implies that

w(G′,R) ≤ `(R) + C

surf(g, |R|, t0, t1)− 7−
∑

f∈F (G′)

surf(f)

 ,
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and consequently G satisfies the outcome of Theorem 84. Therefore, we can as-
sume that all internal faces of G′ are either open 2-cell or omnipresent. Similarly,
using (39) we can assume that if no face of G′ is omnipresent, then all of them
are closed 2-cell.

Suppose first that G has no omnipresent face. Using Theorem 75(d) and (e)
and applying Theorem 84 to G′, we have

w(G,R) ≤ |X|s(6) +
∑

f∈F (G′)

w(f)− c(f)

= w(G′,R) + |X|s(6)−
∑

f∈F (G′)

c(f)

≤ w(G′,R) ≤ `(R) + Csurf(g, |R|, t0, t1).

It remains to consider the case that G′ has an omnipresent face h. Then, every
component of G is a plane graph with one ring, and by Lemma 71, we conclude
that every internal face of G different from h is closed 2-cell and G′ satisfies (I6).
By Theorem 75(d), we have c(h) 6= −∞, hence no component of G′ satisfies (E1),
(E2) or (E3). By Theorem 75(d) and (e) by (7.2) and by (38), we have

w(G,R) ≤ |X|s(6) +
∑

f∈F (G′),f 6=h
(w(f)− c(f)) +

kh∑
i=1

w(Gh
i ,Rh

i )

= w(G′,R) + |X|s(6) + (c(h)− w(h))−
∑

f∈F (G′)

c(f) +

kh∑
i=1

w(Gh
i ,Rh

i )

≤ w(G′,R) + c(h)− w(h) +

kh∑
i=1

w(Gh
i ,Rh

i )

≤ w(G′,R) + c(h) + el(h) + Csurf(g, |R|, t0, t1)
≤ `(R) + Csurf(g, |R|, t0, t1) + c(h) + el(h)− κ,

where κ is defined as in (38). By Theorem 75(d), we have el(h) ≤ 5, and thus
c(h) + el(h)− κ ≤ 0. Therefore,

w(G,R) ≤ `(R) + Csurf(g, |R|, t0, t1)

as required.
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Chapter 8

Distant perturbations in
5-list-colorability of planar
graphs1

A well-known result by Thomassen [65] states that every planar graph is 5-list-
colorable. This implies that planar graphs are 5-colorable. Since planar graphs
are known to be 4-colorable [6, 7], a natural question is whether the result can be
strengthened. Voigt [75] gave an example of a non-4-list-colorable planar graph;
hence, the vertices with lists of size smaller than 5 must be restricted in some
way. For example, Albertson [5] asked the following question.

Problem 85. Does there exist a constant d such that whenever G is a planar
graph with list assignment L that gives list of size one or five to each vertex and
the distance between every two vertices with list of size one is at least d, then G
is L-colorable?

For usual colorings, Albertson [5] proved, solving a problem asked earlier by
Thomassen [70], that having a set of vertices in a planar graph G that are precol-
ored with colors 1, . . . , 5 and are at distance at least 4 from each other, then the
precoloring can be extended to a 5-coloring of G. This result does not generalize
to 4-colorings even if we have only two precolored vertices (arbitrarily far apart).
Examples are given by triangulations of the plane that have precisely two vertices
of odd degree. As proved by Ballantine [9] and Fisk [37], the two vertices of odd
degree must have the same color in every 4-coloring. Thus, precoloring them with
a different color, we cannot extend the precoloring to a 4-coloring of the whole
graph.

Recently, there has been a significant progress towards the solution of Albert-
son’s problem, see [8] and [30]. Let us remark that when the number of precolored

1The results of this chapter are based on Dvořák et al. [31].
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vertices is also bounded by some constant, then the answer is positive by the re-
sults of Kawarabayashi and Mohar [46] on 5-list-coloring graphs on surfaces. We
aim to prove that the answer is positive in general.

Theorem 86. There exists a constant d with the following property. If G is a
planar graph with list assignment L that gives list of size one or five to each vertex
and the distance between every two vertices with list of size one is at least d, then
G is L-colorable.

In the proof, we will need the following result concerning the case that the
precolored vertices form a connected subgraph, which is of an independent inter-
est.

Theorem 87. Suppose that G is a planar graph, H is a connected subgraph of
G and L is an assignment of lists to the vertices of G such that |L(v)| ≥ 5 for
v ∈ V (G) \ V (H). If G is not L-colorable, then G contains a subgraph F with at
most 72|V (H)|2 vertices such that F is not L-colorable.

Let us remark that the existence of such a subgraph of bounded size follows
from [46], but our bound on the size of F is much better and gives a better
estimate on the required distance in Problem 85.

Let G be a plane graph, P a subpath of its outer face H, and X a subset of
V (G). For a positive integer M , a list assignment L for G is M-valid with respect
to P and X if

• |L(v)| = 5 for v ∈ V (G) \ (V (H) ∪X),

• 3 ≤ |L(v)| ≤ 5 for v ∈ V (H) \ (V (P ) ∪X),

• |L(v)| = 1 for v ∈ X,

• the subgraph of G induced by V (P ) ∪X is L-colorable, and

• for every v ∈ X, the vertices of V (G) \ {v} at distance at most M from v
do not belong to P and have lists of size 5.

If X = ∅ and L is 0-valid, we say that L is valid.
A key ingredient for our proofs is the following well-known result of Thomassen [65]

regarding the coloring of planar graphs from lists of restricted sizes.

Theorem 88. If G is a connected plane graph with outer face H, xy an edge of
H and L a list assignment that is valid with respect to xy, then G is L-colorable.

There exist arbitrarily large non-L-colorable graphs with this structure if we
allow a path of length two to be precolored. Thomassen [73] gave their complete
description, see Lemma 93. In Theorem 92, we deal with the more general case
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when P has fixed length k. In particular, we show that if G is a minimal non-
L-colorable graph satisfying the assumptions of Theorem 92, then at most k − 2
of its vertices incident with the outer face have list of size at least four. In
conjunction with Theorem 87, this enables us to bound the size of such graphs
with the additional assumption that no two vertices with list of size three are
adjacent.

Next, we use the new approach to 5-list-colorability of planar graphs developed
in [30] (see also Chapter 9) to show that we can reduce the problem to the case
that only one internal vertex is precolored. Having established this fact, the
following lemma gives the affirmative answer to Problem 85.

Lemma 89. There exists a constant M with the following property. For every
plane graph G with outer face H, any (possibly null) subpath P of H of length at
most one, any x ∈ V (G) \ V (P ) and any list assignment L that is M-valid with
respect to P and {x} such that no two vertices with list of size three are adjacent,
the graph G is L-colorable.

We first prove Theorem 87, in Section 8.1. In Section 8.2, we prove Theo-
rem 92. In Section 8.3, we show that Lemma 89 implies our main result, Theo-
rem 86. The proof of Lemma 89 is omitted from this presentation (it can be found
in the full paper [31]), as it is rather technical and would not help illustrating the
concepts of this chapter.

Let us mention that we could also allow different kinds of “irregularities” other
than just precolored vertices, for example, precolored triangles or crossings, as
long as the irregularity satisfies the condition analogous to Lemma 89. To keep
the presentation manageable, we do not give proofs in this full generality and
focus on the case of precolored single vertices.

8.1 Critical graphs

To avoid dealing with irrelevant subgraphs, we define what a list-coloring critical
graph means. Let G be a graph, T ⊆ G a (not necessarily induced) subgraph of
G and L a list assignment to the vertices of V (G). For an L-coloring ϕ of T , we
say that ϕ extends to an L-coloring of G if there exists an L-coloring of G that
matches ϕ on V (T ). The graph G is T -critical with respect to the list assignment
L if G 6= T and for every proper subgraph G′ ⊂ G such that T ⊆ G′, there exists
a coloring of T that extends to an L-coloring of G′, but does not extend to an
L-coloring of G. If the list assignment is clear from the context, we shorten this
and say that G is T -critical. Note that G is list-critical for the usual definition
of criticality if and only if it is ∅-critical. Let us also observe that every proper
subgraph of a T -critical graph that includes T is L-colorable, and that it may
happen that G is also L-colorable.
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Let G be a T -critical graph (with respect to some list assignment). For S ⊆ G,
a graph G′ ⊆ G is an S-component of G if S is a proper subgraph of G′, T∩G′ ⊆ S
and all edges of G incident with vertices of V (G′) \ V (S) belong to G′. For
example, if G is a plane graph with T contained in the boundary of its outer
face and S is a cycle in G that does not bound a face, then the subgraph of G
drawn inside the closed disk bounded by S (which we denote by IntS(G)) is an
S-component of G.

Critical graphs have the following basic property.

Lemma 90. Let G be a T -critical graph with respect to a list assignment L. Let
G′ be an S-component of G, for some S ⊆ G. Then G′ is S-critical.

Proof. If G contains an isolated vertex v that does not belong to T , then since
G is T -critical, we have that L(v) = ∅ and T = G − v. Observe that if G′ is an
S-component of G, then S ⊆ T and G′ − v = S, and clearly G′ is S-critical.

Therefore, we can assume that every isolated vertex of G belongs to T . Con-
sequently, every isolated vertex of G′ belongs to S. Suppose for a contradiction
that G′ is not S-critical. Then, there exists an edge e ∈ E(G′) \ E(S) such
that every L-coloring of S that extends to G′ − e also extends to G′. Note that
e 6∈ E(T ). Since G is T -critical, there exists a coloring ψ of T that extends to an
L-coloring ϕ of G − e, but does not extend to an L-coloring of G. However, by
the choice of e, the restriction of ϕ to S extends to an L-coloring ϕ′ of G′. Let
ϕ′′ be the coloring that matches ϕ′ on V (G′) and ϕ on V (G) \ V (G′). Observe
that ϕ′′ is an L-coloring of G extending ψ, which is a contradiction.

Clearly, to prove Theorem 87, it suffices to bound the size of critical graphs.
It is more convenient to bound the weight of such graphs, which is defined as
follows. Let G be a plane graph, P a subgraph of the outer face H of G, and L a
list assignment. For a face f 6= H, we set ωG,P,L(f) = |f | − 3, where |f | denotes
the number of edges appearing on the boundary of f (if an edge is incident with
f on both sides, it contributes 2 to |f |). We set ωG,P,L(H) = 0. The weight is also
defined for the vertices of G. If v ∈ V (P ), then ωG,P,L(v) = 1 if v is a cut-vertex of
G, and ωG,P,L(v) = 0 otherwise. If v ∈ V (H) \V (P ), then ωG,P,L(v) = |L(v)|− 3.
If v ∈ V (G) \ V (H), then ωG,P,L(v) = 0. In the cases where G, P or L are clear
from the context, we drop the corresponding indices. We set

ωP,L(G) =
∑

v∈V (G)

ωG,P,L(v) +
∑

f∈F (G)

ωG,P,L(f),

where the sums go over the vertices and faces of G, respectively.
Given a graph G and a cycle K ⊆ G, an edge uv is a chord of K if u, v ∈ V (K),

but uv is not an edge of K. For an integer k ≥ 2, a path v0v1 . . . vk is a k-chord
if v0, vk ∈ V (K) and v1, . . . , vk−1 6∈ V (K).

Let S be a set of proper colorings of K. We say that v ∈ V (K) is relaxed in
S if there exist two distinct colorings in S that differ only in the color of v.
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Lemma 91. Let G be a plane graph with its outer face H bounded by a cycle
and L a list assignment for G such that |L(v)| ≥ 5 for v ∈ V (G) \ V (H). If G is
H-critical with respect to the list assignment L and G is not equal to H with one
added chord, then

ωH,L(G) +
|V (G) \ V (H)|

2|H|+ 2
≤ |H| − 9/2.

Proof. We proceed by induction. Assume that the lemma holds for all graphs
having fewer edges than G. For a subgraph G′ of G with outer face C, let

θ(G′) = ωC,L(G′) +
|V (G′) \ V (C)|

2|H|+ 2
.

Let C 6= H be a cycle in G such that |C| ≤ |H|. By Lemma 90, IntC(G)
is C-critical with respect to L if C is not a face boundary. If IntC(G) has at
least four faces, then the induction hypothesis applied to IntC(G) implies that
θ(IntC(G)) ≤ |C| − 9/2. Observe that if IntC(G) has three faces (i.e., consists of
C and its chord), then θ(IntC(G)) = ωC,L(IntC(G)) = |C| − 4, and if C bounds a
face, then θ(IntC(G)) = |C| − 3.

We construct a sequence G0 ⊃ G1 ⊃ . . . ⊃ Gk of subgraphs of G with outer
faces H0, H1, . . . , Hk such that for 0 ≤ i ≤ k, Gi is Hi-critical and

ωHi,L(Gi) = ωH,L(G)− (|H| − |Hi|). (8.1)

We set G0 = G and H0 = H. Suppose that Gi was already constructed. If Hi

has a chord, or a vertex of Gi has at least four neighbors in Hi, then we set k = i
and stop. Otherwise, by Theorem 88, there is a vertex v ∈ V (Gi) with three
neighbors v1, v2 and v3 in Hi. (If that is not the case, consider any L-coloring ϕ
of Hi, remove the colors of the vertices of Hi from the lists of their neighbors and
color Gi−V (Hi) from the resulting lists. This shows that every L-coloring of Hi

extends to an L-coloring of Gi, contradicting the Hi-criticality of Gi.) Let C1,
C2 and C3 be the three cycles of Hi + {v1v, v2v, v3v} distinct from Hi, where Cj
does not contain the edge vvj (j = 1, 2, 3). If at most one of these cycles bounds
a face of Gi, then we set k = i and stop. Otherwise, assume that C1 and C3

are faces of Gi. Let Si be the set of L-colorings of Hi that do not extend to an
L-coloring of Gi. If v2 is relaxed in Si, then again set k = i and stop. Otherwise,
let Gi+1 = IntC2(Gi) and let Hi+1 = C2 be the cycle bounding its outer face.
Note that |Hi+1| ≤ |Hi| and that

|Hi+1| − |Hi| = (|C1| − 3) + (|C3| − 3). (8.2)

Observe that if w ∈ V (Hi+1) \ {v} is relaxed in Si, then it is also relaxed
in Si+1. This is obvious if w 6= {v1, v3}. Suppose that say w = v1 and that
ϕ1, ϕ2 ∈ Si differ only in the color of v1. Since v has list of size at least 5, there
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exists a color c ∈ L(v) \ {ϕ1(v1), ϕ2(v1), ϕ1(v2), ϕ1(v3)}. Let ϕ′1 and ϕ′2 be the
L-colorings of Hi+1 that match ϕ1 and ϕ2 on Hi and ϕ′1(v) = ϕ′2(v) = c. Then
neither ϕ′1 nor ϕ′2 extend to an L-coloring of Gi+1, showing that v1 is relaxed in
Si+1. Similarly, v is relaxed in Si+1, since for any ϕ ∈ S, there exist at least two
ways how to L-color v. We conclude that the number of non-relaxed vertices in
Si+1 is smaller than the number of non-relaxed vertices in Si for every i < k, and
consequently, k ≤ |H|.

Lemma 90 implies that every Gi is Hi-critical. It is also easy to see by in-
duction and using (8.2) that (8.1) holds for 0 ≤ i ≤ k. In each step in the
construction of the sequence (Gi, Hi)

k
i=0, the number |V (Gi)\V (Hi)| is decreased

by 1. Thus, (8.1) implies that

θ(G)− θ(Gk) = |H| − |Hk|+
k

2|H|+ 2
. (8.3)

Suppose that there exist a proper subgraph G′ ⊃ Hk of Gk and a coloring
ϕ ∈ Sk that does not extend to an L-coloring of G′. We may choose G′ to be
Hk-critical. Note that

θ(G) =
k

2|H|+ 2
+ (|H| − |Hk|) + θ(G′) +

∑
f

(θ(Int
f

(G))− ω(f)),

where the summation goes over the faces of G′. By induction, θ(G′) ≤ |Hk| − 4,
since G′ 6= Hk. This implies that all faces of G′ are shorter than |H|. Since
G′ is a proper subgraph of Gk, we have θ(Intf (G)) ≤ ω(f) − 1 for at least one
face f of G′ by induction. Therefore, θ(G) ≤ 1/2 + |H| − 4− 1 = |H| − 9/2, as
required. Therefore, we can assume that every coloring in Sk extends to every
proper subgraph of Gk that includes Hk.

Let us now consider various possibilities in the definition of Gk. If v ∈ V (Gk)\
V (Hk) has exactly three neighbors v1, v2 and v3 in Hk and v2 is relaxed, then
consider the colorings ϕ1, ϕ2 ∈ Sk that differ only in the color of v2. The coloring
ϕ1 extends to an L-coloring ψ of Gk − vv2. But ψ(v) 6= ϕ1(v2) or ψ(v) 6= ϕ2(v2),
hence either ϕ1 or ϕ2 extends to an L-coloring of Gk. This is a contradiction.

Suppose now that Hk has a chord e = xy in Gk. If Gk = Hk + e, then since
G is not H with a single chord, we have k > 0. However, that implies that a
vertex of Gk−1 has degree at most four and list of size 5, which is impossible
in a critical graph. This implies that Gk 6= Hk + e. Since Gk is Hk-critical,
there exists a coloring ϕ ∈ Sk that extends to an L-coloring of Hk + e, i.e.,
ϕ(x) 6= ϕ(y). However, every coloring in Sk extends to every proper subgraph of
Gk that includes Hk, and it follows that ϕ extends to an L-coloring of Gk − e.
This gives an L-coloring of Gk extending ϕ, contradicting the assumption that
ϕ ∈ Sk. Therefore, we can assume that Hk is an induced cycle in Gk.

It follows that a vertex v ∈ V (Gk) \ V (Hk) either has at least four neighbors
in Hk, or three neighbors v1, v2 and v3 in Hk such that at most one of the
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cycles of Hk + {v1v, v2v, v3v} bounds a face distinct from Hk. Then Hk has a
2-chord Q such that neither of the cycles K1 and K2 of Hk ∪ Q distinct from
Hk bounds a face. For i ∈ {1, 2}, let G′i = IntKi

(G). Suppose first that it is
not possible to choose Q so that neither G′1 nor G′2 is a cycle with one chord.
Since the middle vertex v of Q has degree at least 5, this can only happen if
V (Gk)\V (Hk) = {v} and v has degree exactly 5. But then k = 0, since otherwise
Gk−1 would contain a vertex of degree at most four with list of size 5, and we
have θ(G) = |H| − 5 + 1

2|H|+2
< |H| − 9/2.

Finally, suppose that neither G′1 nor G′2 is a cycle with a chord. By induction,
we have θ(G) ≤ k+1

2|H|+2
+ (|H| − |Hk|) + θ(G′1) + θ(G′2) ≤ 1/2 + (|H| − |Hk|) +

|K1|+ |K2| − 9 = 1/2 + (|H| − |Hk|) + |Hk| − 5 = |H| − 9/2, as required.

Lemma 91 gives rise to a natural algorithm to enumerate all such H-critical
graphs: we proceed by the length k of the cycle H, thus assume that we already
know, up to isomorphism, the set G of all planar graphs with precolored outer
cycle of length at most k − 1, such that the internal vertices have lists of size
at least five. Let HA be all graphs consisting of a cycle of length ≤ k with a
chord and HB the graphs consisting of a cycle of length ≤ k and a vertex with
at least three neighbors in the cycle. Let H′0 be the set of all graphs that can
be obtained from the graphs in HA ∪ HB by pasting the graphs of G in some of
the faces. Let H0 be the subset of H′0 consisting of the graphs that are critical
with respect to their outer face. For each graph in H0, keep adding a vertex of
degree three adjacent to three consecutive vertices of H, as long as the resulting
graph is critical with respect to its outer face. This way, we will obtain all graphs
critical with respect to the outer face of length `. Lemma 91 guarantees that
this algorithm will finish. Note also that by omitting HA in the first step of the
algorithm, we can generate such critical graphs whose outer cycle is chordless.

The main difficulty in the implementation is the need to generate all the
possible lists in order to test the criticality, which makes the time complexity
impractical. However, sometimes it is sufficient to generate a set of graphs that
is guaranteed to contain all graphs that are critical (for some choice of the lists),
but may contain some non-critical graphs as well. To achieve this, one may
replace the criticality testing by a set of simple heuristics that prove that a
graph is not critical. For example, in an H-critical graph G, each vertex v ∈
V (G) \ V (H) has degree at least |L(v)|, and the vertices whose degrees match
the sizes of the lists induce a subgraph G′ such that each block of G′ is either a
complete graph or an odd cycle [74]. There are similar claims forbidding other
kinds of subgraphs with specified sizes of lists. On the positive side, to prove
that a graph is H-critical, it is usually sufficient to consider the case that all
lists are equal. By combining these two tests, we were able to generate graphs
critical with respect to the outer face of length at most 9. If the outer face is
an induced cycle, then there are three of them for length 6, six for length 7, 34
for length 8 and 182 for length 9. The program that we used can be found at
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f f

Figure 8.1: Splitting the boundary of a face of H. The boundaries of f and the
split cycle C are shown by bold edges.

http://atrey.karlin.mff.cuni.cz/~rakdver/5choos/.

Theorem 87 is an easy corollary of Lemma 91.

Proof of Theorem 87. Let F be a minimal subgraph of G including H that is not
L-colorable. If F = H, then the conclusion of Theorem 87 clearly holds. Hence,
assume that F 6= H, and thus F is H-critical. Let f be a face of H and let F ′f be
the subgraph of F drawn in f . In F ′f , split the vertices of f so that the interior of
f is unchanged and f becomes a cycle. The notion of “splitting” should be clear
from a generic example shown in Figure 8.1. Let Ff be the resulting graph and
C the cycle corresponding to f , and note that the length of C is |f |. Observe
that if V (Ff ) 6= V (C), then Ff is C-critical, and by Lemma 91,

|V (F ′f ) \ V (f)| = |V (Ff ) \ V (C)| ≤ (2|f |+ 2)(|f | − 9/2) ≤ 2|f |2. (8.4)

Let fi (i = 1, . . . , k) be the faces of H which contain at least one vertex of F
in their interior, and note that

k∑
i=1

|fi| ≤ 2|E(H)| ≤ 6|V (H)| − 12, (8.5)

where the last inequality is a well-known consequence of Euler’s formula for planar
graphs (which holds if |V (H)| ≥ 3; this is true by Theorem 88). Thus,

k∑
i=1

|fi|2 ≤
( k∑
i=1

|fi|
)2
≤ 36|V (H)|2 − 144|V (H)|+ 144 < 36|V (H)|2 − |V (H)|/2.

(8.6)
Finally, by using (8.4) and (8.6), we bound the order of F as follows:

|V (F )| ≤ |V (H)|+
k∑
i=1

|V (F ′fi) \ V (fi)| ≤ |V (H)|+ 2
k∑
i=1

|fi|2 ≤ 72|V (H)|2.

This completes the proof of Theorem 87.
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8.2 Extending a coloring of a path

For a path P , we let `(P ) denote its length (the number of its edges). A vertex of
P is an inside vertex if it is not an endvertex of P . The main result of this section
follows by using the same basic strategy as in Thomassen’s proof of Theorem 88
[65].

Theorem 92. Let G be a plane graph and P a subpath of its outer face H. Let
L be a list assignment valid with respect to P . If G is P -critical with respect to
L, then ωP,L(G) ≤ `(P )− 2.

Proof. Suppose for a contradiction that G is a counterexample with the smallest
number of edges, and in particular that ωP,L(G) ≥ ` − 1, where ` = `(P ). By
Theorem 88, we have ` ≥ 2. Furthermore, Theorem 88 also implies that if
either a vertex or two adjacent vertices form a vertex-cut R in G, then each
component of G − R contains a vertex of P . Let P = p0p1 . . . p`. If pi is a
cut-vertex for some 1 ≤ i ≤ ` − 1, then G = G1 ∪ G2, where G1, G2 6= {pi} and
G1∩G2 = {pi}. Let P1 = P ∩G1 and P2 = P ∩G2. Since G 6= P , we can assume
that G1 6= P1. Note that if G2 = P2, then ωP2,L(G2) = `(P2) − 1. If Gi 6= Pi,
then Gi is Pi-critical by Lemma 90, for i ∈ {1, 2}. By the minimality of G, we
have ωP,L(G) = ωP1,L(G1) +ωP2,L(G2) + 1 ≤ (`(P1)− 2) + (`(P2)− 1) + 1 = `− 2.
Since ωP,L(G) ≥ `− 1, we conclude that G is 2-connected.

Suppose that there exists a proper subgraph G′ ⊇ P of G and an L-coloring ψ
of P does not extend to an L-coloring of G′. We may choose G′ to be P -critical.
By the minimality of G, we have ωP,L(G′) ≤ ` − 2. Let H ′ be the outer face
of G′ and let W ′ be the walk such that the concatenation of W ′ and P is the
boundary walk H ′ of G′. Since G′ is P -critical, Theorem 88 implies that W ′ is a
path. Let q0, . . . , qm be the vertices of V (H)∩V (W ′) that are not inside vertices
on the path P , listed in the order as they appear in W ′, where q0 and qm are
the endvertices of P . Observe that q0, . . . , qm appear in the same order also in
H. Each subwalk Qi of W ′ from qi−1 to qi (i = 1, . . . ,m) is called a span. Note
that W ′ is the union of spans Q1, . . . , Qm, and each of the spans is a path. For
1 ≤ i ≤ m, let Ri be the segment of H from qi−1 to qi, and let Gi be the subgraph
of G drawn inside the closed disk bounded by Ri ∪ Qi. Note that if Gi = Qi,
then Qi is an edge of H. Observe that ωG′,P,L(v) ≥ 1 for each inside vertex v of
Qi, since v either has list of size 5 or it is a cut-vertex in G′; hence, their total
weight is at least `(Qi)− 1. Note that ωG,P,L(v) = 0. By the minimality of G, we
have ωQi,L(Gi) ≤ `(Qi)− 2 if Qi is not equal to an edge of H. If Qi is an edge of
H, then ωQi,L(Gi) = 0 = `(Qi) − 1. Furthermore, if f is an internal face of G′,
then Lemma 91 implies that ωf,L(Intf (G)) ≤ ωG′,P,L(f). It follows that

ωP,L(G) ≤ ωP,L(G′) +
m∑
i=1

(ωQi,L(Gi)− (`(Qi)− 1)) +
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∑
f∈F (G′)

(ωf,L(Int
f

(G))− ωG′,P,L(f))

≤ ωP,L(G′) ≤ `− 2.

This is a contradiction which proves the following:

(41) For every proper subgraph G′ of G, every L-coloring ψ of P extends to an
L-coloring of G′.

Let ψ be an L-coloring of P that does not extend to G. If L′ is the list as-
signment such that L′(v) = L(v) for v 6∈ V (P ) and L′(v) = {ψ(v)} for v ∈ V (P ),
(41) implies that G is P -critical with respect to L′. Note that ωP,L(G) = ωP,L′(G)
as the sizes of the lists of the vertices of P are not affecting ω. Consequently, we
can assume henceforth that |L(v)| = 1 for every v ∈ V (P ). If V (H) = V (P ),
then by Lemma 91, ωP,L(G) = ωH,L(G) ≤ ` − 2. This is a contradiction, hence
p0 has a neighbor w ∈ V (H) \ V (P ).

If |L(w)| ≥ 4, then let L′ be the list assignment obtained from L by setting
L′(w) = L(w) \ L(p0). Note that G′ = G − p0w is P -critical with respect to L′,
and by the minimality of G, ωP,L′(G′) ≤ ` − 2. Let f be the internal face of G
incident with p0w. Suppose that u ∈ V (f) \ {w, p0}. If u belongs to V (H), then
u is a cutvertex in G′, and as shown at the beginning of the proof, u is an inside
vertex of P . Therefore, ωG′,P,L′(u) = 1 and ωG,P,L(u) = 0. On the other hand, if
u /∈ V (H), then ωG′,P,L′(u) = 2 and ωG,P,L(u) = 0. Using these facts we obtain a
contradiction:

ωP,L(G) = ωP,L′(G′) + ωG,P,L(f) + 1−
∑

u∈V (f)\{w,p0}
(ωG′,P,L′(u)− ωG,P,L(u))

≤ ωP,L′(G′) + (|f | − 3) + 1− (|f | − 2) = ωP,L′(G′) ≤ `− 2.

Next, consider the case that |L(w)| = 3 and w is adjacent to a vertex pi for
some 1 ≤ i ≤ ` − 1. Let C be the cycle composed of p0wpi and a subpath of P
and let G′ be the subgraph of G obtained by removing all vertices and edges of
IntC(G) except for piw. Let P ′ = (P ∩G′) + piw. Note that G′ is P ′-critical with
respect to L. By the minimality of G and Lemma 91, we have

ωP,L(G) = ωP ′,L(G′) + ωC,L(Int
C

(G)) ≤ `(P ′)− 2 + |C| − 3 = `− 2.

Suppose now that w is adjacent to p`. Note that wp` is an edge of H and G 6= H,
hence Lemma 91 implies that ωP,L(G) = ωH,L(G) ≤ |H| − 4 = ` − 2. This is a
contradiction.

Finally, suppose that p0 is the only neighbor of w in P . Note that L(p0) ⊂
L(w), since G is P -critical. Furthermore, w has only one neighbor z ∈ V (H)
distinct from p0. Let S = L(w) \ L(p0), G

′ = G − w and let L′ be defined by
L′(v) = L(v) if v is not a neighbor of w or if v = p0 or v = z, and L′(v) = L(v)\S
otherwise. Since |S| = 2, L′ is a valid list assignment with respect to P . Note
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Figure 8.2: A fan, a fat fan, and a fan procession

that G′ is not L′-colorable, as every L′-coloring of G′ can be extended to an
L-coloring of G by coloring w using a color from S different from the color of
z. Let G′′ be a P -critical subgraph of G′. Let Q1, . . . , Qm be the spans in the
outer face of G′′ and let Gi be defined as in the proof of (41), for 1 ≤ i ≤ m,
where w ∈ V (G1). The path Q1 is an edge-disjoint union of paths M1, . . . , Mt,
where the endvertices of Mj are neighbors of w and the inside vertices of Mj are
non-adjacent to w for 1 ≤ j ≤ t (with the exception that one of the endvertices
of Mt does not have to be adjacent to w). For 1 ≤ j ≤ t, let Cj be the cycle or
path formed by Mj and the edges between w and Mj and let Hj be the subgraph
of G split off by Cj. Note that if v is an inside vertex of Mj, then ωG,P,L(v) = 0
and ωG′′,P,L′(v) ≥ 1, while endvertices of Mj have the same weight in G and in
G′′. Furthermore, ωG,P,L(w) = 0. By the minimality of G and Lemma 91, we
have

ωQ1,L(G1) ≤
t∑

j=1

ωCj ,L(Hj) ≤
t∑

j=1

(`(Mj)− 1).

Furthermore,

∑
v∈V (Q1)

ωG′′,P,L′(v)− ωG,P,L(v) ≥
t∑

j=1

(`(Mi)− 1) ≥ ωQ1,L(G1).

We analyze the weights of the other pieces of G − G′ in the same way as in
the proof of (41) and conclude that ωP,L(G) ≤ ωP,L′(G′′). This contradicts the
minimality of G.

We shall need a more precise description of critical graphs in the case that
`(P ) = 2. There are infinitely many such graphs. However, their structure is
relatively simple and it is described in the sequel.

For an integer n ≥ 0, a fan of order n with base xyz is the graph consisting
of the path xyz, a path xv1 . . . vnz and edges yvi for 1 ≤ i ≤ n. For an integer
n ≥ 1, a fat fan of order n with base xyz is the graph consisting of the path
xyz, a vertex y′ adjacent to x, y and z, and a fan of order n with base xy′z. A
fan procession with base xyz is a graph consisting of the path xyz, vertices v1,
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. . . , vk−1 (for some k ≥ 1) adjacent to y, and subgraphs G1, . . . , Gk where for
1 ≤ i ≤ k, Gi is either a fan or a fat fan with base vi−1yvi (where we set v0 = x
and vk = z). Each fan or fan procession is a planar near-triangulation, and we
consider its unique face of size ≥ 4 to be the outer face. See Figure 8.2. A fan
procession is even if all constituent fat fans have even order. A list assignment L
for a fan procession G with base xyz and outer face H is dangerous if |L(v)| = 3
for all v ∈ V (H) \ {x, y, z} and |L(v)| = 5 for all v ∈ V (G) \ V (H).

Consider a fat fan G of order n > 0 with base xyz and a valid list assignment
L (with respect to the path xyz). Let y′ be the common neighbor of x, y and
z, and let v1v2 . . . vn be the subpath of the outer face from the definition of
a fat fan. Suppose that G is not L-colorable, and let ϕ be an L-coloring of
xyz. It is easy to see that the list assignment L must be dangerous. Let S =
L(y′)\{ϕ(x), ϕ(y), ϕ(z)}. If there exists c ∈ S and 1 ≤ i ≤ n such that c 6∈ L(vi),
then ϕ extends to an L-coloring of G assigning the color c to y′. Therefore, we
have S ⊆ L(vi) for 1 ≤ i ≤ n. Similarly, we have ϕ(x) ∈ L(v1) and ϕ(z) ∈ L(vn).
Since ϕ(x) 6∈ S and S ∪ {ϕ(x)} ⊆ L(v1), we have |S| = 2, {ϕ(x), ϕ(y), ϕ(z)} ⊂
L(y′) and ϕ(x) 6= ϕ(z). Observe also that n ≥ 2, as otherwise y′ has degree
four. Therefore, {ϕ(x)} = L(v1) \ L(vn), {ϕ(z)} = L(vn) \ L(v1) and {ϕ(y)} =
L(y′) \ (L(v1) ∪ L(vn)). Therefore, there exists at most one precoloring of xyz
that does not extend to an L-coloring of G. Furthermore, if the order n of G is
odd, then we can color y′ by a color from S and the vertices v1, v3, . . . , vn by the
other color from S and extend this to an L-coloring of G. Therefore, the order
of the fat fan G is even.

Using this analysis, it is easy to see that the following holds:

(42) Let G be a fan procession with base xyz and L a dangerous list assignment
for G. If ϕ1 and ϕ2 are precolorings of xyz that do not extend to an L-coloring
of G, and ϕ1(x) = ϕ2(x) and ϕ1(y) = ϕ2(y), then ϕ1 = ϕ2. Furthermore, if there
exist two different precolorings of xyz that do not extend to an L-coloring of G,
then G is a fan.

Conversely, Thomassen [73] essentially showed that even fan processions with
dangerous list assignments are the only plane graphs with valid list assignments
that are P -critical for a path P of length two.

Lemma 93. Let G be a plane graph with outer face H and P a subpath of H
of length two. Let L be a list assignment valid with respect to P . If G is P -
critical with respect to L, then G is an even fan procession with base P and L is
dangerous.

Proof. By Theorem 92, G is 2-connected, all faces other than H are triangles
and all vertices in V (H) \ V (P ) have list of size three. Since G is P -critical,
there exists an L-coloring of P that does not extend to an L-coloring of G. By
Theorem 3 of [73], there exists a fan procession G′ ⊆ G with base P and L is a
dangerous list assignment for G′. By Lemma 91, every triangle in G bounds a
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face. Furthermore, Theorem 88 implies that every chord of H is incident with the
middle vertex of P . We conclude that G = G′, and thus G is a fan procession with
base P . Furthermore, since an L-coloring of P does not extend to an L-coloring
of G, the fan procession is even, as we have argued before.

8.3 Reducing the precolored vertices

One could hope that the proof of Theorem 92 can be modified to deal with the
situation that G contains sufficiently distant precolored vertices. Most of the
inductive applications deal with the situations which reduce the length of the
precolored path, and if the distance between the new precolored path (one of the
spans) from the old one is guaranteed to be bounded by a constant, we could
ensure that the distance between P and the precolored vertices is at least some
function of `(P ). However, the fact that there are infinitely many critical graphs
makes it difficult to prove such a constraint on the distance.

To avoid this problem, we restrict ourselves to working with list assignments
such that the vertices with list of size three form an independent set. In this
setting, we easily conclude by combining Theorem 92 with Lemma 91 that the
size of critical graphs is bounded.

Lemma 94. Let G be a plane graph whose outer face is H, let P be a subpath of
H and let L be a list assignment valid with respect to P , such that no two vertices
with lists of size three are adjacent. If G is P -critical, then |V (G)| ≤ 8`(P )2.

Proof. By induction, we can assume that no cut-vertex belongs to P , and thus
G is 2-connected. The claim is true if V (G) = V (P ), thus assume that V (G) 6=
V (P ). For i ∈ {3, 4, 5}, let ni denote the number of vertices with list of size i in
V (H) \ V (P ). We have ωP,L(G) ≥ n4 + 2n5. Let Q be a path of length n3 + 2
whose endvertices coincide with the endvertices of P , but is otherwise disjoint
from G, and let G′ be the graph obtained from G ∪ Q by joining each vertex
v ∈ V (H) \ V (P ) with 5− |L(v)| vertices of Q in the planar way. Let LQ be the
list assignment to the inside vertices of Q such that each such vertex has a single
color that does not appear in any other list (including the lists of vertices of G).
Let L′ be the list assignment for G′ that matches LQ on the inside vertices of
Q and the list of each vertex v ∈ V (G) \ V (P ) consists of L(v) and the colors
of the adjacent inside vertices of Q. Observe that G′ is (P ∪ Q)-critical, and by
Lemma 91,

|V (G) \ V (P )|
2|P ∪Q|+ 2

=
|V (G′) \ V (P ∪Q)|

2|P ∪Q|+ 2
≤ |P ∪Q| − 9/2.

This implies that |V (G) \ V (P )| ≤ 2(|P ∪ Q| − 1)2 − |P ∪ Q|, and therefore
|V (G)| ≤ 2(|P ∪ Q| − 1)2. Since L is valid, since no two vertices with list of
size three are adjacent, and since G is 2-connected, we have n3 ≤ n4 + n5 + 1.
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Consequently, `(Q) ≤ n4 + n5 + 3 ≤ ωP,L(G) + 3. Since ωP,L(G) ≤ `(P ) − 2 by
Theorem 92, we have that |P ∪Q| ≤ 2`(P ) + 1, and the claim follows.

Let us remark that a converse of the transformation described in the proof of
Lemma 94 can be used to generate all critical graphs satisfying the assumptions
of the lemma with the length of P fixed.

Our aim in this section is to show that Lemma 89 implies a positive answer
to Problem 85. We need to introduce several technical definitions.

Let G be a plane graph with outer face H and Q a path in G. Suppose that
Q = q0q1 . . . qk and q0 ∈ V (H). For 0 < i < k, let Li and Ri be the sets of
edges of G incident with qi such that the cyclic clockwise order (according to the
drawing of G in the plane) of the edges incident with qi is qiqi+1, Ri, qiqi−1, Li. We
define L0 and R0 similarly, except that we consider the face H instead of the edge
qiqi−1. We define GQ as the graph obtained from G by splitting the vertices along
Q in the natural way, i.e., so that Q corresponds to paths QL = qL0 q

L
1 . . . q

L
k−1qk

and QR = qR0 q
R
1 . . . q

R
k−1qk and for 0 ≤ i < k, the vertex qLi is incident with the

edges in Li and the vertex qRi is incident with the edges in Ri. If G is given
with a list assignment L, then let LQ be the list assignment for GQ such that
LQ(qLi ) = LQ(qRi ) = L(qi) for 0 ≤ i < k and LQ(v) = L(v) for other vertices of
GQ. We say that GQ is obtained by cutting along Q.

For integers M and k, let D(M,k) = M + 1 if k ≤ 1 and D(M,k) =
D(M,k − 1) + 16k2 if k ≥ 2. Note that there is a simple explicit formula for
the values D(M,k), but we shall only use its recursive description. A set X of
vertices is M-scattered if the distance between any two elements of X is at least
max{D(M, 2M + 11), D(M, 2) +D(M, 6) + 1}.

Let Q = q0q1 . . . qk be a path of length k. If k is even, then qk/2 is said to
be the central vertex of Q; if k is odd, then each of the two vertices q(k−1)/2 and
q(k+1)/2 is a central vertex of Q.

The aim of this section is to show that Lemma 89 implies our main result
(Theorem 86).

Lemma 95. Suppose that there is a positive integer M such that the conclusion
of Lemma 89 holds. Let G be a plane graph, let P be a subpath of its outer face
H and let p be a central vertex of P . Let X be an M-scattered subset of V (G)
such that the distance between p and X is at least D(M, `(P )). Let L be a list
assignment for G that is M-valid with respect to P and X. Furthermore, assume
that there is at most one edge uv ∈ E(G) such that u, v ∈ V (G) \ V (P ) and
|L(u)| = |L(v)| = 3, and if such an edge exists, then `(P ) ≤ 1, u or v is adjacent
to p and the distance between p and X is at least D(M, 2)− 1. If G is P -critical
with respect to L, then X = ∅.

Proof. For a contradiction, suppose that G is a counterexample to Lemma 95
with the smallest number of edges that do not belong to P , subject to that, with
the smallest number of vertices, and subject to that, with the largest number
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of vertices in P . Since G is P -critical, every vertex v ∈ V (G) \ V (P ) satisfies
deg(v) ≥ |L(v)|. Let ` = `(P ) and P = p0p1 . . . p`. If ` is odd, choose the labels
so that p = p(`+1)/2.

Suppose that G is disconnected. Since it is P -critical, it has two components:
one is equal to P and the other one, G′, is not L-colorable. Choose v ∈ V (H) ∩
V (G′) arbitrarily, and let P ′ be the path consisting of v. Note that G′ is P ′-
critical. If G′ with the path P ′ satisfies the assumptions of Lemma 95, then by the
minimality of G we have X∩V (G′) = ∅, and thus X = ∅. This is a contradiction,
and thus the distance from v to the closest vertex x ∈ X is at most M . Let Q be
the shortest path between v and x and let GQ, QL and QR with the list assignment
LQ be obtained from G by cutting along Q. Let Q′ = QL∪QR and X ′ = X \{x}.
Note that x is the central vertex of Q′ and its distance to any u ∈ X ′ is at
least D(M, `(Q′)), since X is M -scattered and `(Q′) ≤ 2M . In particular, LQ is
M -valid with respect to Q′ and X ′. Furthermore, GQ is Q′-critical with respect
to LQ. To see this, consider an arbitrary edge e ∈ E(G′) \ E(Q). Since G is
P -critical, there exists an L-coloring of P that extends to G − e but not to G.
The coloring of G−e induced on Q gives rise to an LQ-coloring of Q′ that extends
to GQ − e but not to GQ. This shows that GQ is Q′-critical. Since the distances
in GQ are not shorter than those in G, the graph GQ satisfies all assumptions of
Lemma 95. By the minimality of G, we conclude that X ′ = ∅. But then |X| = 1
and G′ contradicts Lemma 89.

Therefore, G is connected. In particular, if ` = 0, then we can include another
vertex of H in P ; therefore, we will assume that ` ≥ 1. Since G is connected, its
outer face H has a facial walk, which we write as p` . . . p1p0v1v2v3 . . . vs.

Suppose that the distance between P and X is at most M + 5. Then the
distance from p to X is at most M + ` + 5. By the assumptions of the lemma,
this distance is at least D(M, `), which is only possible if ` ≤ 1. As assumed
above, this means that ` = 1. Moreover, the assumptions of the lemma imply
that no two vertices with list of size three are adjacent. Let Q be a shortest path
between P and a vertex x ∈ X. Let GQ, QL and QR with the list assignment LQ

be obtained from G by cutting along Q. Let Q′ be the path consisting of QL∪QR

and of the edge of P , and let X ′ = X \{x}. Note that `(Q′) ≤ 2M +11. Since X
is M -scattered, so is X ′, and the distance in GQ from the central vertex x of Q′

to X ′ is at least D(M, 2M + 11) ≥ D(M, `(Q′)). As in the previous paragraph,
we conclude that since GQ is Q′-critical with respect to LQ, we have X ′ = ∅.
Then |X| = 1 and, consequently, G contradicts the postulated property of the
constant M . Therefore, we conclude:

(43) The distance between P and X is at least M + 6.

Let T = t1 . . . tk be a separating k-cycle in G that is distinct from H and
where k ≤ 4. Suppose that the distance from t1 to P is at most 6 − k. Let us
choose such a cycle with IntT (G) minimal; it follows that T is an induced cycle.
By Lemma 90, IntT (G) is T -critical, and thus there exists an L-coloring ψ of T
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that does not extend to an L-coloring of IntT (G). Let G′ = IntT (G)−{t3, . . . , tk}.
Let L′ be the list assignment for G′ such that L′(t1) = {ψ(t1)}, L′(t2) = {ψ(t2)}
and L′(v) = L(v) \ {ψ(ti) | vti ∈ E(G), 3 ≤ i ≤ k} for other vertices v ∈ V (G′).
Note that no two vertices with list of size three are adjacent in G′, as otherwise
we have k = 4 and t3t4 is incident with a separating triangle contradicting the
choice of T . Note that G′ is not L′-colorable, hence it contains a t1t2-critical
subgraph G′′. By (43), L′ is an M -valid list assignment for G′′, and the distance
between t1t2 and X ∩ V (G′) is at least M + 1. By the minimality of G, it follows
that X ∩ V (G′′) = ∅. However, then G′′ contradicts Theorem 88. We conclude
that the following holds:

(44) If T 6= H is a separating k-cycle in G, where k ≤ 4, then the distance
between T and P is at least 7− k.

Similarly, by applying induction, we obtain the following property.

(45) If R is either a chord of H that does not contain an internal vertex of P ,
or R is a cut-vertex of G, then the distance between R and P is at least 4.

Proof. Suppose first that R does not contain an internal vertex of P . Let G′

be an R-component in G that contains no edges of P . By Lemma 90, G′ is
R-critical, and Theorem 88 implies that X ∩ V (G′) 6= ∅. If the distance from
P to R is at most 3, then by (43), the distance between R and X is at least
M + 1 = D(M, `(R)). If G′ − V (R) does not contain two adjacent vertices with
list of size three, this contradicts the minimality of G. If uv ∈ E(G′−V (R)) and
|L(u)| = |L(v)| = 3, then by the assumptions, we have ` = 1 and u is adjacent
to p. Consequently, p ∈ V (R), and thus the distance between a central vertex
p of R and X is at least D(M, 2) − 1. Again, we have a contradiction with the
minimality of G.

Suppose now that P contains a cut-vertex v of G, and let G1 and G2 be the
two maximal connected subgraphs of G that intersect in v. For i ∈ {1, 2}, let
Pi = P ∩ Gi and note that either Pi = Gi or Gi is Pi-critical by Lemma 90. By
the minimality of G, we conclude that neither G1 nor G2 contains a vertex of X,
and thus X = ∅. This contradiction completes the proof.

Next, we claim the following.

(46) Let C ⊂ G be a cycle of length at most ` + 1 such that C 6= H and the
distance between C and p is at most 8`2. Then IntC(G) contains no vertices of
X.

Proof. The length of C is at least three, and thus ` ≥ 2. If x ∈ X belongs to
C, then the distance from x to p is less than 8`2 + ` < D(M, `), a contradiction.
Thus, we may assume that V (C) ∩ X = ∅ and, in particular, that C does not
bound a face. If `(C) ≤ `, then the claim holds even under a weaker assumption
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that the distance between C and P is at most 16`2. Indeed, consider a spanning
subpath Q of C of length `(C)−1 such that the distance between p and a central
vertex q of Q is at most 16`2. The distance of every vertex of X in IntC(G) from
q is at least D(M, `)− 16`2 ≥ D(M, `(Q)). By Lemma 90, we have that IntC(G)
is Q-critical, and the claim follows by the minimality of G.

Suppose now that `(C) = ` + 1 and let C = c0c1 . . . c`, where cd`/2e is the
vertex of C nearest to p. There exists an L-coloring ϕ of C that does not extend
to an L-coloring of IntC(G). Let d be a new color that does not appear in any of
the lists and let L′ be the list assignment obtained from L by replacing ϕ(c`) by
d in the lists of c` and its neighbors and by setting L′(c0) = {ϕ(c0), ϕ(c1), d}. Let
ϕ′ be the coloring of the path C ′ = c1c2 . . . c` such that ϕ′(c`) = d and ϕ′ matches
ϕ on the rest of the vertices. The coloring ϕ′ does not extend to an L′-coloring
of IntC(G); hence, IntC(G) contains a subgraph F ⊃ C ′ that is C ′-critical with
respect to L′. The distance of X ∩ V (F ) from the central vertex cd`/2e of C ′ is
at least D(M, `)− 8`2 > D(M, `(C ′)). By the minimality of G, we conclude that
F contains no vertex of X. By Theorem 92, we have ωC′,L′(F ) ≤ ` − 3, and in
particular, every face of F has length at most `. By Lemma 94, the distance
from cd`/2e to every vertex of F is less than 8`2, thus the distance between every
vertex of F and p is at most 16`2. By the previous paragraph, we conclude that
no vertex of X appears in the interior of any face of F . Let Q be the path in the
outer face of F , distinct from C ′, joining c1 with c`. If v 6= c0 is an inside vertex
of Q, then ωF,C′,L′(v) ≥ 1, hence Q contains at most ` − 3 such inside vertices.
It follows that Q+ c1c0c` is either a cycle of length at most ` (if c0 6∈ V (Q)) or a
union of two cycles of total length at most `+1 (if c0 ∈ V (Q)). In both cases, the
interiors of the cycles do not contain any vertex of X by the previous paragraph.
Consequently, X ∩ V (IntC(G)) = ∅ as claimed.

Let ψ be an L-coloring of P that does not extend to an L-coloring of G.
Suppose that there exists a proper subgraph F ⊂ G such that P ⊂ F and ψ does
not extend to an L-coloring of F . Let F be minimal subject to this property.
Then F is a P -critical graph. If F does not satisfy the assumptions of Lemma 95,
then ` = 1 and there exist adjacent vertices u, v ∈ V (F ) \ V (P ) with lists of size
three such that neither of them is adjacent to p1 in F , while say u is adjacent to
p1 in G. Let c be a new color that does not appear in any of the lists. Let L′ be
the list assignment for F obtained from L by replacing ψ(p1) by c in the lists of
all vertices adjacent to p1 in F and by setting L′(p0) = {ψ(p0)}, L′(p1) = {c},
and L′(u) = L(u)∪{c}. Note that each L′-coloring of F + up1 corresponds to an
L-coloring of F extending ψ, hence F + up1 is not L′-colorable and it contains
a P -critical subgraph F ′. Note that |L′(u)| = 4 and hence no two vertices with
list of size three are adjacent in F ′. However, the minimality of G implies that
F ′ contains no vertices of X, and we obtain a contradiction with Theorem 88.

Therefore, we can assume that F satisfies the assumptions of Lemma 95, and
the minimality of G implies that F contains no vertices of X. By Theorem 92,
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it follows that ωP,L(F ) ≤ ` − 2, and in particular, ` ≥ 2. Let f be a face of F
distinct from the outer one such that Intf (G) 6= f . Since ω(f) ≤ `− 2, we have
`(f) ≤ ` + 1. Furthermore, by Lemma 94, the distance in F between f and p is
at most 8`2. By (46), no vertex of X appears in Intf (G).

Consider now a span2 Q forming a subpath of the outer face of F . Each
internal vertex v ∈ V (Q) satisfies ωF,P,L(v) ≥ 1, hence `(Q) ≤ ωP,L(F )+1 ≤ `−1.
Let GQ be the Q-component of G split off by Q and let q be a central vertex of
Q. By Lemma 94, the distance between p and q in F is at most 8`2, and thus the
distance between q and X in GQ is at least D(M, `)−8`2 ≥ D(M, `(Q)). Observe
that GQ is Q-critical if GQ 6= Q, and by the minimality of G, GQ contains no
vertices of X.

Since G is the union of Intf (G) over the faces of F and GQ over the spans Q
contained in the boundary of the outer face of F , we conclude that X = ∅. This
is a contradiction; therefore, ψ extends to all proper subgraphs of G that contain
P . Therefore, we can assume that the following holds.

(47) The vertices of P have lists of size one, G is not L-colorable and every
proper subgraph of G that contains P is L-colorable.

Let us fix ψ as the unique L-coloring of P .
Consider a chord e = uv of H at distance at most three from P . By (45), we

can assume that u is an inside vertex of P , and in particular ` ≥ 2. If v belonged
to P as well, then by (47) we have G = P + e, implying X = ∅. Hence, v does
not belong to P .

Let G1 and G2 be the maximal connected subgraphs of G intersecting in uv,
such that G1 ∪ G2 = G and p0 ∈ V (G2). Let Pi = (P ∩ Gi) + e. For i ∈ {1, 2},
Lemma 90 implies that the graph Gi is Pi-critical. Note that either `(Pi) < `(P ),
or `(Pi) = `, in which case p is a central vertex of Pi. We conclude that the
distance between a central vertex of Pi and X is at least D(M, `(Pi)). By the
minimality of G, we have X ∩ V (Gi) = ∅ for i ∈ {1, 2}. Therefore, X = ∅, which
is a contradiction. Therefore, we have:

(48) The distance of any chord of H from P is at least four.

In particular, we have s = |V (H) \ V (P )| ≥ 1. Another consequence of (47)
is the following:

(49) If |L(v1)| > 3, then |L(v1)| = 4, s ≥ 2 and |L(v2)| = 3.

Otherwise, suppose that |L(v1)| = 5, or |L(v1)| = 4 and either s = 1 or
|L(v2)| ≥ 4. Let G′ = G − p0v1 and let L′ be the list assignment obtained from
L by removing ψ(p0) from the list of v1. The assumptions together with (48)
imply that no two vertices with list of size three are adjacent in G′. By (47), G′

is P -critical with respect to L′, contradicting the minimality of G.

2Recall that a span, as defined in the proof of Theorem 92, is a subwalk of F and starts and
ends with a vertex in H.
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Suppose now that ` ≥ 2 and a vertex v is adjacent to p0, p1 and p2. By (48),
we have v 6∈ V (H). Let P ′ = p0vp2p3 . . . p` and G′ = G − p1. By Lemma 90, G′

is P ′-critical. If ` ≥ 3, then p is a central vertex of P ′ and by the minimality of
G, we have X ∩ V (G′) = ∅. Furthermore, (44) implies that p0p1v and p1p2v are
faces of G, and thus X = ∅. This contradiction shows the following.

(50) If ` ≥ 2 and p0, p1 and p2 have a common neighbor, then ` = 2.

For a vertex v ∈ V (G) \ V (P ), let

S(v) = L(v) \ {ψ(r) : r ∈ V (P ), vr ∈ E(G)}.

If v is a vertex of V (G) \ V (P ) with k neighbors in P , then |S(v)| = |L(v)| − k.
To see this, suppose v is adjacent to a vertex r ∈ V (P ) and ψ(r) /∈ L(v), or v
is adjacent to two vertices r, r′ ∈ V (P ) with ψ(r) = ψ(r′). Then we can remove
the edge vr and obtain a contradiction to the last assertion in (47).

Consider a nonempty set Y ⊆ V (G) \ V (P ) and a partial coloring ϕ of the
subgraph of G induced by Y from the lists given by S. We define Lϕ as the list
assignment such that

Lϕ(z) = L(z) \ {ϕ(y) : y ∈ dom(ϕ), yz ∈ E(G), ϕ(y) ∈ S(z)}

for every z ∈ V (G− Y ).
We now define a set Y ⊆ V (F ) \ V (P ) and a partial L-coloring ϕ of Y as

follows:

(Y1) If |L(v1)| = 3 and one of the following holds:

◦ s = 1, or

◦ s ≥ 2 and |L(v2)| = 5, or

◦ s = 2 and |L(v2)| = 4, or

◦ s ≥ 3, |L(v2)| = 4 and |L(v3)| 6= 3,

then Y = {v1} and ϕ(v1) ∈ S(v1) is chosen arbitrarily.

(Y2) If |L(v1)| = 3, s ≥ 3, |L(v2)| = 4 and |L(v3)| = 3, then Y = {v1, v2} and ϕ
is chosen so that ϕ(v2) ∈ L(v2) \ L(v3) and ϕ(v1) ∈ S(v1) \ {ϕ(v2)}.

(Y2a) If s = 2 and |L(v1)| = |L(v2)| = 3, then Y = {v1, v2} and ϕ(v1) ∈ S(v1)
and ϕ(v2) ∈ S(v2) are chosen arbitrarily so that ϕ(v1) 6= ϕ(v2).

(Y3) If |L(v1)| = 4, s ≥ 2, |L(v2)| = 3, and one of the following holds:

◦ s ≤ 3, or

◦ s ≥ 4 and |L(v3)| = 5, or

◦ s ≥ 4 and |L(v4)| 6= 3,
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then Y = {v2}. If s = 3 and |L(v3)| = 3, then ϕ(v2) is chosen in L(v2) \
S(v3), otherwise ϕ(v2) ∈ S(v2) is chosen arbitrarily.

(Y4) If s ≥ 4, |L(v1)| = 4, |L(v2)| = 3, |L(v3)| = 4 and |L(v4)| = 3, then:

(Y4a) If v1, v2 and v3 do not have a common neighbor, then Y = {v2, v3} and
ϕ is chosen so that ϕ(v3) ∈ L(v3) \L(v4) and ϕ(v2) ∈ L(v2) \ {ϕ(v3)}.

(Y4b) If v1, v2 and v3 have a common neighbor, then Y = {v1, v2, v3} and ϕ is
chosen so that ϕ(v3) ∈ L(v3) \L(v4), ϕ(v1) ∈ S(v1) and either at least
one of ϕ(v1) and ϕ(v3) does not belong to L(v2), or ϕ(v1) = ϕ(v3).
The vertex v2 is left uncolored.

By using (49) it is easy to see that Y and ϕ are always defined. We remark
that the following is true.

(51) Every Lϕ-coloring of G− Y extends to an L-coloring of G.

Indeed, this is obviously true if dom(ϕ) = Y . The only case when dom(ϕ) 6= Y
is (Y4b), where Y = {v1, v2, v3} and dom(ϕ) = {v1, v3}. However, deg(v2) = 3
by (44), and |Lϕ(v2)| ≥ 2 by the choice of ϕ(v1) and ϕ(v3). This implies that any
Lϕ-coloring of G− Y extends to v2 and proves (51). Consequently, G− Y is not
Lϕ-colorable. We let Gϕ be a P -critical subgraph of G− Y .

Using (43) and (48), it is easy to verify that the choice of Y and ϕ ensures
that Lϕ is M -valid with respect to P and X. Let us now distinguish two cases
depending on whether Gϕ contains two adjacent vertices with list of size three
(that did not have lists of size three in G as well) or not.

• Suppose first that no two vertices u, v ∈ V (Gϕ) such that |Lϕ(u)| =
|Lϕ(v)| = 3 and max(|L(u)|, |L(v)|) > 3 are adjacent. If Gϕ with the list
assignment Lϕ does not satisfy the assumptions of Lemma 95, then ` = 1,
|L(vs)| = |L(vs−1)| = 3, vsvs−1 ∈ E(Gϕ) and p1vs 6∈ V (Gϕ). Let c be a new
color that does not appear in any of the lists and let L′ be the list assignment
obtained from Lϕ by replacing ψ(p1) with c in the lists of vertices adjacent
to p1 in Gϕ and by setting L′(p1) = {c} and L′(vs) = L(vs) ∪ {c}. Observe
that Gϕ+p1vs is not L′-colorable and thus it contains a P -critical subgraph
G′. By the minimality of G, we have X ∩ V (G′) = ∅. However, then G′

contradicts Theorem 88.

Therefore, Gϕ with the list assignment Lϕ satisfies the assumptions of
Lemma 95. By the minimality of G, we conclude that Gϕ does not contain
any vertex of X. By Theorem 92, we have ` ≥ 2 and ωP,Lϕ(Gϕ) ≤ `−2. Let
Q be the span contained in the outer face of Gϕ such that its Q-component
GQ contains Y . Analogically to the proof of (47), we argue that if f is a
face of Gϕ, then Intf (G) contains no vertex of X, and that if Q′ is a span
different from Q, then the subgraph of G split off by Q′ contains no vertex

178



of X. Since X 6= ∅, it follows that GQ contains a vertex of X. By the
minimality of G, we conclude that `(Q) ≥ `.

If v is an inside vertex of Q, then ωP,Lϕ(v) ≥ 1, unless |Lϕ(v)| = 3. Since the
sum of the weights of the inside vertices of Q is at most ωP,Lϕ(Gϕ) ≤ `− 2,
we conclude that at least one inside vertex of Q has list of size three. This
is only possible in the cases (Y2), (Y4a) and (Y4b). Furthermore, observe
that only one inside vertex of Q has list of size three by (44); let v denote
this vertex. It follows that `(Q) = ` and that all inside vertices of Q other
than v either belong to P or have list of size four.

Let y1 and y2 be the neighbors of v in dom(ϕ), where y1 is closer to p0 than
y2. Let Q1 and Q2 be the subpaths of Q intersecting in v (where Q1 is
closer to p0 than Q2) and let Q′1 and Q′2 be the paths obtained from them
by adding the edge y1v. For i ∈ {1, 2}, if `(Q′i) < `− 1, then as in (47), we
conclude that the subgraph of G split off by Q′i does not contain any vertex
of X. Since X 6= ∅ and `(Q′1) + `(Q′2) = `(Q) + 2 = ` + 2, it follows that
`(Q1) = 1 or `(Q2) = 1.

If for some i ∈ {1, 2}, we have `(Qi) > 1 and an inside vertex z of Qi is
adjacent to yi, then Qi is an edge-disjoint union of paths Q′i and Q′′i such
that Q′i together with vyiz forms a cycle C of length at most ` and Q′′i +zyi
is a k-chord of H for some k ≤ `− 1. By considering the interior of C and
the subgraph of G split off by Q′′i + zyi separately, we again conclude that
the subgraph of G split off by Q does not contain any vertex of X. This
is a contradiction. It follows that no inside vertex of Qi is adjacent to yi,
and thus no inside vertex of Qi has a list of size four. Therefore, all inside
vertices of Q except for v belong to P .

If `(Q1) > 1, then let Q2 = vw and consider the subgraph F of G split off
by y1vw. Note that ` = `(Q) ≥ 3 and the distance between v and X is at
least D(M, `) − d`/2e − 3 ≥ D(M, 2). By the minimality of G, it follows
that F contains no vertex of X. By Theorem 92, we have ωy1vw,L(F ) = 0.
This is a contradiction, since in each of the cases (Y2), (Y4a) and (Y4b),
F − {y1, v, w} contains a vertex with list of size four.

Therefore, `(Q1) = 1. In case (Y4a), v is not adjacent to v1, and thus v is
adjacent to p0. Similarly, in case (Y4b), v is adjacent to p0, since v1 belongs
to Y . Since v1 has list of size four, it has degree at least four, and thus at
least one vertex of G is drawn inside the 4-cycle v1v2vp0. This contradicts
(44). Suppose now that (Y2) holds. Since `(Q2) = `− 1, we conclude that
Q2 = vp2p3 . . . p`. By Lemma 93, we have that Gϕ consists of P and v
adjacent to p0, p1 and p2. By (50), ` = 2. Let us postpone the discussion
of this case,

(52) (Y2) holds, ` = 2 and p0, p1, p2, v1 and v2 have a common neighbor.
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• Let us now consider the case that two vertices u, v ∈ V (Gϕ) with
|Lϕ(u)| = |Lϕ(v)| = 3 and |L(v)| > 3 are adjacent. By (44), at most
one of u and v has two neighbors in dom(ϕ). If neither u nor v has two
neighbors in dom(ϕ), then u, v ∈ V (H) and the choice of Y and ϕ ensures
that uv is a chord of H. However, that contradicts (48). Thus, we can
assume that v has two neighbors in dom(ϕ) and v 6∈ V (H); and in particu-
lar, Y was chosen according to one of the cases (Y2), (Y4a) or (Y4b) (the
case (Y2a) is excluded, since in that case Gϕ would contain at most one
vertex with list of size three). Since u has at most one neighbor in dom(ϕ)
and |Lϕ(u)| = 3, we have u ∈ V (H). If |L(u)| = 4, then u has a neighbor
y ∈ dom(ϕ), and by (48), we have uy ∈ V (H). This is not possible (in the
case (Y4a), the vertex v1 has list of size four, but it is not adjacent to v).
Therefore, |L(u)| = 3. Furthermore, observe that u has no neighbor in Y ,
as otherwise G would contain a 4-cycle y′yuv with y, y′ ∈ Y and |L(y)| = 4;
hence, y would have degree at least four, contradicting (44).

Let y1, y2 ∈ dom(ϕ) be the neighbors of v, where y1 is closer to p0 than y2.
Let F be the uvy1-component ofG that does not contain P , and assume that
u was chosen so that F is as small as possible. Note that ωuvy1,L(F ) ≥ 1,
as |L(y2)| = 4. The minimality of G and Theorem 92 implies that a vertex
x ∈ X ∩ V (F ) is in distance at most D(M, 2)− 1 from v. In particular, we
have ` ≤ 2.

Let Q be the path consisting of P , the subpath of H between p0 and y1
and the path y1vu. If |L(vs)| = |L(vs−1| = 3 and u 6= vs, include also the
edge p1vs in Q. Let GQ be the uvv1-component of G different from F . Note
that `(Q) ≤ 6. Since the distance between v and a vertex of X ∩ V (F ) is
at most D(M, 2)− 1 and X is M -scattered, the distance between a central
vertex of Q and X ∩ V (GQ) is at least D(M, 6). By the minimality of G,
we conclude that GQ contains no vertex of X.

Consider now the graphs G′Q = GQ−Y and F ′ = F−Y with list assignment
Lϕ. By the choice of u (so that F is minimal), no two adjacent vertices of
F ′ other than u and v have lists of size three. Furthermore, the distance
between v and X is at least M + 3 > D(M, 1) by (43). By the minimality
of G, no uv-critical subgraph of F ′ (with respect to the list assignment
Lϕ) contains a vertex of X, and by Theorem 88 we conclude that every Lϕ-
coloring of uv extends to an Lϕ-coloring of F ′. Since Gϕ is not Lϕ-colorable,
it follows that G′Q is not Lϕ-colorable. By Theorem 88 this is not possible
if ` = 1, and thus ` = 2.

Note that if xy is an edge of G′Q and |Lϕ(x)| = |Lϕ(y)| = 3, then x or y
is equal to v. Lemma 93 and (48) implies that either v is adjacent to all
vertices of P , or v is adjacent to p0 and vs, |L(vs)| = 3 and p0, p1, p2, v
and vs have a common neighbor. This is not possible in the cases (Y4a)
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and (Y4b), since v1 cannot have degree less than four. We are left with the
case that either the configuration described in (52) appears, or

(53) (Y2) holds, ` = 2, the common neighbor v of v1 and v2 is adjacent
to p0 and vs, |L(vs)| = 3, vs is adjacent to p2 and there exists a vertex w
adjacent to V (P ) ∪ {v, vs}.

Since either (52) or (53) holds, we have ` = 2 and there exists a vertex w
adjacent to all vertices of P , where w = v if (52) holds. In particular, no two
vertices with list of size three are adjacent in G and P has a unique central vertex.
Therefore, by symmetry we also have

(54) |L(vs)| = 3, |L(vs−1)| = 4 and w is either adjacent to vs−1 and vs, or
adjacent to v1 and the common neighbor v′ of vs−1, vs and p2.

Observe that (53) contradicts (54), as w does not have a neighbor with list
of size four (thus w is not adjacent to vs−1) and v is the only neighbor of w with
list of size five and v is not adjacent to p2 (excluding the existence of v′).

Therefore, (52) holds and v is also adjacent to vs−1 and vs. Let us choose
c1 ∈ S(v) and c2 ∈ S(v1) arbitrarily so that c1 6= c2. Let L′ be the list assignment
such that L′(v2) = L(v2) \ {c2}, L′(v) = {c1} and L′(z) = L(z) for any other
vertex z. Let G′ = G − {p1, p0, v1} and P ′ = p2v. Note that each L′-coloring
of G′ corresponds to an L-coloring of G, and thus G′ is not L′-colorable. Let
G′′ be a P ′-critical subgraph of G′. The only adjacent vertices of G′′ with lists
of size three are v2 and v3. Also, the distance between v and X is at least
D(M, 2)−1. If vv2 ∈ E(G′′), then G′′ satisfies the assumptions of Lemma 95, and
by the minimality of G, we have X ∩ V (G′′) = ∅. However, then G′′ contradicts
Theorem 88.

Finally, suppose that vv2 6∈ E(G′′). Let d be a new color that does not
appear in any of the lists, and let L′′ be the list assignment obtained from L′

by replacing c1 with d in the lists of v and its neighbors in G′′ and by setting
L′′(v2) = L(v2) ∪ {d}. Observe that G′′ + vv2 is not L′′-colorable, and since no
two vertices of G′′ + vv2 with lists of size three are adjacent, we again obtain a
contradiction with the minimality of G and Theorem 88.
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Part III

Dealing with distant
perturbations
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How robust are the results on the colorability of say planar graphs? That
is, suppose that we perform “perturbations” on graphs in one of the considered
classes of graphs which are sufficiently far apart (e.g., we precolor mutually distant
vertices, or add edges forming mutually distant crossings). Suppose furthermore
that these perturbations do not prevent coloring locally (e.g., any subgraph of
the graph that contains only one of the perturbations is still colorable by the
original number of colors). Is the resulting graph still colorable?

• For 4-colorability of planar graphs the answer is negative in general—there
are known examples of planar graphs where a precoloring of arbitrarily
distant vertices (only two suffice) cannot be extended to a 4-coloring.

• For 5-colorability (and even 5-list-colorability), the answer is likely to be
always positive, as indicated by the results of Chapters 8 and 9. In par-
ticular, in Dvořák et al. [31] we build upon the results of Chapter 8 and
prove that any precoloring of sufficiently distant vertices in a planar graph
extends to its 5-list-coloring. For 5-colorability, this is true even for dis-
tance four between the precolored vertices by a reduction to the Four Color
Theorem (Albertson [5]). Similarly, a graph drawn in plane with crossings
is 5-colorable if no two crossings are incident with the same edge (Král’ and
Stacho [50]) and it is 5-list-colorable if the distance between crossings is at
least 15 (Dvořák et al. [30], Chapter 9).

• The case of 3-colorability and 3-list-colorability of planar graphs of girth at
least five was studied much less. However, there are again indications that
the answer is positive, as the methods used to deal with 5-list-colorability
are very similar to those used to deal with 3-list-colorability and should
extend to this case. An example is given in Chapter 10, where we show
that every planar graph with (≤ 4)-cycles sufficiently far apart is 3-list-
colorable.

• The case of 3-colorability of triangle-free planar graphs is perhaps the most
interesting. It is possible to construct such graphs with distant perturba-
tions that prevent 3-colorability. For example, consider a plane graph with
exactly two triangles and all other faces of length four—a standard wind-
ing number argument shows that there exists a precoloring of the triangles
(namely the ones where the colors 1, 2 and 3 appear widdershins on one
of the triangles and deasil on the other one). Even without the winding
number issue, separating 4-cycles can allow an interaction between distant
perturbations, as demonstrated by the broken chains of Chapter 6. How-
ever, these seem to be the only principal obstructions; in Dvořák et al. [24],
we exploit this to prove Havel’s conjecture that every planar graph with tri-
angles sufficiently far apart is 3-colorable. A similar approach can be used
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to show that any precoloring of sufficiently distant vertices in a triangle-free
planar graph extends to a 3-coloring.

Applying the method of reducible configurations to deal with distant pertur-
bations is rather problematic. Although proving that a reducible configuration
far from the perturbations exists by discharging is routine, most reductions de-
crease the distance between vertices. This could decrease the distance between
the perturbations and prevent us from using the induction hypothesis. One way
to deal with the problem is to use only reductions that do not decrease distances,
e.g., consisting only of removing some of the vertices or edge of the configuration.
However, a list of such configurations that would be guaranteed to appear in
every planar graph is not known for any of the major colorability problems, and
even if it existed, it would be impractically large.

Another way is to use the weight technique presented in the previous part:
if we can show that the weight of every critical graph with k perturbations is
O(k), it is clear that the distance between some of the perturbations in a critical
graph must be bounded by a constant (as otherwise the graph would contain ω(k)
elements contributing to the weight). We use this idea in our proof of Havel’s
conjecture (Dvořák et al. [24]), in a somewhat more complicated form (in the
setting of 4-critical triangle-free graphs, 4-faces have zero weight and need to be
dealt with specially). Let us note that for this idea to succeed, the bound on the
weight must be linear in the number of perturbations, which is fortunately quite
usual.

The precoloring extension method turns out to be well suitable for the setting,
as all the graphs that appear in it throughout the proof are subgraphs of the
original graph, and thus the distance condition cannot get violated (of course, this
assumes that we actually can prove the basic claim by the precoloring extension
method—no such proof is known for 3-colorability of triangle-free planar graphs,
as even those based on precoloring extension first get rid of 4-faces by reducing
them). To apply the method, we prove the following stronger claim:

(55) Let G be any plane graph in the considered class (with perturbations far
apart), f its outer face and P a subpath of f of length at most k. Let L be the list
assignment such that vertices of P have lists of size one, giving a proper coloring
of the subgraph induced by V (P ), and the sizes of the lists of other vertices satisfy
the assumptions of the basic claim (e.g., all those in F have list of size at least
three and all others have list of size at least five, when we aim to prove 5-list-
colorability). In this situation, G is L-colorable.

A problem is that such a statement is usually false in the case that some per-
turbation is near to P . Thus, a more common outcome is “either G contains one
of finitely many configurations involving P and exactly one of the perturbations,
or G is L-colorable”. In either case, the proof can proceed as in the basic case
unless one of the perturbations is close to the part of G that is being colored
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and removed on one side of P (or intersects with the boundary of F in such a
way that none of the choices of the basic case is possible). In this situation, the
reduction could be either violating the assumptions on the list sizes or result in
one of the forbidden configurations. In the latter case, such an arising forbid-
den configuration often gives us enough information about the graph to enable
a different reduction. In the former case, the perturbation X typically has to be
adjacent to or intersect the removed part.

The key idea to dealing with this case is to try applying the same procedure on
the other side of P . If we fail again, there is a perturbation X ′ close to this part
of the graph as well. However, X and X ′ cannot be different perturbations, as
they would be too close to each other, and thus we have X = X ′. Consequently,
there exists a path Q joining the parts of the boundary of F splitting G to
two subgraphs G1 and G2, where G1 contains P and the perturbation X. By
induction, we can color G1, obtaining a coloring of Q. Ideally, the length of Q is
small enough that we can also apply induction to extend its coloring to G2, thus
obtaining a coloring of G.

This may fail in several ways. One of them is that G2 contains one of the
forbidden configurations preventing the extension of the coloring. In this case,
we need to use the resulting information about the structure of G2 to devise a
different way of reducing G. Other possibility is that the length of Q is greater
than k, and thus we cannot apply (55) inductively. One way how to deal with this
issue is to increase the constant k in (55) sufficiently; however, this may result in
an unacceptably large number of forbidden configurations. A simpler possibility
is to use the fact that in G2, all perturbations are far from Q. That is, we will
be proving a claim of the following form.

(56) Let G be any plane graph in the considered class (with perturbations far
apart), f its outer face and P a subpath of f of length at most k′. Let L be
the list assignment such that vertices of P have lists of size one, giving a proper
coloring of the subgraph induced by V (P ), and the sizes of the lists of other vertices
satisfy the assumptions of the basic claim. If `(P ) ≤ k and G does not contain
any of the configurations in a set O1, or if the distance between P and the nearest
perturbation is at least d and G does not contain any of the configurations in a
set O2, then G is L-colorable.

Here, the configurations in the set O1 may contain one perturbation, while the
ones in O2 contain no perturbations. Until the reductions in the proof interfere
with one of the perturbations, we only need to exclude paths of length at most
k between the vertices of F (so that the assumption on the sizes of the lists is
preserved), and when we cut along these paths, we obtain subgraphs conforming
to the first part of the claim (even if the graph G we consider only satisfies the
second condition). On the other hand, when we cut along a path Q passing
through a perturbation (in this case, G necessarily satisfies the first condition),
then in G2, we have a precolored path Q of length at most k′ whose distance
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to a nearest perturbation is at least d (which is somewhat smaller than the
distance between distinct perturbations). For technical reasons (dealing with
chords incident with internal vertices of P ), the distance d may also be specified
as a function of the length of P (the longer the path, the greater distance we
must require). Although technically slightly more difficult than just increasing
the value of k to k′ in (55), the set of forbidden configurations O2 is usually just
a small fraction of the forbidden configurations that would be necessary in that
case.

We give two examples of the applications of this idea, in the cases of 5-list-
colorability of planar graphs (Chapter 9) and of 3-list-colorability of planar graphs
of girth at least five (Chapter 10). Let us note that the arguments in Chapter 9
could be simplified somewhat by using the idea of Chapter 8—we could only
deal with graphs with one perturbation. We avoid this in order to obtain a
better bound on the distance between the perturbations, and also to provide a
self-contained example.
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Chapter 9

5-list-colorability of graphs with
crossings far apart1

We aim to show that every graph drawn in plane with crossings sufficiently far
apart is 5-list-colorable. Let us recall that a list assignment L for G is a function
that assigns to each vertex of G a set L(v), called the list of admissible colors
for v. An L-coloring is a choice of a color c(v) ∈ L(v) for each v ∈ V (G) such
that no two adjacent vertices receive the same color. The graph is k-list-colorable
if it admits an L-coloring for every list assignment L with |L(v)| ≥ k for every
v ∈ V (G).

Theorem 96. Every graph drawn in the plane so that the distance between every
pair of crossings is at least 15 is 5-list-colorable.

Some distance condition on the crossings is necessary, even if we would allow
only three crossings, as shown by K6. On the other hand, it was proved in [33]
and independently also in [14] that the distance requirement is not needed, if we
have at most two crossings.

For the purposes of the induction, we need to prove a stronger claim.

Theorem 97. Let G be a graph drawn in the plane with some crossings and let
N ⊆ V (G) be a set of vertices such that the distance between any pair of crossed
edges is at least 15, the distance between any crossing and a vertex in N is at
least 13, and the distance between any two vertices in N is at least 11. Then
G is L-colorable for any list assignment L such that |L(v)| = 4 for v ∈ N and
|L(v)| ≥ 5 for v ∈ V (G) \N .

The inductive proof of Theorem 97 involves a stronger inductive hypothesis
that is stated later as Theorem 100 and in particular also implies the above-
mentioned result from [14, 33].

1The results of this chapter are based on Dvořák et al. [30].
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Theorem 98 ([33, 14]). Every graph whose crossing number is at most two is
5-list-colorable.

The proof of Theorem 98 is given at the end of this chapter.

9.1 5-list-colorability of planar graphs

In this section, we present a new proof of 5-list-colorability of planar graphs.
While the proof of this claim by Thomassen [65] is short and beautiful, it has a
disadvantage that it requires a strengthening (Theorem 2) of the claim that is
rather tight, and introducing almost any kind of irregularity (distant crossings,
increasing the length of the precolored path, . . . ) makes it fail with infinitely
many counterexamples. The proof of this section (inspired by Thomassen’s proof
of 3-list-colorability of planar graphs of girth at least five [69]) avoids this by only
showing a somewhat weaker generalization.

Let P be a path or a cycle. The length `(P ) of P is the number of its edges,
i.e., a path of length l has l+1 vertices and a cycle of length l has l vertices. Given
a graph G and a cycle K ⊆ G, an edge uv of G is a chord of K if u, v ∈ V (K),
but uv is not an edge of K. For an integer k ≥ 2, a path v0v1 . . . vk is a k-chord
if v0, vk ∈ K and v1, . . . , vk−1 6∈ V (K). We define a chord to be a 1-chord. If G
is a plane graph, let IntK(G) be the subgraph of G consisting of the vertices and
edges drawn inside the closed disc bounded by K, and ExtK(G) the subgraph
of G obtained by removing all vertices and edges drawn inside the open disc
bounded by K. In particular, K = IntK(G) ∩ ExtK(G). Note that each k-chord
of K belongs to exactly one of IntK(G) and ExtK(G). If the cycle K is the outer
face of G and Q is a k-chord of K, let C1 and C2 be the two cycles in K ∪ Q
that contain Q. Then the subgraphs G1 = IntC1(G) and G2 = IntC2(G) are the
Q-components of G.

As we have mentioned earlier, Thomassen’s Theorem 2 does not easily ex-
tend to the case when we have a precolored path of length two. However, if we
strengthen the condition on the list sizes of the other vertices on the outer face,
such an extension is possible.

Theorem 99. Let G be a plane graph with the outer face F , P a subpath of F
of length at most two and L a list assignment such that the following conditions
are satisfied:

(i) |L(v)| ≥ 5 for v ∈ V (G) \ V (F ),

(ii) |L(v)| ≥ 3 for v ∈ V (F ) \ V (P ),

(iii) |L(v)| = 1 for v ∈ V (P ),

(iv) no two vertices with lists of size three are adjacent in G,

(v) L gives a proper coloring to the subgraph induced by V (P ), and
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(vi) if P = uvw has length two and x is a common neighbor of u, v and w, then
L(x) 6= L(u) ∪ L(v) ∪ L(w).

Then G is L-colorable.

Proof. Suppose for a contradiction that the claim is false, and let G be a coun-
terexample with |V (G)|+ |E(G)| the smallest possible, and subject to that, with
the longest path P and with the minimum size of the lists (while satisfying (i)–
(vi)). It is clear that G is connected and that every vertex v ∈ V (G) satisfies
deg(v) ≥ |L(v)|.

Furthermore, G is 2-connected: otherwise, let v be a cut-vertex and let G1

and G2 be subgraphs of G such that G1 ∪ G2 = G, V (G1) ∩ V (G2) = {v} and
|V (G1)|, |V (G2)| > 1. If v ∈ V (P ), then by the minimality of G there exist
L-colorings of G1 and G2, and these colorings together give an L-coloring of G.
Otherwise, we may assume by symmetry that P ⊆ G1. Consider an L-coloring ϕ
of G1. Let L2 be the list assignment for G2 such that L2(u) = L(u) for u 6= v and
L2(v) = {ϕ(v)}. By the minimality of G, G2 is L2-colorable, and this coloring
together with ϕ gives an L-coloring of G.

Every triangle T in G bounds a face: otherwise, first color the subgraph
ExtT (G) and then extend the coloring to IntT (G). A similar argument shows
that G contains no separating 4-cycles; otherwise, consider such a 4-cycle K =
k1k2k3k4, and let ϕ be an L-coloring of ExtK(G). Let G′ = IntK(G). Since K is
separating, we have V (G′) 6= V (K), and since every triangle bounds a face, we
conclude that K has no chord in G′. Let L′ be the list assignment for G′−k1 such
that L′(z) = {ϕ(z)} for z ∈ {k2, k3, k4}, L′(z) = L(z) \ {ϕ(k1)} if z 6∈ {k2, k4} is
a neighbor of k1 and L′(z) = L(z) if z is any other vertex. By the minimality of
G, the graph G′ − k1 is L′-colorable, and this coloring together with ϕ gives an
L-coloring of G.

Since G is 2-connected, its outer face is bounded by a cycle, which we denote
by F as well. Next, we show that F has no chords. Otherwise, let uv be a
chord of F and let G1 and G2 be the uv-components of G. If P ⊆ G1, then
we first color G1 and then extend the coloring to G2. The case that P ⊆ G2 is
symmetric. It follows that P has length two and all the chords of F are incident
with its middle vertex. Let P = z1uz2, where zi ∈ V (Gi) for i ∈ {1, 2}. Let
ϕ be an L-coloring of G1 and let L2 be the list assignment for G2 such that
L2(z) = L(z) for z 6= v and L2(v) = {ϕ(v)}. Since G is not L-colorable, G2 is
not L2-colorable. By the minimality of G, either v is adjacent to z2, or u, v and
z2 have a common neighbor w with list of size three (which means, in particular,
that w ∈ V (F )). Since every chord of G is incident with u, the edge vz2 or vw
belongs to F . Since every triangle bounds a face, we conclude that v has degree
two in G2. By symmetry, v has degree two in G1 as well, and thus v has degree
three in G. It follows that |L(v)| = 3, and thus v cannot be adjacent to any other
vertex with list of size three. In particular, we cannot have the case with the
vertex w. We conclude that v is adjacent to z1 and z2 and V (G) = {u, v, z1, z2}.
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However, L(v) 6= L(u) ∪ L(z1) ∪ L(z2) by (vi), and thus G is L-colorable. This
contradiction proves that F has no chords.

Similarly, we have the following property:

(57) Let uvw be a 2-chord of F and let G1 and G2 be uvw-components of G. If
P ⊆ G1, then either u and w are adjacent and G2 is equal to the triangle uvw,
or there exists a vertex x such that V (G2) = {u, v, w, x}, |L(x)| = 3 and x is
adjacent to u, v and w.

If `(P ) < 2, then it is easy to see that we can precolor 2−`(P ) more vertices of
F without violating (vi). Thus, we may assume that `(P ) = 2. Let P = p0p1p2.
Suppose that p0, p1 and p2 have a common neighbor v. If v ∈ V (F ), then
V (G) = {p0, p1, p2, v} and G is L-colorable. If v 6∈ V (F ), then v has degree
at most four in G by (57) and thus deg(v) < |L(v)|, which is a contradiction.
Therefore, p0, p1 and p2 have no common neighbor.

Furthermore, `(F ) ≥ 6: If `(F ) = 3, then we remove one vertex of F and
remove its color from the lists of all its neighbors, and observe that the resulting
graph is a smaller counterexample to Theorem 99. In the case when `(F ) = 4,
then similarly color and remove the vertex of V (F )\V (P ). Finally, suppose that
`(F ) = 5. Let ϕ be an arbitrary L-coloring of F = p2p1p0v1v2. Remove v1 and v2
from G and remove their colors according to ϕ from the lists of their neighbors,
obtaining a graph G′ with the list assignment L′. Since every triangle in G bounds
a face, at most one vertex in G′ has list of size three. Since p0, p1 and p2 have no
common neighbor and p0 is not adjacent to p2, G

′ with the list assignment L′ is
a smaller counterexample to Theorem 99, which is a contradiction.

Let F = p2p1p0v1v2v3v4 . . .. If `(F ) = 6, then we set v4 = p2. We may assume
that |L(v1)| = 3 or |L(v2)| = 3, since otherwise we can remove a color from the
list of v1. Let us consider a set X ⊆ V (F ) \ V (P ) and a partial L-coloring ϕ of
X that are defined as follows:

(X1) If |L(v1)| = 3 and |L(v3)| 6= 3, then X = {v1} and ϕ(v1) ∈ L(v1) \ L(p0) is
chosen arbitrarily.

(X2) If |L(v1)| = 3 and |L(v3)| = 3, then X = {v1, v2} and ϕ is chosen so that
ϕ(v2) ∈ L(v2) \ L(v3) and ϕ(v1) ∈ L(v1) \ (L(p0) ∪ {ϕ(v2)}).

(X3) If |L(v2)| = 3, and either |L(v4)| 6= 3 or |L(v3)| ≥ 5, then X = {v2} and
ϕ(v2) ∈ L(v2) is chosen arbitrarily.

(X4) If |L(v2)| = 3, |L(v3)| = 4 and |L(v4)| = 3, then:

(X4a) If v1, v2 and v3 do not have a common neighbor or |L(v1)| ≥ 5, then
X = {v2, v3} and ϕ is chosen so that ϕ(v3) ∈ L(v3)\L(v4) and ϕ(v2) ∈
L(v2) \ {ϕ(v3)}.
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(X1)

p0 v1 v2 v3
(X2)

p0 v1 v2 v3

(X3)

p0 v1 v2 v3 v4
(X3)

p0 v1 v2 v3 v4

(X4a)

p0 v1 v2 v3 v4
(X4a)

p0 v1 v2 v3 v4

(X4b)

p0 v1 v2 v3 v4

Figure 9.1: Subcases in the definition of X. Triangle vertices represent lists of
size 3, square vertices list of size ≥ 4. Encircled vertices are in X.

(X4b) If v1, v2 and v3 have a common neighbor and |L(v1)| = 4, then X =
{v1, v2, v3} and ϕ is chosen so that ϕ(v3) ∈ L(v3) \ L(v4), ϕ(v1) ∈
L(v1)\L(p0) and either at least one of ϕ(v1) and ϕ(v3) does not belong
to L(v2), or ϕ(v1) = ϕ(v3). The vertex v2 is left uncolored.

For later reference, Figure 9.1 shows the subcases used in the definition of X and
ϕ.

Let G′ = G−X and let L′ be the list assignment obtained from L by removing
the colors of the vertices of X according to ϕ from the lists of their neighbors
(if a vertex of X is not colored according to ϕ, we do not remove any colors for
it). Observe that any L′-coloring of G′ can be extended to an L-coloring of G,
thus G′ is not L′-colorable. By the minimality of G, this implies that G′ violates
the assumptions of Theorem 99. Since F has no chords, the choice of X and ϕ
implies that every vertex of V (G′) \ V (P ) has list of size at least three. Since
p0 is not adjacent to p2 and p0, p1 and p2 do not have a common neighbor in
G, it follows that the conditions (v) and (vi) are satisfied by G′ with the list
assignment L′. We conclude that (iv) is false, i.e., G′ contains adjacent vertices
u and v such that |L′(u)| = |L′(v)| = 3.

Since F has no chords, the choice of X ensures that at most one of u and v
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belongs to V (F ); hence, we can assume that v 6∈ V (F ) and v has two neighbors
in X. In particular, X was chosen according to the cases (X2) or (X4). Since
G contains no separating cycles of length at most 4, we conclude that u has at
most one neighbor in X, and thus u ∈ V (F ). Let x ∈ X be the neighbor of
v such that the distance between u and x in F − P is as large as possible. By
(57) applied to the 2-chord xvu, we conclude that the xvu-component of G that
does not contain P consists of xvu and a vertex z adjacent to x, v and u with
|L(z)| = 3. It follows that |L(u)| > 3, and since |L′(u)| = 3, we have z ∈ X
and |L(u)| = 4. The inspection of the choice of X shows that (X4) holds, i.e.,
u = v1, z = v2 and x = v3. However, note that the condition of (X4b) holds;
hence u ∈ X, contrary to the assumption that u ∈ V (G′). This completes the
proof of Theorem 99.

9.2 Near-planar graphs

Our proof of Theorem 97 is a modification the proof of 5-list-colorability of planar
graphs that we presented in the previous section. Our main goal is to show that
graphs drawn in the plane with crossings far apart are 5-list-colorable. For the
purposes of the induction, it will be useful to allow other kinds of irregularities
(adjacent vertices with list of size three, as well as vertices with list of size four
not incident with the outer face, which arise when some vertices incident with a
crossing are colored and their color is removed from the lists of their neighbors),
subject to distance constraints.

Let us first introduce some terminology. Let G be a graph. For two subgraphs
H1, H2 ⊆ G, the distance d(H1, H2) between H1 and H2 is the minimum of the
distances between the vertices of H1 and H2, i.e., the minimum k such that there
exists a path v0v1 . . . vk in G with v0 ∈ V (H1) and vk ∈ V (H2). A drawing G of
G in the plane consists of a set V = {pv | v ∈ V (G)} of distinct points in the
plane and a set of simple polygonal curves E = {ce | e ∈ E(G)} such that

• if uv ∈ E(G), then pu and pv are the endpoints of cuv,

• no internal point of any ce ∈ E belongs to V , and

• at most two of the curves in E contain any point that does not belong to
V , and any two curves in E have at most one point in common.

A crossing of G is a point in the plane that belongs to two of the curves in E , but
not to V . An edge e is incident with the crossing x if x ∈ ce. An edge e is crossed
if it is incident with some crossing, and non-crossed otherwise. For a crossing x,
we define Gx to be the graph consisting of the two edges incident with x. Two
vertices of G are crossing-adjacent if they belong to Gx for some crossing x and
are not adjacent in Gx. Removal of

⋃ E splits the plane into several connected
subsets, which we call faces of G. By a slight abuse of terminology, we sometimes

194



r(H) = 4

e

P

r(e) = 3

v ∈ N

r(v) = 2

e ∈M

r(e) = 0

Figure 9.2: Special subgraphs and their ranks

identify a face with its boundary and hence speak about the vertices, edges and
crossings of the face.

Let G be a drawing of a graph G, let P be a path of length at most three
contained in the boundary of the outer face F of G (where in particular, no edge
of P is crossed), N a subset of V (G) and M a subset of E(G), and let L be a list
assignment for G. We say that L is (P,N,M)-valid if the following conditions
are satisfied:

(S) |L(v)| ≥ 5 for v ∈ V (G) \ (V (F )∪N), |L(v)| ≥ 3 for v ∈ V (F ) \ V (P ) and
|L(v)| = 1 for v ∈ V (P ),

(N) |L(v)| ≥ 4 for v ∈ N \ V (F ),

(M) if |L(u)| = |L(v)| = 3 and u and v are adjacent, then uv ∈M ,

(P) L gives a proper coloring to the subgraph induced by V (P ),

(T) if a vertex v has three neighbors w1, w2, w3 in V (P ), then L(v) 6= L(w1) ∪
L(w2) ∪ L(w3), and

(C) if x is a crossing and Gx contains a vertex with list of size three, then all
other vertices of Gx have lists of size 1 or ≥ 5.

We define some subgraphs H of G to be special, and assign a rank r(H) to
each such subgraph (see Figure 9.2). Specifically, H is special if it falls into one
of the following cases:

• H consists of the two edges incident with a crossing. In this case, its rank
is 4.

• P has length three and H consists of the middle edge of P ; the rank of H
is 3.

• H is equal to a vertex of N , and r(H) = 2.

• H is equal to an edge of M , and r(H) = 0.

The drawing G is (P,N,M)-distant if d(H1, H2) ≥ r(H1)+r(H2)+7 for every pair
H1 6= H2 of special subgraphs of G. We shall occasionally refer to the (P,N,M)-
distant requirement as the distance condition. The purpose of the introduced
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OM1 OM2 ON1 ON2

ON3 OC1 OC2 OC3

OC4 OC5 OP1 OP2

OP3 OP4 OP5 OP6

Figure 9.3: The obstructions used in Theorem 100

rank function is the following. In our inductive arguments, we will occasionally
construct a smaller graph G′ and introduce a new special subgraph H ′ in a vicinity
of a special subgraph H that would no longer exist in G′. If H ′ has smaller rank
than H, the distance condition for special subgraphs in G′ would still hold, and
the induction hypothesis can be applied.

A subgraph O ⊆ G is an obstruction if O is isomorphic to one of the graphs
drawn in Figure 9.3 and sizes of the lists of its vertices match those prescribed by
the figure, where the full-circle vertices have list of size one, triangle vertices have
list of size three, square vertices have list of size four and pentagonal vertices have
list of size five. Let us remark that if the distance condition holds, then G can
contain at most one of the obstructions. For further reference we exhibit in Figure
9.4 all possible list assignments for which the obstructions are not colorable. In
particular, observe that the following holds:

(58) Let H be one of the obstructions and let Q be the path in H consisting
of full-circle vertices. Suppose that Q has length two and that H is neither OM1

nor OC1. Let q be the middle vertex of Q and let L be a list assignment such
that each vertex v drawn by a k-gon has |L(v)| = k, while the vertices of Q have
lists consisting of all possible colors. Then there exists a color b such that every
L-coloring ψ of Q with ψ(q) 6= b extends to an L-coloring of H.
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We prove the following claim, which obviously implies our main result, The-
orem 97.

Theorem 100. Let G be a graph drawn in the plane, P a path of length at most
three contained in the boundary of the outer face F of G and L a list assignment
for G. Suppose that there exist sets N ⊆ V (G) and M ⊆ E(G) such that L is
(P,N,M)-valid and the drawing of G is (P,N,M)-distant. If

(O) every obstruction in G is L-colorable,

then G is L-colorable.

Before giving the proof of this statement, let us give a quick outline. Essen-
tially, we follow the proof of Theorem 99. First, we show that the outer face of a
hypothetical minimal counterexample G has no chords and then we also restrict
its 2-chords. This is somewhat more complicated due to the presence of crossings
and the condition (O). Next, we find the set X and its partial coloring ϕ defined
in the same way as in the proof of Theorem 99, and use it to construct the graph
G′ with the list assignment L′. By the minimality of G, we conclude that G′

violates one of the assumptions of the theorem. A straightforward case analysis
shows that (O) holds, and the conditions (S), (P) and (T) follow in the same way
as in the proof of Theorem 99; but (M), (N) and (C) can be violated in ways
which do not enable us to obtain a contradiction directly. However, we observe
that in such a case, there is a special subgraph S near to X. In this situation,
we apply the symmetric argument on the other side of the path P , and obtain
another set X ′ and a special subgraph S ′ close to it. By the distance condition,
we have S = S ′, and thus there exists a short path from X to X ′ passing through
S. In this situation, we consider all the possible combinations of X, X ′ and their
positions relatively to S, and obtain a contradiction similarly to the way we deal
with 2-chords.

Let us note that the assumption (C) is a product of a somewhat delicate
tradeoff. We believe the claim still essentially holds even without this assump-
tion, and avoiding it would greatly reduce the number of possible bad cases and
simplify the last part of the proof. However, the list of obstructions in (O) would
be significantly larger, making the first part of the proof longer and more com-
plicated. Moreover, if we omit (C) completely, then there exists an obstruction
with a precolored path of length one (see Figure 9.5(a)), which would be a major
problem (we could not easily get rid of chords of F ). One could consider exclud-
ing Figure 9.5(a) by forbidding vertices with lists of sizes three or four joined by
a crossed edge. This would still simplify the last part of the proof a lot. However,
in addition to having more than 10 new obstructions, we do not see a way how to
reduce the 2-chord depicted in Figure 9.5(b), which would need to be dealt with
somehow.
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Figure 9.4: The lists for which the obstructions cannot be colored. Colors repre-
sented by different letters may be equal to each other if they do not occur in the
same list for a particular obstruction.
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Figure 9.5: Why is condition (C) needed?
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Proof of Theorem 100. We follow the outline of the proof of Theorem 99. We
assume that G is a counterexample to Theorem 100 with |V (G)| + |E(G)| as
small as possible, and subject to that, with the minimum sizes of its lists. Let
k = `(P ) ≤ 3, and let P = p0p1 . . . pk. By applying the same kind of reductions
as used in the proof of Theorem 99 together with the minimality of G, one can
show:

(59) The following properties are satisfied:

(a) Every vertex v ∈ V (G) satisfies deg(v) ≥ |L(v)|.
(b) G is 2-connected and `(P ) ≥ 1.

(c) Every non-crossed chord of F is incident with exactly one internal vertex
of P .

(d) If K is a triangle in G and no edge of K is crossed, then K is not separating.
If K is a separating 4-cycle without crossed edges, then IntK(G)− V (K) is
either a vertex in N or a complete graph on 4 vertices involving a crossing.

(e) Every vertex v ∈ V (G) satisfies |L(v)| ≤ 5.

(f) If v ∈ V (G) \ V (P ) is adjacent to a vertex p ∈ V (P ), then L(p) ⊆ L(v).

Most properties in (59) are easy to argue about; they are left to the reader.
Property (e) is achieved by removing colors from lists of size 6 or more. The only
problem that may arise is that we obtain an obstruction; however, inspection of
bad lists for the obstructions exhibited in Figure 9.4 shows that we can always
remove one of the colors so that (O) still holds. The only remaining nontrivial
claim is the property of separating 4-cycles in part (d). To prove that, we first
color the subgraph of G consisting of ExtK(G) and all chords of K and then
consider G′ = IntK(G). Let K = v1v2v3v4, and let ci be the color of vi as used
in the coloring of ExtK(G). Suppose that c1 6= c3. In that case we consider the
list assignment L′ for G′ given by setting L′(v) = L(v) if v /∈ V (K), L′(vi) = {ci}
for i = 1, 2, 3, and L′(v4) = {c1, c3, c4}. Since any L′-coloring of G′ yields an
L-coloring of G, we conclude that G′ does not satisfy all assumptions of the
theorem. It is easy to see that the only possible violation is that G′ contains an
obstruction. Note that this obstruction contains the whole path v1v2v3 and that
the only vertices whose lists have size 3 or 4 are v4 and possibly a vertex in N . If
a vertex in N is present, there is no crossing by the distance condition. The only
obstructions with these properties are ON1 and OC5, yielding the outcome of the
claim (a similar argument shows that V (IntK(G)) only consists of the vertices of
the obstruction; see (60) below for details). The remaining case to consider is
when c1 = c3. In this case we replace the color c3 in the list of v3 and in the lists
of all its neighbors by a new color c′3 that does not occur elsewhere, and then
apply the same argument as in the previous case. It is to be observed that the
color c′3 will only be used for v3, and the color c3 will not be used on any of the
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neighbors of v3. Thus a coloring with the revised lists gives rise to an L-coloring
of G also in this case. This completes the proof of (59).

Let T = v1v2v3 be a triangle in G. Suppose that the edge v1v2 is crossed by an
edge uw, where w belongs to G2 = IntT (G) and w 6= v3. Let ϕ be an L-coloring of
ExtT (G) and let L2 be the list assignment such that L2(vi) = {ϕ(vi)} for 1 ≤ i ≤
3, L2(w) = L(w) \ {ϕ(u)} and L2(z) = L(z) otherwise. Note that |L2(w)| ≥ 4,
that G2 is not L2-colorable and that it is (v1v2v3, (N ∩ V (G2)) ∪ {w}, ∅)-distant.
Observe that G2 satisfies the validity conditions (S)–(C), and also satisfies (O).
Hence it is a counterexample to Theorem 100, contradicting the minimality of G.
Similarly, if w = v3, then we conclude that no vertex is drawn in the open disc
bounded by T . Together with (59), we obtain the following conclusion:

(60) If T is a triangle in G distinct from F , then V (IntT (G)) = V (T ).

Suppose now that G contains one of the obstructions from Figure 9.3. Note
that each of the obstructions contains a special subgraph. By the distance con-
dition, none of them has further crossed edges and (60) implies that no such
obstruction H appears in G, as otherwise we would have G = H and G would be
L-colorable by the assumptions.

Furthermore, analogous arguments as used in the proof of (59)(d) show that
the following conditions hold:

(61) If K is a 4-cycle in G distinct from F and V (IntK(G)) 6= V (K), then
either IntK(G)− V (K) is K4, or there exists a vertex z such that V (IntK(G)) =
V (K) ∪ {z}, z is adjacent to all vertices of K and z either belongs to N or is
incident with an edge crossing an edge of K.

(62) If K is a 5-cycle in G distinct from F , V (IntK(G)) 6= V (K), no edge of K
is crossed and there exists a special subgraph S ⊆ ExtK(G) such that d(S,K) ≤ 1,
then V (IntK(G)) = V (K) ∪ {z} for a vertex z adjacent to all vertices of K.

Some explanation concerning the proof of (62) is needed: Again, we first
color ExtK(G) and then consider IntK(G) with the 5-cycle precolored. By the
previous results, K has no chords, since the outcomes of (61) would yield a special
subgraph too close to S. Let uv be an edge of K, and let G′ = IntK(G)−{u, v}.
By removing the colors of u and v from the lists of their neighbors, we obtain
another instance of a list coloring problem with a precolored path of length 2.
Since any coloring of G′ gives rise to a coloring of G, we conclude that one of the
assumptions of the theorem is violated. By the distance condition, the only one
that may not hold is the assumption (T). Since the common neighbor w of the
three vertices on the path has list of size 3 (and it had list of size 5 in G), it is
adjacent to u and v in G, thus proving the claim.

Our next goal is to show that F does not have chords. Let uv be a non-
crossed chord of F . By (59)(c), u is an internal vertex of P , say u = p1, while
v 6∈ V (P ). Let G1 and G2 be the uv-components for G such that p0 ∈ V (G1),
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and let P1 = p0p1v and P2 = vp1 . . . pk. For each color c ∈ L(v) \ L(u), let Lc be
the list assignment such that Lc(v) = {c} and Lc(z) = L(z) if z 6= v. Since G
is not L-colorable, either G1 or G2 is not Lc-colorable. Furthermore, since both
G1 and G2 are L-colorable (by the minimality of G), there exist distinct colors
c1 and c2 such that G1 is not Lc1-colorable and G2 is not Lc2-colorable. Since
G is a minimal counterexample, the assumptions of our theorem fail for G1 and
G2 with respect to these list assignments. In the sequel we discuss what can go
wrong.

All special subgraphs inG that do not contain v remain special inG1 orG2 and
no new special subgraphs arise. Thus, G1 is (P1, N ∩ V (G1),M ∩E(G1))-distant
and G2 is (P2, N ∩ V (G2),M ∩ E(G2))-distant. Clearly, validity conditions (S),
(N), (M), and (C) hold for both graphs. Thus one of (P), (T), or (O) fails. If G1

contains an obstruction, then it contains a special subgraph whose distance to p1
is at most two. In that case, we conclude that `(P ) ≤ 2 and that G2 contains no
obstruction, since the distance between special subgraphs in G is more than four;
also, no edge at distance at most two from p1 in G2 is crossed. Since `(P ) ≤ 2,
we may in this case exchange the role of G1 and G2 and henceforth assume that
G1 contains no obstructions. Similarly, by exchanging the roles of G1 and G2

if necessary, we may assume that no edge in G1 at distance at most 2 from p1
is crossed. Furthermore, if G1 violates (T), then since no edge in G1 incident
with p1 is crossed, we could consider the chord p1z instead of p1v, where z is the
common neighbor of p0, p1 and v. Therefore, we can assume that G1 satisfies (T)
and (O). Since no L-coloring of G2 extends to an L-coloring of G1, we conclude
that G1 violates (P), and thus v is adjacent to p0. Since vp0 is neither crossed
nor incident with an internal vertex of P , we conclude that vp0 is part of the
boundary of F , and hence G1 is equal to the triangle p0p1v. Suppose now that
G2 contains an obstruction H; by (59) and (60), we have G2 = H. However, the
inspection of the obstructions shows that G would either be L-colorable or an
obstruction. Therefore, G2 satisfies (O). Furthermore, by the absence of OP1 and
property (T) of G, we conclude that there exists a color c ∈ L(v)\ (L(p0)∪L(p1))
such that G2 satisfies (P). Since this coloring does not extend to an L-coloring
of G2, it follows that G2 violates (T), i.e., there exists a vertex w adjacent to v
and to vertices p, p′ ∈ V (P ) \ {p0} such that L(w) = L(p) ∪ L(p′) ∪ {c}. Since
we cannot choose c so that G2 satisfies both (P) and (T), it follows that either
G contains OP2, or vw ∈M (in which case `(P ) = 2), and G contains OM1. This
is a contradiction, thus every chord of F is crossed.

Consider now a (crossed) chord uv of F that is not incident with an in-
ternal vertex of P . Let e be the edge crossing uv and let G1 and G2 be the
uv-components of G − e such that P ⊆ G1. Let e = x1x2, where x1 ∈ V (G1)
and x2 ∈ V (G2). By the minimality of G, there exists an L-coloring ϕ of G1.
Since ϕ(u) 6= ϕ(v), we can assume that ϕ(x1) 6= ϕ(u). Let G′ be the graph
obtained from G2 − uv by adding new vertices y1 and y2, edges of the path
P ′ = uy1y2v and the edge y1x2. Let L′ be the list assignment for G′ such that
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L′(u) = {ϕ(u)}, L′(v) = {ϕ(v)}, L′(y1) = {ϕ(x1)}, L′(y2) = {c} for a new color
c that does not appear in any of the lists and L′(z) = L(z) for any other vertex
z. Note that G′ has a new special subgraph consisting of the edge y1y2 and that
G′ is (P ′, N ∩ V (G′),M ∩ E(G′))-distant, since the crossing of G incident with
x2 does not belong to G′ and any path from a special subgraph in G′ to y1y2
passes through one of the vertices u, v, x2 of the crossing in G. Furthermore,
G′ is not L′-colorable, and by the minimality of G, it violates (T) or (O). The
latter is not possible, since y2 has degree two, thus (T) does not hold in G′. This
implies that x2 has list of size three and it is adjacent to u and v. By (59) and
(60), we have V (G2) = {u, v, x2}. Note that by (C), we conclude that each of
|L(u)|, |L(v)|, |L(x1)| is either 1 or 5. Let a be a color in L(x2) distinct from the
colors of its neighbors in P , which exists by (T). Let G′′ = G − x2 with the list
assignment L′′ such that L′′(z) = L(z) \ {a} for z ∈ {u, v, x1} and L′′(z) = L(z)
otherwise. Note that G′′ is (P,N ∪{x1},M}-distant and L′′ is (P,N ∪{x1},M)-
valid. By the minimality of G, we have that G′′ violates (O). The obstruction
involved is L-colorable, so it must contain one of the vertices whose lists have
been changed. Since none of these vertices has list of size 3 or 4 in L and all
special subgraphs are far away from the crossing, we conclude that `(P ) = 2,
|L′′(x1)| = 4 and G′′ contains one of ON1, ON2 or ON3, in which the interior
vertex with list of size 4 is x1. However, inspection of these graphs shows that
|L′′(u)| = 3 or |L′′(v)| = 3, which is a contradiction.

Finally, consider a crossed chord uv of F incident with an internal vertex u
of P . Since G is (P,N,M)-distant, we have `(P ) = 2, thus u = p1. Let e be the
edge crossing uv and let G1 and G2 be the uv-components of G − e such that
p0 ∈ V (G1) and p2 ∈ V (G2). Let P1 = p0p1v and P2 = p2p1v, and let e = x1x2,
where xi ∈ V (Gi) for i ∈ {1, 2}. Note that Gi is (Pi, (N ∩ V (Gi)) ∪ {xi},M ∩
E(Gi))-distant. If Gi contains an edge f different from p0p1, p0v, p1v, then by
the minimality of G there exists an L-coloring ϕ3−i of G − f ⊇ G3−i + x1x2.
If additionally |L(xi)| ∈ {1, 5}, then define Li to be the list assignment for Gi

such that Li(v) = {ϕ3−i(v)}, Li(xi) = L(xi) \ {ϕ3−i(x3−i)}, and Li(z) = L(z) for
any other vertex z. Observe that Gi is not Li-colorable, and we conclude that
it violates (P), (T) or (O). (For (S) to hold, we add xi to N). Since ϕ3−i is a
coloring of G−f , (P) is satisfied for Gi. Since G is (P,N,M)-distant and contains
no non-crossed chord, it follows that Gi satisfies (T). Thus, Gi violates (O). The
corresponding obstruction is ON1 since all others either have a special subgraph
of G that would violate the distance condition in G, or have a non-crossed chord
incident with p1. Together with (59) and (60), we have that for each i ∈ {1, 2},
one of the following holds:

• xi ∈ V (Pi) and either Gi = Pi or Gi is the triangle on V (Pi), or

• |L(xi)| ∈ {3, 4}, or

• Gi is equal to ON1 and xi is its vertex with list of size four.
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Since we already excluded all chords not incident with p1, at most one of x1 and
x2 has list of size three or four. By symmetry assume that |L(x1)| ∈ {1, 5}. If
|L(x2)| ∈ {1, 5}, then all the possible combinations of such graphs G1 and G2 are
either L-colorable or equal to OC1. Therefore, |L(x2)| ∈ {3, 4}. Since every chord
of F is crossed and incident with an internal vertex of P , we have x1 6∈ V (F ), thus
G1 is ON1. Let w be the vertex of G1 with list of size three, G′ = G−{w, p0}−p1v
and L′ the list assignment such that L′(x1) = {ϕ1(x1)}, L′(v) = {ϕ1(v)} and
L′(z) = L(z) otherwise. Note that G′ is (p2p1x1v,N ∩V (G′),M ∩E(G′))-distant
and not L′-colorable. If v has degree at least 5 in G, then it has degree at least
three in G′. Together with (59), this implies that x2 is not adjacent to v, hence
(T) holds. If v has degree at most four, then |L(v)| ≤ 4, and by (C), |L(x2)| = 4,
and again (T) holds. Therefore, G′ violates (O). Since x1 has degree three in G′

and it is adjacent to a vertex with list of size three or four, G′ contains (and by
(59), is equal to) OP1 or OP2. However, then G is L-colorable. Therefore, we
obtain the following conclusion:

(63) F has no chords.

An easy corollary is that

(64) no vertex of P is incident with a crossed edge.

Indeed, if vp were a crossed edge with p ∈ V (P ), then by (63), we have
v 6∈ V (F ). Furthermore, since P is incident with a crossing, we have `(P ) ≤ 2.
Let L′ be the list assignment such that L′(v) = L(v) \ L(p) and L′ matches L
on the rest of the vertices of G. Note that G − vp is not L′-colorable, and by
the minimality of G, we conclude that G− vp contains ON1, ON2 or ON3, whose
internal vertex with list of size 4 is v. It cannot contain ON1, since v is not
adjacent to all vertices of P in G − vp. Similarly, it cannot contain ON3, since
the edge vp would be crossed twice. If G − vp contains ON2, then G contains
OC1. Comparison of bad lists for ON2 and OC1 in Figure 9.4 shows that OC1 is
not L-colorable, which is a contradiction to the assumption that (O) holds for G
and L.

Consider now a vertex v with three neighbors pa, pb, pc ∈ V (P ), where a < b <
c. Let K be the cycle papa+1 . . . pcv, and note that K has a chord vpb. By (64),
none of the edges vpa, vpb and vpc is crossed. By (59)(d), K is not separating
((59)(d) allows a vertex of N or a K4 with a crossed edge in the interior of K;
however, this would only be possible if `(P ) = 3, yielding two special subgraphs
at distance 1). Suppose that c − a = `(P ), and let G2 be the pavpc-component
of G that does not contain P . Since v /∈ V (F ), and v /∈ N if `(P ) = 3, there is a
color in L(v) that does not appear in the lists of vertices in P . Observe that G2

(with the precolored path pavpc) violates either (T) or (O). In the former case,
G is either ON1 or OP6. In the latter case, we have `(P ) = 2 by the distance
condition, and (58) implies that G2 is either OM1 or OC1. If G2 is OM1, then G
is OM2, and if G2 is OC1, then G is L-colorable.
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Finally, consider the case that `(P ) = 3 and v is adjacent to say p0, p1 and
p2 and is not adjacent to p3. If L(p0) = L(p2), then G− vp2 is a counterexample
to Theorem 100 contradicting the minimality of G. Therefore, L(p0) 6= L(p2).
Since the edges vp0, vp1, and vp2 are not crossed, the degree of p1 is three. Let
G′ = G − p1 + p0p2, with the list assignment L′ such that L′(v) = L(v) \ L(p1)
and L′(z) = L(z) otherwise. Note that G′ is (p0p2p3, N ∪ {v},M)-distant, since
the rank of the special subgraph p1p2 in G is greater than the rank of the special
subgraph v (in G′), and any path Q between two special subgraphs S1 and S2

that uses the new edge p0p2 gives rise to paths between S1 or S2 and the middle
edge p1p2 of P in G, thus implying `(Q) ≥ 14 + r(S1) + r(S2) + 2r(p1p2) − 1 >
7+r(S1)+r(S2). We conclude that G′ violates (O) and contains ON1, ON2 or ON3

that is not L′-colorable; however, then G contains a non-L-colorable obstruction
OP6, OP4 or OP5, respectively. Therefore, we have:

(65) Every vertex has at most two neighbors in P .

Suppose now that uv and xy are edges crossing each other and u, x ∈ V (F ).
By (64), neither u nor x belongs to P . Let c be the curve formed by the part of
the edge uv between u and the crossing and the part of the edge xy between the
crossing and x. If c is not part of the boundary of F , then let G2 be the subgraph
of G drawn inside the closed disc bounded by c and the part of the boundary of
F between u and x that does not contain P . Note that there are two possible
situations, depending on whether G2 includes the vertices v and y or not. In any
case, we can write G = G1 ∪G2, where G1 ∩G2 consists only of vertices u and x.
Let G′2 be the graph obtained from G2 by adding a common neighbor w of u and
x. No L-coloring of G1 extends to an L-coloring of G′2 (where w is assigned an
arbitrary color different from the colors of u and x). By the minimality of G, we
conclude that G′2 (with the precolored path uwx) violates (P), thus ux ∈ E(G).
The conclusion is:

(66) If u and x are crossing-adjacent and u, x ∈ V (F ), then either ux ∈ E(G),
or the crossing incident with u and x belongs to the boundary of F .

Similarly, we derive the following property:

(67) Suppose that Q = x1x2 . . . xt−1xt is a path in G, where t ≤ 6 and x1x2
crosses xt−1xt. Let c be the closed curve consisting of the path x2 . . . xt−1 and
parts of the edges x1x2 and xt−1xt, and let X be the set of vertices of G drawn in
the open disc bounded by c. If x1 6∈ X, then X = ∅.

The proof of (67) proceeds as follows. Observe first that the curve c is not
crossed since all its edges are close to a crossing. If the path x2 . . . xt−1 is induced
in G, then the subgraph of G drawn inside the closed disc bounded by c, with the
precolored path x2x3 . . . xt−1, would be a counterexample to Theorem 100 smaller
than G (the distance constraints are satisfied even if t = 6, since the middle edge
of the path x2x3x4x5 has smaller rank then the crossing, whose distance to x3x4
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Figure 9.6: Possible cases for G2 for a 2-chord uvw

in G is one). If x2 . . . xt−1 contains a chord xixj (i < j), then we first consider
Q′ = x1x2 . . . xixj . . . xt and then apply (59)(d) to show that no vertices are
contained in the interior of the cycle xixi+1 . . . xjxi.

Now, we shall consider the 2-chords of F .

(68) Let uvw be a 2-chord of F such that vw is not crossed. Let c be the closed
curve bounding the outer face of G and q the curve corresponding to the 2-chord
uvw. Let c1 and c2 be the simple closed curves in c ∪ q distinct from c, and let
G1 and G2 be the subgraphs of G drawn inside c1 and c2, respectively, so that
G1 ∩ G2 = uvw and G1 ∪ G2 is equal to G if the edge uv is not crossed, and is
equal to G− xy if uv is crossed by the edge xy. If neither u nor w is an internal
vertex of P and P ⊆ G1, then one of the following holds (cf. Figure 9.6):

• V (G2) = {u, v, w}, and either uv is not crossed and uw ∈ E(G), or uv is
crossed by an edge incident with w; in the latter case, uw may or may not
be an edge.

• V (G2) = {u, v, w, z} for a vertex z with list of size three, and either uv is
not crossed and uz, vz, wz ∈ E(G), or uv is crossed by an edge incident
with z, zw ∈ E(G) and at least one of uz and vz is an edge.

• V (G2) = {u, v, w, z} for a vertex z with list of size four adjacent to u, v, w
and incident with an edge crossing uv.

Proof. Let us consider a 2-chord uvw that does not satisfy the conclusion of
the claim such that G2 is maximal. First, suppose that uv is not crossed. An
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L-coloring of G1 does not extend to an L-coloring of G2, hence G2 (with the
precolored path uvw) violates (P), (T) or (O). If G2 violates (P) or (T), then by
(60) and (63) the outcome of the claim holds. Therefore, we conclude that G2

violates (O). Since the obstruction in G2 violating (O) contains a special subgraph
with a vertex distinct from v and v /∈ V (F ), we conclude that v /∈ N , and hence
|L(v)| = 5. By (59) and (60) we also conclude that G2 is the obstruction. Let S
be the set of L-colorings of uvw that do not extend to an L-coloring of G2. The
inspection of the non-colorable obstructions with `(P ) = 2 in Figure 9.4 shows
that one of the following holds:

(R1) there exists a set A of at most two colors and S contains only colorings ψ
such that ψ(v) ∈ A, and furthermore, if |A| = 2 then neither u nor w has
list of size three; or,

(R2) S contains only colorings ψ such that ψ(u) = ψ(w), and neither u nor w
has list of size three.

Indeed, by (58), all obstructions except for OM1 and OC1 satisfy (R1) with |A| = 1.
If G2 is OM1 or OC1, then neither u nor w has list of size three, by (M) together
with the distance condition and by (C). The inspection of the colorings shows
that if G2 is OC1, then (R1) holds with |A| = 2, and if G2 is OM1, then either
(R1) holds with |A| = 2, or (R2) holds (the latter is the case when the two lists
of size 3 are equal, i.e., a = c in Figure 9.4).

If (R1) holds, then let G′ = G1, with the list assignment L′ such that L′(v) =
L(v) \ A and L′(z) = L(z) for z 6= w. Note that if |A| = 2, then v has no
neighbor in G1 with list of size three by (R1) and by the maximality of G2. If
(R2) holds, let G′ = G1 + uw with the list assignment L′ = L. In either case,
G′ is not L′-colorable and it is (P,N ∩ V (G′),M ∩ E(G′))-distant (in the latter
case, any path Q between special subgraphs H1 and H2 using the added edge
uw gives rise to paths from H1 and H2 to the special subgraph of G2, and thus
`(Q) ≥ 14 + r(H1) + r(H2)− 3). Furthermore, G′ satisfies (T) by (63) and (65),
and if G′ violated (C) or (O), then v or uw would have to belong to a crossing or
to an obstruction in G′, and the distance between its special subgraph and the
special subgraph of G2 would be at most 4. Note that G′ cannot violate (P), as
otherwise u,w ∈ V (P ) and G2 is OM1, and by (59) and (65), v would have degree
four and list of size five. Therefore, G′ is a counterexample to Theorem 100
smaller than G, which is a contradiction.

Suppose now that uv is crossed by an edge xy, where x ∈ V (G1) and y ∈
V (G2). If y = w, then the conclusion of the claim holds by (66), hence assume
that y 6= w. Furthermore, x 6= w by (66), and uw 6∈ E(G) by (60). Let G′1 be the
graph obtained from G1 by adding the edges ux and vx (if they are not present
already). Note that this can be done without introducing any new crossings.
Since u, v and x are incident with a crossing in G, G′1 is (P,N ∩ V (G′1),M ∩
E(G′1))-distant. Furthermore, G′1 does not contain any obstruction, as its special
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subgraph would be at distance at most 2 from the crossing. By (63), u has at
most one neighbor in P within G, hence G′1 satisfies (T). By (64), u and x cannot
belong to P , hence by the minimality of G, there exists an L-coloring ϕ of G′1.
Let G′2 be the graph obtained from G2 − uv by adding the vertex x and edges
ux, vx, yx. Consider the list assignment L′2 for G′2 such that L′2(z) = {ϕ(z)} for
z ∈ {u, v, w, x} and L′2(z) = L(z) otherwise. Note that G′2 is not L′2-colorable
and that it is (uxvw,N ∩ V (G′2),M ∩ E(G′2))-distant.

Since y 6= w and since uw /∈ E(G′2), the graph G′2 satisfies (P) for the ϕ-
colored path uxvw. If G′2 violates (T), then by (60) we have that |L(y)| = 3 and
y is adjacent to at least two of u, v and w. In particular, y ∈ V (F ). Observe
that if vy ∈ E(G), then the yvw-component K that does not contain P can
only be a triangle (since otherwise any L-coloring of the other yvw-component
K ′ would extend to K, and K ′ would contradict the minimality of G). Thus
yw ∈ E(G). By (67) applied to the path xywvu, we have V (G2) = {u, v, w, y}
and the conclusion of the claim holds. Let us now consider the remaining case
that G′2 satisfies (T), and thus by the minimality of G, it violates (O). By (59)
and (60), G′2 is equal to one of OP1, . . . , OP6, but not OP3 since x has degree 3
in G′2.

If G′2 is OP1, then the conclusion of the claim holds. Otherwise, let us define
S as the set of colorings ψ of the path uxvw that do not extend to an L-coloring
of G′2 and satisfy ψ(u) 6= ψ(v). The inspection of the obstructions and their
problematic list assignments displayed in Figure 9.4 shows that either (R1) or
one of the following holds:

(R3) G′2 is OP2 and there exists a color c such that S contains only colorings ψ
such that either ψ(u) = c and ψ(x) = ψ(w), or ψ(x) = c and ψ(u) = ψ(w).
Moreover, |L(u)| 6= 3 and |L(w)| 6= 3.

(R4) G′2 is OP4 and there exists a color c such that S contains only colorings ψ
satisfying either ψ(v) = c or ψ(x) = c. Moreover, |L(u)| 6= 3.

Again, the conclusions that the specified vertices do not have lists of size three
follow in all applicable cases by noting that otherwise either (C) or the distance
condition would be violated. Let us remark that for OP2 we have (R1) if the
colors a, b, c, d in Figure 9.4 are different; we have (R3) if b = d or a = d. To
argue for OP4, OP5, OP6 we observe that ψ(x) and ψ(v) should be taken from
the difference of the lists of the two neighbors of u (so these are colors b, c in
Figure 9.4). This yields (R1) with the only exception in the case of OP4, where
we cannot argue about |L(w)| 6= 3, so we need (R4) in this (and only this) case.

The condition in (R3) that the lists of u and w do not have precisely three
elements is argued as follows. Since x has degree 3 in G′2, the vertex z of OP2

with list of size 3 is not the vertex y, and v, w are both adjacent to z. Since
|L(z)| = 3 and the edge wz is close to a crossing in G, we conclude that wz /∈M
and hence |L(w)| 6= 3. Since |L(y)| = 4, (C) implies that |L(u)| 6= 3.
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Now, the case when (R1) holds is handled in the same way as the case when uv
was not crossed. If (R3) holds, then we let G′1 = G1+uw with the list assignment
obtained from L by removing c from the list of u (note that |L(u)| 6= 1 by (64));
we may need to add an edge incident with u to M in order to satisfy (M). If
(R4) holds and |L(x)| = 5, then let G′1 = G1 with the list assignment obtained
by removing c from the lists of x and v (and adding x to N). In all the cases, G′1
satisfies the assumptions of the theorem. Indeed, (P) is trivial, since u 6∈ V (P )
by (64). Similarly, (T) follows by (63) and (65). Finally, (O) holds since by the
distance condition, we could only create OM1, OM2, ON1, ON2 or ON3, and each
of them is excluded by (63) or (65). Therefore, G′1 contradicts the minimality of
G, since its coloring would extend to an L-coloring of G.

Finally, consider the case that (R4) holds and |L(x)| ∈ {3, 4}. By (66),
all neighbors of u distinct from x belong to G2. By (64), we have u 6∈ V (P ),
deg(u) ≥ |L(u)| ≥ 4, and thus u is adjacent to x and |L(u)| = 4. Since G′2 is OP4,
every coloring of x, v and w extends to an L-coloring of G2, hence G1 contradicts
the minimality of G. This completes the proof of (68).

Similarly, one can prove the following:

(69) Let u,w ∈ V (F ) be distinct vertices, neither of which is an internal vertex
of P . Suppose that v 6∈ V (F ) is a vertex adjacent to w and crossing-adjacent
to u. Let c be the closed curve not containing P consisting of vw, parts of the
crossed edges incident with u and v, and a part of the boundary of F between u
and w that does not contain P , and let G2 be the subgraph of G drawn in the
closed disc bounded by c. Then G2 does not contain the crossing and satisfies one
of the following:

(a) V (G2) = {u, v, w} and uw ∈ E(G), or

(b) V (G2) = {u, v, w, z}, |L(z)| = 3 and z is adjacent to u, v and w.

Proof. By (68), it suffices to consider the case that uv 6∈ V (G). Let G′1 be the
graph obtained from G1 as follows: If uw ∈ E(G), then we add the edge uw. If
u, v and w have a common neighbor z with list of size three, then we add z and
incident edges. If V (G′1) = V (G), then (a) or (b) holds. Otherwise, there exists
an L-coloring ψ of G′1 by the minimality of G. Let L′ be the list assignment
such that L′(v) = {ψ(v)}, L′(w) = {ψ(w)}, L′(u) = {c} for a new color c,
L′(x) = (L(x) \ {ψ(u)})∪{c} for each neighbor x of u distinct from v and w and
L′(x) = L(x) for all other vertices x. Note that G′2 = G2 +uv is not L′-colorable,
and by the minimality of G, one of the assumptions of the theorem is violated
in G′2. By the construction of G′1 and the choice of ψ, (P) and (T) hold. By the
distance condition, the only obstruction that can appear in G′2 is OC1. However,
then the 2-chord wvt (where t is the neighbor of u in G2 with list of size four)
contradicts (68).

208



Let us now introduce a way of defining list assignments that will be used
throughout the rest of the paper. Let ϕ be any proper partial L-coloring of
G such that ϕ(v) 6∈ L(p) for every pair of adjacent vertices v ∈ dom(ϕ) and
p ∈ V (P ). For each vertex z ∈ V (G), let

Rz =
⋃

p∈V (P )\dom(ϕ),zp∈E(G)

L(p).

We define Lϕ to be the list assignment such that

Lϕ(z) =
(
L(z) \ {ϕ(x) : x ∈ dom(ϕ), xz ∈ E(G)}

)
∪Rz.

Let us also define Gϕ = G − dom(ϕ). Consider any Lϕ-coloring ψ of Gϕ. We
claim that the combination of ϕ with ψ is a proper L-coloring of G. Indeed, for
any z ∈ V (Gϕ), we clearly have ψ(z) 6∈ Rz, and thus ψ(z) ∈ Lϕ(z) is different
from the colors of the neighbors of z in dom(ϕ). Since G is not L-colorable, we
conclude that Gϕ is not Lϕ-colorable.

Suppose now that G contains a subgraph H isomorphic to one of the graphs
drawn in Figure 9.3 such that the subgraph of H corresponding to full-circle
vertices is equal to P , triangle vertices have lists of size at least three, square
vertices have lists of size at least four and pentagonal vertices have lists of size
five. Then we say that H is a near-obstruction.

(70) If H is a near-obstruction, then H is isomorphic to one of OM1, ON2, ON3

or OP3. Furthermore, |(V (H)∩V (F ))\V (P )| ≤ 1, and if (V (H)∩V (F ))\V (P ) 6=
∅, then H is ON2 or ON3.

Proof. By (65), H is isomorphic to one of OM1, ON2, ON3, OC2, OC3, OC4, OC5

or OP3.
By (68), if H is OC5, then V (G) = V (H) ∪ {z}, where z is a vertex of degree

three adjacent to p0, p2 and the vertex w 6∈ V (P ) in the outer face of H. However,
the distance condition implies that w /∈ N , so that |L(w)| = 5. This implies that
G is L-colorable, which is a contradiction.

If H is OC2, then let p0w1w2p2 be the path in the outer face of H. If w1, w2 ∈
V (F ), then V (G) = V (H) and G is L-colorable by (O). Thus assume that w2 6∈
V (F ); hence |L(w2)| = 5. If w1 ∈ V (F ), then since w2 has degree at least 5, by
(68) we have that V (G) = V (H) ∪ {z}, where z is adjacent to w1, w2 and p2.
However, then G is L-colorable. Therefore, w1 6∈ V (F ). Let ϕ be an L-coloring of
H and G2 the p0w1w2p2-component of G that does not contain P . Since ϕ does
not extend to an L-coloring of G2, it follows that G2 with the precolored path
p0w1w2p2 violates (P), (T) or (O). Since both w1 and w2 have degree at least 5,
it follows that p0w2 /∈ E(G) and w1p2 /∈ E(G), hence (P) holds. Suppose that G2

violates (T). Then a vertex z with list of size three is adjacent to three vertices
among p0, w1, w2 and p2. If it is adjacent to all four of them, then G contains
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OC5 which has already been excluded. Otherwise, since w1 and w2 have degree
at least 5, by (61) z cannot be adjacent to p0, w1, and p2. By symmetry, we may
assume that z is adjacent to p0, w1, w2. Then (68) applied to the 2-chord zw2p2
shows that there is a vertex z′ adjacent to z whose list has size 3, and we see
that the special edge zz′ gives a contradiction. Finally, if G2 violates (O), then
the obstruction is equal to one of OP1, OP2, OP3, OP4, OP5 or OP6, and now it is
easy to see (by comparing bad lists for the obstructions) that G is L-colorable.

If H is OC3, then let w1 be the vertex of H drawn by the triangle and w2 the
vertex of P that is not adjacent to it in G. If H is OC4, then let w1 and w2 be
the vertices of H drawn by triangles. By symmetry, we can assume that w1 is
the neighbor of p2. Let w1x1x2w2 be the path in H formed by neighbors of p1.
Note that |L(wi)| ∈ {1, 5} by (63). Choose an L-coloring ϕ of the subgraph of
G induced by V (P ) ∪ {w1, w2} such that ϕ(w1) 6= ϕ(w2) and either |Lϕ(x1)| ≥ 4
or Lϕ(x1) 6= Lϕ(x2). Note that this is possible since |L(w1)| = 5. Let G′ =
G− {p1, x1, x2}+ w1w2 with the list assignment L′ such that L′(z) = {ϕ(z)} for
z ∈ {w1, w2} and L′(z) = L(z) otherwise. Observe that G′ is not L′-colorable
(since every L′-coloring of G′ extends to an L-coloring of G) and that it satisfies
(P) for the precolored path w2w1p2 or p0w2w1p2. By the minimality of G, G′

violates (T) or (O). In the former case, by symmetry we can assume that there
exists a vertex z ∈ V (G) such that |L(z)| = 3 and z is adjacent to p2, w1 and
either w2 or p0. It follows that G contains a separating 4-cycle formed by non-
crossed edges, and by (59) the interior of this 4-cycle contains K4. By (63) and
(68), there are no other vertices in G. Now, it is easy to see that the resulting
graph is L-colorable. Therefore, G′ violates (O). Since G is (P,N,M)-distant,
this is only possible if H is OC4. In this case the obstruction in G′ is one of OP1–
OP6. Note that the edge w1w2 is contained in a triangle; let z be their common
neighbor. By (59), the 4-cycle w1zw2p1 surrounds K4 in G. However, the graphs
obtained from the obstructions OP1–OP6 with the precolored path p0w2w1p2 by
adding the vertex p1 joined to the vertices p0, w1, w2, p2, deleting the edge w1w2,
and adding K4 inside the 4-cycle w1zw2p1 are easily seen to be L-colorable.

The remaining obstructions are OM1, ON2, ON3, and OP3. If H is OM1 or OP3,
then none of the vertices in V (H)\V (P ) belongs to F since this would contradict
(63). In the other cases, at most one of the vertices of H can belong to F by the
same reason.

Observe that `(P ) ≥ 2, since if `(P ) < 2, then we can precolor 2 − `(P )
more vertices of F (by (64), we can extend P in the boundary of F ). Let
pk . . . p1p0v1v2 . . . vs be the vertices contained in the boundary of F in the cyclic
order around it. We either have vivi+1 ∈ E(G), or vi and vi+1 are crossing-
adjacent, for each i. As we already observed, p0v1, pkvs ∈ E(G). We also define
vs+1 = pk, vs+2 = pk−1, . . . .

If s = 0, then let ϕ be the L-coloring of p0. Then Gϕ with the list assignment
Lϕ is a smaller counterexample to Theorem 99. This contradiction shows that
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s ≥ 1.
Suppose that s = 1 and let ϕ be the partial coloring that assigns a color in

L(v1)\ (L(p0)∪L(pk)) to v1. Note that if v1 is adjacent to a vertex x by a crossed
edge, then Gϕ is (P,N ∪ {x}, ∅)-distant, otherwise Gϕ is (P,N, ∅)-distant. By
the minimality of G, Gϕ with the list assignment Lϕ violates (O) and contains
an obstruction H, which by (70) is one of OM1, ON2, ON3 or OP3. Note that if
z ∈ V (H) is a vertex with list of size three according to Lϕ, then z is adjacent to
v1 and belongs to N ; but z is at distance at most one from the special subgraph
in the obstruction, contradictory to the assumption that G is (P,N,M)-distant.
Therefore, s ≥ 2.

If v1 is not adjacent to v2 (i.e., v1 and v2 are crossing-adjacent), then let ϕ be
a coloring that assigns a color from L(v1) \ L(p0) to v1 and the color from L(p0)
to p0. Note that `(P ) = 2 by the distance condition. Let y be the vertex adjacent
to v1 by the crossed edge, and note that Gϕ is (p1p2, N ∪{y},M)-distant. By the
minimality of G together with (59), (63) and (65), we conclude that Gϕ with the
list assignment Lϕ violates (N) or (M). In the former case, we have |Lϕ(y)| = 3
and since |L(y)| = 5, it follows that y is adjacent to p0. However, by (60), v2
would be adjacent to p0, contrary to (63). In the latter case, p0 and v1 have a
common neighbor u 6= y adjacent to a vertex w with |L(w)| = 3. This contradicts
(68). Therefore, v1v2 ∈ E(G), and by symmetry, vs−1vs ∈ E(G).

Suppose now that s = 2. By symmetry, assume that if v2 is incident with a
crossed edge, then v1 is incident with a crossed edge as well. If v1v2 ∈ M , then
let ϕ be an L-coloring of v1 and v2 such that ϕ(v1) 6∈ L(p0) and ϕ(v2) 6∈ L(pk).
Otherwise, let ϕ be a coloring of v1 by a color in L(v1) \ L(p0) such that if
|L(v2)| = 3, then ϕ(v1) 6∈ L(v2) \L(pk). Note that this is possible by (59)(f). Let
us remark that when |L(v2) \ {ϕ(v1)}| = 2, then L(pk) = {ϕ(v1)} and Lϕ(v2) =
L(v2) by the definition of Lϕ, and thus we always have |Lϕ(v2)| ≥ 3. If Gϕ with
the list assignment Lϕ violated (C), then v2 would have to be incident with a
crossing, and by the choice of v1, the vertex v1 would be incident with the same
crossing, which then would not appear in Gϕ. Therefore, Gϕ satisfies (C). If v1
is incident with a crossed edge v1x, then let N ′ = N ∪ {x}; if v1 is adjacent to a
vertex y ∈ N , then let N ′ = N \ {y}; otherwise let N ′ = N . If v1 and v2 have
a common neighbor z belonging to N , then let M ′ = M ∪ {v2z}; otherwise let
M ′ = M \{v1v2}. Observe that Gϕ is (P,N ′,M ′)-distant and that it satisfies (S),
(N) and (M). By the minimality of G, Gϕ violates (O) and thus G contains a near-
obstruction H. By (70), H is OM1, ON2, ON3 or OP3. Observe that v1v2 6∈ M ,
since otherwise the distance between v1v2 and the special subgraph of H (which
is also special in G) is at most 3. Every vertex with list of size three according
to Lϕ either belongs to N or is equal to v2. If v2 6∈ V (H), then H contains only
one vertex with list of size three, hence H is ON2. However, then N contains two
adjacent vertices, which is a contradiction. Similarly, we exclude the case that
v2 ∈ V (H) and H is ON3 or OP3. Therefore v2 ∈ V (H) and H is OM1 or ON2.
The former is excluded by (63). If H is ON2, then we have V (G) = V (H) ∪ {v1}
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by (60). If v1 is incident with a crossed edge, then G contains OC2. On the other
hand, if v1 is not incident with a crossed edge, then |L(v1)| = 3, |L(v2)| = 4,
|N | = 1 and G is L-colorable. This is a contradiction, hence s ≥ 3.

Next, observe that if v1 and v2 are not crossing-adjacent, then |L(v1)| = 3 or
|L(v2)| = 3. Otherwise, we could remove a color from the list of v1. If the edges
v1x and e cross, then |L(x)| = 5 by (63), and both vertices incident with e have
list of size five by (64) and (66), hence G with the new list assignment satisfies
(C). By (70), no obstruction arises (since all vertices with lists of size three or
four in the new list assignment are contained in V (F )). Thus G with the reduced
lists satisfies (O) and contradicts the minimality assumption. Similarly, if v1 and
v2 are crossing-adjacent and |L(v1)| > 3 and |L(v2)| > 3, then we can assume
that |L(v1)| = |L(v2)| = 4.

If |L(v1)| = 3 or |L(v2)| = 3 and furthermore v1v2, v2v3 6∈M , then let the set
X ⊆ V (F ) \ V (P ) and its partial L-coloring ϕ be defined as in (X1)–(X4) in the
proof of Theorem 99. Let us add two more cases for the situation when v1 and
v2 are crossing-adjacent:

(X5) If |L(v1)| = |L(v2)| = 4 and |L(v3)| 6= 3, then X = {v1} and ϕ(v1) ∈
L(v1) \ L(p0) is chosen arbitrarily.

(X6) If |L(v1)| = |L(v2)| = 4 and |L(v3)| = 3, then X = {v2} and ϕ(v2) ∈
L(v2) \ L(v3) is chosen arbitrarily.

Let m be the largest index such that vm ∈ X. Let us note that m = 1 in (X1)
and (X5), m = 3 in (X4), and m = 2 otherwise. Also, X = dom(ϕ) in all cases
except for (X4b), when X = {v1, v2, v3} and dom(ϕ) = {v1, v3}.
(71) One of the following cases holds:

(A1) v1v2 ∈M or v2v3 ∈M .

(A2) Either v1 and v2 or two distinct vertices in dom(ϕ) have a common neighbor
in N .

(A3) There exists a crossing q and two crossing-adjacent vertices w1, w2 ∈ V (Gq)
such that V (Gq) ∩ X = ∅, w1 has a neighbor in dom(ϕ) and w2 has two
neighbors in dom(ϕ).

(A4) vmvm+1 ∈ E(G), there exists a crossing q such that V (Gq) ∩ X = ∅ and
vm+1, vm+2 ∈ V (Gq), and either |L(vm+1)| = |L(vm+2)| = 4 or |L(vm+1)| =
5 and |L(vm+2)| = 3.

(A5) vmvm+1 ∈ E(G), |L(vm+1)| ∈ {3, 4} and there exists a crossing q such that
V (Gq)∩X = ∅, vm+1 ∈ V (Gq) and a neighbor w 6∈ V (F ) of vm is crossing-
adjacent to vm+1.
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Figure 9.7: Possible outcomes of (71)
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(A6) v1 6∈ X and there exists a crossing q such that V (Gq) ∩X = ∅, v1 ∈ V (Gq)
and a neighbor w 6∈ V (F ) of v2 is crossing-adjacent to v1.

(A7) |X| ≥ 2 and there exists a path vm−1xyvm+1, where x and y are neighbors
of vm and y ∈ N .

Proof. See Figure 9.7 for the illustration of the possibilities. Note that if (A1)
does not hold, then X and ϕ are defined.

Suppose now for a contradiction that none of (A1)–(A7) holds. Let us consider
the graph G′0 = G−dom(ϕ) with the list assignment Lϕ, and let G′ be the graph
obtained from G′0 by repeatedly removing vertices whose list is larger than their
degree. If dom(ϕ) 6= X, then we have case (X4b) and X \ dom(ϕ) = {v2}. If v2
is not incident with a crossing, then its degree in G′0 is 1, and since |Lϕ(v2)| ≥ 2,
it is not present in G′. On the other hand, if v2 were incident with a crossing,
then the fact that |L(v1)| = |L(v3)| = 4 would contradict (C). This shows that
G′ ⊆ G−X. Observe also that G′ is not Lϕ-colorable.

Next, we argue that G′ satisfies the assumptions of Theorem 100 (with the
sets N ′ ⊆ V (G′) and M ′ ⊆ E(G′) defined as the minimal sets such that (S),
(N) and (M) hold), thus contradicting the minimality of G. The property (P)
holds trivially, (T) holds by (65). To verify (S), note first that the only vertices
not in the outer face of G′ with list of size less than five are those belonging to
N , or incident with a crossed edge joining them in G to a vertex in dom(ϕ);
and the vertices of the latter kind have list of size four. Thus, they have been
added into N ′ without violating the distance condition since the rank of special
vertices in N ′ is smaller than the rank of the crossing. Next, suppose that a
vertex v ∈ V (G′) \ V (P ) satisfies |Lϕ(v)| ≤ 2. Note that v 6∈ V (F ) by the choice
of X and ϕ and by (63). It follows that v ∈ N and v has two colored neighbors
in X, thus (A2) holds. This confirms that (S) is satisfied.

Now, let us consider property (C). Let q be a crossing in G′ and suppose that
(C) is violated at q, i.e., there exist distinct u, v ∈ V (Gq) such that |Lϕ(u)| = 3
and |Lϕ(v)| ∈ {3, 4}. If both u and v belong to F , then by (63) and (66) we
have that u and v are crossing-adjacent, {u, v} = {vm+1, vm+2} and L(vm+2) =
Lϕ(vm+2). It follows that |L(vm+1)| 6= 3 and that (A4) holds. If u ∈ V (F ) and
v 6∈ V (F ) and u and v are not crossing-adjacent, then since V (Gq)∩X = ∅, (68)
implies that (A4) holds. If u ∈ V (F ) and v 6∈ V (F ) and u and v are crossing-
adjacent, then we apply (69). The outcome (a) of (69) gives (A5) or (A6). The
outcome (b) gives a vertex w ∈ X that is adjacent to v and a vertex z with
|L(z)| = 3 that is adjacent to u, v and w. Therefore, |L(u)| 6= 3, so u has a
neighbor in X. This is only possible in the subcase (X4a) of the definition of
X, where z = v2, w = v3 and u = v1, thus obtaining (A6). If u 6∈ V (F ) and
v ∈ V (F ), then u has two neighbors in dom(ϕ). Since V (Gq) ∩ X = ∅, (68)
implies that u and v are crossing-adjacent. By (69), one of the neighbors of u
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in X is also adjacent to v and has list of size three, and by the choice of X, we
conclude that (A6) holds. Finally, if u, v 6∈ V (F ), then they are crossing-adjacent
by (60) and the fact that V (Gq) ∩X = ∅, and (A3) holds.

Therefore, we can assume that G′ satisfies (C). Let us now consider the newly
created special subgraphs in G′. If v ∈ N ′ \N , then v is adjacent to a vertex of
X by an edge containing a crossing q, and no other vertex of Gq belongs to X.
Therefore, there is at most one such vertex. Consider now an edge xy ∈M ′ \M ;
we will show that either there exists a crossing q such that {x, y} = V (Gq) \X,
or at least one of x and y belongs to N . Note that xy has been added to M ′

because |Lϕ(x)| = |Lϕ(y)| = 3. Suppose that x, y 6∈ N . If x, y 6∈ V (F ), then
both x and y have two neighbors in dom(ϕ). It is easy to see using (60) and (61)
that this implies that x and y are crossing-adjacent in G via the edges joining
x, y with X. If x, y ∈ V (F ), then by (63) we can assume that x = vm+1 and
y = vm+2; but then |Lϕ(x)| 6= 3 or |Lϕ(y)| 6= 3 by the choice of X, which is a
contradiction. Finally, suppose that say x ∈ V (F ) and y 6∈ V (F ); then y has two
neighbors in dom(ϕ) and, in particular, we have cases (X2) or (X4). By (68), we
have x ∈ {v1, vm+1}. If x = v1, then y would be a common neighbor of v1, v2
and v3, contradicting the choice of X (assumptions of (X4b) are satisfied, hence
we would have v1 ∈ X). If x = vm+1, then |L(vm)| = 4 and therefore one of the
edges vm−1y and vm+1y is crossed since deg(vm) ≥ 4. However, by the choice of
X we have |L(vm−1)| = |L(vm+1)| = 3, contradicting (C).

It follows that d(S1, S2) ≥ 7+r(S1)+r(S2) whenever S1 is a special subgraph
of G that is also special in G′ and S2 is any special subgraph of G′. Suppose now
that S1 and S2 are both distinct newly created special subgraphs in G′. Note that
|N ′ \N | ≤ 1 and if N ′ \N 6= ∅, then M ′ \M = ∅. It follows that S1, S2 ∈M ′ \M .
As proved in the previous paragraph, each edge inM ′\M is incident with a special
subgraph in G that is adjacent to X. By the distance condition, we conclude
that there exists a path xyz in G′ such that |Lϕ(x)| = |Lϕ(y)| = |Lϕ(z)| = 3 and
y ∈ N . Note that at most one of x and z can have two neighbors in dom(ϕ), as
otherwise G would contain a crossing at distance at most one from y; thus we
may assume that x ∈ V (F ). By (68), x ∈ {v1, vm+1, vm+2}. If x = vm+2, then
we would have |L(vm+1)| = |L(x)| = 3 and vm+1x ∈M would be at distance one
from y ∈ N , which is a contradiction; therefore, x 6= vm+2. If x = v1, then (A2)
holds, hence x = vm+1 and z 6∈ V (F ) has two neighbors in dom(ϕ). However,
then |L(vm)| = 4, hence deg(vm) ≥ 4 and vm is adjacent to y and (A7) holds. We
conclude that G′ is (P,N ′,M ′)-distant.

Finally, suppose that G′ violates condition (O), and thus G contains a near-
obstruction H. By (70), H is one of OM1, ON2, ON3 or OP3.

• If H is OM1, then let xy be the edge of H that belongs to M ′, where x is
adjacent to p2. Note that x, y 6∈ V (F ) by (63) and xy 6∈M . If x 6∈ N , then
x has two neighbors vi and vj in dom(ϕ), where i < j. By (68) applied to
p2xvi, we have j = i + 1 and by the choice of X, |L(vj)| = 4; hence vj is
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incident with a crossing and thus y 6∈ N . Consequently, y is also adjacent
to vi and vj. However, note that |L(vi)| = 3, contradicting (C) for G.
Therefore, x ∈ N is adjacent to vj, and y is adjacent to both vi and vj. By
(68) applied to p0yvj, we have i = 1, j = 2 and |L(v1)| = 3, and by (68)
applied to p2xv2, we have that s = 3 and |L(v3)| = 3. However, then G is
L-colorable.

• Next, suppose that H is ON2 and let x and y be the vertices in the outer
face of H such that |Lϕ(x)| = 3 and |Lϕ(y)| = 4. By (63), y /∈ V (F ). If
x ∈ V (F ), then by (68) we have s ≤ 2, which is a contradiction, hence
x 6∈ V (F ). Thus x has two neighbors in dom(ϕ) and y has one, and by
(68) we conclude that s = 3 and |L(v1)| = |L(v3)| = 3. It follows that
X = {v1, v2}, x is adjacent to v1 and v2, and y is adjacent to v2. There are
two cases, either v2 is incident with a crossed edge or |N | = 1; in both of
them, G is L-colorable.

• If H is ON3, then let xyz be the path in the outer face of H such that
|Lϕ(x)| = |Lϕ(z)| = 3, |Lϕ(y)| = 4 and z is adjacent to p1. By (63),
z 6∈ V (F ), thus z has two neighbors w1, w2 ∈ dom(ϕ), and by (68), we can
assume that the neighbors of w1 are w2, z and an endvertex of P , and that
|L(w1)| = 3. Since y 6∈ V (F ), y is adjacent to w2. Since x cannot have
more than one neighbor in dom(ϕ), we have x ∈ V (F ). If xw2 6∈ E(G),
then (68) implies that x is adjacent to a vertex with list of size three, and
thus |Lϕ(x)| = |L(x)| > 3. This is a contradiction, hence xw2 ∈ E(G). By
the choice of X, |L(x)| = 3. Again, we distinguish two cases depending on
whether w2 is incident with a crossed edge (in this case |L(w2)| = 5 by (C))
or |N | = 1. In both cases, G is L-colorable.

• Therefore, H is OP3. But then two of the vertices of H have two neighbors
in dom(ϕ), hence G contains a crossing at distance at most one from P ,
contradictory to the assumption that G is (P,N,M)-distant.

We have shown that G′ satisfies all conditions of Theorem 100 for the list
assignment Lϕ. This gives a contradiction to the minimality of G and proves
claim (71).

Each case among (A1)–(A7) in (71) contains a special subgraph. Thus, G
contains a special subgraph S whose distance from p0 is at most 2 + r(S). Con-
sequently, `(P ) = 2. Next, we consider the set X ′ ⊆ {vs, vs−1, vs−2} defined
symmetrically to X and conclude that there exists a special subgraph S ′ (satisfy-
ing one of (A1)–(A7) with vi replaced by vs+1−i) whose distance to p2 is at most
2 + r(S ′). It follows that d(S, S ′) ≤ 6 + r(S) + r(S ′), and since G is (P,N,M)-
distant, we have S = S ′.

Next, we show that
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(72) S consists of two edges incident with a crossing.

Proof. If not, then either S ∈ M or S ∈ N . Suppose first that S ∈ M . Then
(A1) holds and s ≤ 4. Since s ≥ 3, we can by symmetry assume that S = v2v3. If
v2, v3 and vi have no common neighbor for i ∈ {1, 4} (i = 1 if s = 3), then let ϕ
be an arbitrary L-coloring of S (such that ϕ(v3) /∈ L(p2) if s = 3). Observe that
Gϕ cannot contain an obstruction since its special subgraph would be a special
subgraph in G, too close to the special edge v2v3. Now it is easy to check using
previously proved properties of G that Gϕ satisfies all conditions of Theorem
100. (The same reasoning will be applied in the sequel without repeating it.)
Therefore, Gϕ with the list coloring Lϕ is a counterexample to Theorem 100,
contradicting the minimality of G. Thus, by symmetry, we may assume that v1,
v2 and v3 have a common neighbor w. In that case, w is not adjacent to v4 by (68).
Let ϕ be an L-coloring of v1 and v3 such that ϕ(v1) 6∈ L(p0), ϕ(v3) 6∈ L(p2) and
|Lϕ(v2)| ≥ 2. Then G′ = G− {v1, v2, v3} with the list assignment Lϕ contradicts
the minimality of G since any Lϕ-coloring of G′ can be extended to v2 by using
a color in Lϕ(v2), and can henceforth be extended to G.

Let us now consider the case that S ∈ N , hence (A2) or (A7) holds. Let i and
j be the smallest and the largest integer, respectively, such that S is adjacent to
vi and vj. By (68) we have j ∈ {i+ 1, i+ 2}. We consider the two possible values
of j separately:

• Suppose first that j = i+1. If |X| ≥ 2, then |L(vm)| ≥ 4 and |L(vm+1)| = 3,
hence (A7) cannot hold for both X and X ′. If both X and X ′ satisfy (A2),
then since s ≥ 3, we can assume that v2, v3 ∈ X have a common neighbor
in N . By the choice of X, we have |L(v4)| = 3, hence s = 4 and v2, v3 ∈ X ′.
However, then |L(v1)| ≥ 4 by the choice of X and |L(v1)| = 3 by the choice
of X ′, which is a contradiction.

Hence, we can assume that (A7) holds for X and (A2) for X ′; then we
either have s = m + 1, or we have s = m + 2 and X ′ = {vm, vm+1}. If
there exists an L-coloring ϕ of vm−1 and vm+1 such that their colors are
distinct from the colors of their neighbors in P and |Lϕ(vm)| ≥ 3, then
G′ = G − {vm−1, vm, vm+1} with the list assignment Lϕ contradicts the
minimality of G. (Observe that G′ satisfies (O), since no special subgraph
of G is at distance at most two from S. A new special subgraph would
appear in G′ only if S would be adjacent to vm+2, which is not the case
since j = i+ 1.)

We conclude that no such coloring exists, hence both vm−1 and vm+1 have
a neighbor in P and s = 3. Furthermore, |L(v1)| = 3 and L(v1) \ L(p0) ⊂
L(v2). Let w′ be the common neighbor of S and v1. Suppose that there
exists a color c ∈ L(w′) different from the colors of the neighbors of w′ in
P such that either c 6∈ L(v2), or v1 has degree three and c 6∈ L(v1) \ L(p0).
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In this case, we let ϕ be the partial coloring such that ϕ(w′) = c and let
G′ = G−{w′, v2} if c 6∈ L(v2) and G′ = G−{w′, v1, v2} if c ∈ L(v2). Observe
that G′ is not Lϕ-colorable. Furthermore, it satisfies the assumptions of
Theorem 100, with the edge Sv3 belonging to M (the condition (O) holds
by (70), the distance condition and (63)). This contradicts the minimality
of G, and thus no such color c exists. Since |L(w′)| > |L(v2)|, it follows
that w′ has a neighbor in P . By (68), w′ is not adjacent to p2, hence it is
adjacent to p0 or p1. However, then (61) and (63) imply that v1 has degree
three, and since |L(v1) \L(p0)| = 2 and w′ has at most two neighbors in P ,
the color c exists. This is a contradiction.

• It remains to consider the case when j = i + 2. In this case S is adjacent
to vi and vi+2, and by (68) we conclude that vi+1 is a vertex of degree 3
with neighbors vi, vi+2, and S. Thus, |L(vi+1)| = 3. Suppose first that
both X and X ′ satisfy (A7). If there exists a coloring ϕ of S by a color
different from the colors of its neighbors in P such that ϕ(S) 6∈ L(vi) ∩
L(vi+1)∩ L(vi+2), then G′ = G− {S, vi, vi+1, vi+2} with the list assignment
Lϕ is a counterexample contradicting the minimality of G (since in this
case any Lϕ-coloring of G′ extends to an L-coloring of G). Otherwise, note
that S is not adjacent to p0 or p2 by (68), hence S is adjacent to p1 and
L(S) \L(p1) = L(vi+1) ⊆ L(vi)∩L(vi+2). However, in this case we let ϕ be
the L-coloring of X as chosen in the proof of Theorem 99, and note that
ϕ(vi) 6∈ L(vi+1) = L(S) \ L(p1). Then G −X with the list assignment Lϕ
for any other vertex z is a counterexample contradicting the minimality of
G.

Hence, we can assume that say X ′ satisfies (A2). Let us first consider
the case that X satisfies (A2) as well. Note that vi+2 6∈ X, as otherwise
|L(vi+3)| = 3 by the choice of X, and thus vi+1 6∈ X ′, contradictory to
the assumption that X ′ satisfies (A2). Symmetrically, vi 6∈ X ′. Since
|L(vi+1)| = 3, we cannot have {vi, vi+1} ⊆ X, thus i = 1, and by symmetry,
s = 3. Observe that we cannot color S by a color ϕ(S) 6∈ L(vi+1), as
otherwise G − {S, vi+1} with the list assignment Lϕ would contradict the
minimality of G. Therefore, S has a neighbor in P , and by (68), this
neighbor is p1. By (61), the 4-cycle p1p0v1S is not separating, and by (63),
v1 has degree three. This is a contradiction, since |L(v1)| > 3.

Therefore, X satisfies (A7). Note that vi+1 cannot be the element of X ′

with the smallest index, thus i+ 2 = s. As before, we exclude the case that
S can be colored by a color not belonging to L(vi)∩L(vi+1), hence S has a
neighbor in P . By (68), S is not adjacent to p0 or p2, hence S is adjacent
to p1. However, by (61), the 4-cycle p1Svi+2p2 is not separating, and by
(63), vi+2 is not adjacent to p1. Thus, vi+2 has degree three and list of size
at least four, which is a contradiction.
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This completes the proof of the case when S ∈ N .

Therefore, (72) holds and S consists of two edges incident with a crossing q.
We conclude that each of X and X ′ satisfies one of (A3), (A4), (A5) or (A6). If
one of them satisfies (A4), then |V (Gq) ∩ V (F )| = 2 by (63). If it satisfies (A6),
then by (63), (64) and (66) we have |V (Gq)∩V (F )| = 1. If it satisfies (A3), then
similarly |V (Gq)∩V (F )| ≤ 1, and if it satisfies (A5) then 1 ≤ |V (Gq)∩V (F )| ≤ 2.

(73) Neither X nor X ′ satisfies (A3).

Proof. Suppose for a contradiction that X satisfies (A3). Let w1 and w2 be as
in the description of (A3). Note that w2 is adjacent to vm−1 and vm (even if
vm−1 6∈ dom(ϕ), in the case (X4b)) and that |L(vm−1)| = |L(vm+1)| = 3.

Let us first consider the case that |V (Gq)∩V (F )| = ∅. In this case X ′ satisfies
(A3) as well, i.e., there exists w′2 ∈ V (Gq) adjacent to vb and vb+1, where b is the
smallest index of an element of X ′, and another vertex w′1 of Gq that has one
neighbor in X ′. Since |L(vb)| 6= 3, we have b /∈ {m − 1,m + 1}. Consequently,
|X ∩X ′| ≤ 1, and w′2 6= w2 by (68).

We now distinguish two cases regarding whether w2 is adjacent or crossing-
adjacent to w′2 in Gq.

• Suppose that w2w
′
2 is a crossed edge. Then b 6= m by (60) and the assump-

tion that Gq is disjoint with F ; thus b ≥ m + 2. Let G1 and G2 be the
subgraphs of G intersecting in vmw2w

′
2vb, such that G1∪G2 = G−e, where

e is the edge crossing w2w
′
2, and P ⊂ G1. By (68), we have that w1 6= w′2,

w′1 6= w2 and that if w1 = w′1, then w1 belongs to G2. By symmetry, assume
that w1 belongs to G2. If w1 is adjacent to vb, then b = m+ 2 by (68). Let
T = {vm, vm+1, vm+2, w1}. By using (67) it is easy to see that |L(t)| = deg(t)
for each t ∈ T \ {w1} and that deg(w1) ≤ 6. By the minimality of G, there
exists an L-coloring ϕ of G − T . Consider the subgraph G′ of G induced
by T with the list assignment Lϕ. We have |Lϕ(vm+1)| ≥ 3 and |Lϕ(z)| ≥ 2
for z ∈ T \ {vm+1}. If Lϕ(w1) 6= Lϕ(vm), then we color w1 by a color in
Lϕ(w1) \ Lϕ(vm) and extend this coloring to the rest of G′. Similarly, G′ is
Lϕ-colorable if Lϕ(w1) 6= Lϕ(vm+2). If Lϕ(vm) = Lϕ(w1) = Lϕ(vm+2), then
we color vm+1 by a color in Lϕ(vm+1) \ Lϕ(w1) and again we can extend
this to an Lϕ-coloring of G′. It follows that G is L-colorable, which is a
contradiction.

Therefore, w1 is not adjacent to vb, and in particular w1 6= w′1 and w′1 ∈
V (G1). Let ϕ be an L-coloring of G1, which exists by the minimality of G.
Since w1 is not adjacent to vb, note that w1 has at most three neighbors in
G1 different from w′2. Hence, we can additionally choose a color ϕ(w1) for
w1 different from the colors of its neighbors in G1 so that ϕ(w1) 6= ϕ(w′2).
Let G′2 = G2 −w2 +w1w

′
2. Note that G′2 gives an instance of Theorem 100

with the precolored path P ′ = vmw1w
′
2vb, since the added edge w1w

′
2 can

219



w1w2

vm−1 vm

w′2w′1

vb+1vb
(a)
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v1 v2 v3

w′2 w′1

vb+1vb
(b)

w′1 = w2

vm = vb

w′2 = w1

(c)

Figure 9.8: Subcases when w2 and w′2 are crossing-adjacent

be drawn without crossings following the crossed edges of G that are no
longer in G′2. It is clear that G′2 satisfies validity and distance constraints.
Note that ϕ does not extend to an L-coloring of G′2. Thus G′2 violates (T)
or (O). In the former case, the vertex violating (T) must be vm+1 and we
would have b = m + 2. Consequently, vb would have degree at most three,
which is a contradiction. In the latter case, since |L(vm+1)| = |L(vb−1)| = 3
and vb has degree at least three in G′2, we have that G′2 is equal to OP5 or
OP6. In both cases, any L-coloring of G1 − {vm, vb} would extend to an
L-coloring of G, a contradiction.

• Suppose now that w2 is crossing-adjacent to w′2. Let G1 and G2 be the
subgraphs of G intersecting in {vb, w′2, w2, vm}, where P ⊂ G1 and G1 ∪G2

is equal to G without the crossed edges. We have two subcases: either
b > m or b = m.

– If b > m, then (68) implies that w′2 has no neighbor in X, and thus
w1 6= w′2. Symmetrically, w′1 6= w2. Considering the drawing of G in
the plane, we conclude that the edges of Gq are w1w

′
2 and w′1w2.

If w1, w
′
1 /∈ V (G1) (see Figure 9.8(a)), then w1vm, w

′
1vb ∈ E(G). Let

ϕ be an L-coloring of G1 + {w1w
′
2, w

′
1w2, w1w

′
1} which exists by the

minimality of G, and note that ϕ does not extend to an L-coloring of
G′2 = G2 + w1w

′
1. Observe that G′2 provides an instance for Theorem

100 with the precolored path vmw1w
′
1vb. It is easy to see that we

can choose the colors of w1, w
′
1, vm and vb so that G′2 satisfies the

assumptions of the theorem (once the coloring of G1−{vm, vb} is fixed,
we still have two possible choices for the colors of vm and vb and three
possible choices for the colors of w1 and w′1). This is a contradiction.
The case that w1, w

′
1 ∈ V (G1) (see Figure 9.8(b)) is excluded similarly.
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– If b = m, then let w2z and w′2z
′ be the edges of Gq (note that we

have w1 = w′2 and w′1 = w2). Suppose that z, z′ ∈ V (G2). Note
that V (G2) 6= {z, z′, w2, w

′
2, vm}, since otherwise z would have degree

at most four and |L(z)| = 5. Therefore, the subgraph of G induced
by V (G1) ∪ {z, z′} has an L-coloring ψ by the minimality of G. Let
L′ be the list assignment for G′2 = G2 − {z, z′} obtained from L by
removing the colors of z and z′ according to ψ from the lists of their
neighbors and by setting L′(w2) = {ψ(w2)}, L′(vm) = {ψ(vm)} and
L′(w′2) = {ψ(w′2)}. Note thatG′2 satisfies (O) by the distance condition
and (P) by the choice of ψ, and since G is not L-colorable, we conclude
that G′2 violates (T). Therefore, G2 contains a vertex adjacent to w2,
w′2, vm, z and z′, and by (60), z and z′ have degree at most four. This
is a contradiction.

Therefore, we have z, z′ ∈ V (G1) (see Figure 9.8(c)), and by (67),
deg(vm) = 4. Let S1 = L(v2) if m = 3 and S1 = L(v1) \ L(p0) if
m = 2. Note that S1 ⊂ L(vm), as otherwise we consider the partial
coloring ϕ with ϕ(vm−1) ∈ S1 \ L(vm) and conclude that Gϕ with
the list assignment Lϕ contradicts the minimality of G. Suppose that
there exists a color c ∈ L(w2) \ L(vm), or that deg(vm−1) = 3 and
there exists a color c ∈ L(w2) \ S1, such that this color c is distinct
from the colors of the neighbors of w2 in P . Let G′ = G − {w2, vm}
if deg(vm−1) > 3 and G′ = G− {w2, vm, vm−1} if deg(vm−1) = 3, with
the list assignment L′ obtained from L by removing c from the lists
of neighbors of w2 and setting L′(vm−1) = L(vm−1) if vm−1 belongs to
V (G′) (observe that c 6∈ S1 and that in any L′-coloring of G′, the color
of vm−1 must belong to S1). Note that L′ is (P,N ∪ {z},M)-valid.
Every L′-coloring of G′ would extend to an L-coloring of G, thus G′ is
not L′-colorable. By the minimality of G, we conclude that G′ violates
(O), and by (70) and the distance condition, G′ contains ON2 or ON3.
However, then z is adjacent to two vertices of P and to z′ and w′2, and
at least one of z′ and w′2 has a list of size three according to L′, which
is a contradiction since |L(z′)| = |L(w′2)| = 5.

We conclude that there exists no such color c. Since |L(vm)| = 4 and
|L(w2)| = 5, we conclude that w2 has a neighbor in P . By (68), w2 is
not adjacent to p2, and if it were adjacent to p0, then we would have
m = 2, deg(v1) = 3 and there would exist a color c ∈ L(w2) \ (S1 ∪
L(p0) ∪ L(p1)). Therefore, w2 is adjacent to p1. By symmetry, w′2
is adjacent to p1 as well. However, the edges w2p1 and w′2p1 are not
crossed by (64), and thus the crossing is contained inside the 4-cycle
vmw2p1w

′
2, contrary to (61).

We conclude that V (Gq) ∩ V (F ) 6= ∅. By (63), w2 6∈ V (F ). Let w be the
vertex joined to w2 by a crossed edge, and let w1w

′ be the other crossing edge.
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w2

p0 v1 = w1 vb

Figure 9.9: Subcase combining (A3) and (A5).

Since V (Gq) ∩X = ∅, by (68) we have w 6∈ V (F ). Since vm has degree at least
four, we cannot have w1 = vm+1, thus by (63) and (64), we have w1 6∈ V (F )\{v1}.
If w1 6∈ V (F ) and x ∈ X is a neighbor of w1, then the 2-chord xw1w

′ separates
P from either w2 or w, and neither w2 nor w belongs to F , contrary to (68).
We conclude that w1 = v1 and V (Gq) ∩ V (F ) = {v1}, hence v1 6∈ X and X was
chosen according to (X4a).

Since |V (Gq)∩V (F )| = 1, X ′ must satisfy (A3), (A5) or (A6). If X ′ satisfied
(A3), the conclusions of the preceding paragraph would apply symmetrically and
we would have v1 = vb, which is a contradiction. Similarly, X ′ cannot satisfy
(A6). The remaining possibility is that (A5) holds for X ′. Then v1 = vb−1 and
vb = v2. The situation is shown in Figure 9.9. Since X was chosen according to
(X4a), we have |L(vb)| = |L(vb+2)| = 3; in particular, s ≥ 4 and b ≤ s− 2. This
is only possible if X ′ has been chosen according to (X4), but then |L(vb)| > 3.
This is a contradiction, showing that (A3) does not occur.

Next, we claim that

(74) |V (Gq) ∩ V (F )| = 1.

Proof. SinceX does not satisfy (A3), if |V (Gq)∩V (F )| 6= 1 then |V (Gq)∩V (F )| =
2 and each of X and X ′ satisfies (A4) or (A5). By (63) and (66), V (Gq)∩V (F ) =
{vm+1, vm+2} and vm+1 is crossing-adjacent to vm+2. Let vm+1w and vm+2w

′ be
the crossed edges. By symmetry, we can assume that |L(vm+1)| ≥ |L(vm+2)|.
By (C), either |L(vm+1)| ≥ |L(vm+2)| ≥ 4 or |L(vm+1)| = 5 and |L(vm+2)| = 3.
Therefore, X was chosen according to the rules (X1) or (X3) and |L(vm)| = 3.

If L(vm+2) 6= L(vm+1), then let c be a color in L(vm+1) \ L(vm+2). If vm+1 is
not adjacent to vm+2, then let c be an arbitrary color in L(vm+1). In both cases,
let ϕ be an L-coloring of vm and vm+1 such that ϕ(vm+1) = c and if m = 1,
then ϕ(v1) 6∈ L(p0). It is easy to see that Lϕ is a (P,N ∪ {w},M)-valid list
assignment for Gϕ. Therefore, Gϕ violates (O). By (70), Gϕ contains ON2 or
ON3. It follows that w is adjacent to p1 and to p0 or p2. However, if w is adjacent
to p0, then by (68), vm+2 is incident with a chord of F , contradicting (63). If
w is adjacent to p2, then vm+2 has degree at most three in Gϕ by (68), and
since |Lϕ(vm+2)| ≥ 4, Gϕ contains neither ON2 nor ON3. This is a contradiction,
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implying that L(vm+1) = L(vm+2) (and in particular, |L(vm+1)| = |L(vm+2)| = 4),
and vm+1vm+2 ∈ E(G). By the choice of X ′, we have |L(vm+3)| = 3.

Suppose now that w′vm ∈ E(G). Note that vm+1 has degree at least four, so it
is adjacent to w′. Let S1 = L(vm) if m 6= 1 and S1 = L(vm)\L(p0) if m = 1. Note
that S1 ⊆ L(vm+1), as otherwise we can choose an L-coloring ϕ of vm such that
ϕ(vm) ∈ S1 \L(vm+1), and G1 = G−{vm, vm+1} with the list assignment Lϕ is a
counterexample contradicting the minimality of G (note that G1 cannot contain
an obstruction since no internal vertex in G1 has its list decreased and q is not a
crossing in G1). Since L(vm+1) = L(vm+2), we conclude that S1 ⊆ L(vm+2). Let
G′ be the graph obtained from G − vm+1 by identifying vm with vm+2, and give
the resulting vertex z the list of vm. Note that G′ satisfies the validity and the
distance conditions of Theorem 100 (with the edge zvm+3 added to M). Since
every coloring of G′ gives rise to an L-coloring of G, condition (O) is violated
in G′ by the minimality of G. However, G′ contains neither OM1 nor OM2 (and
the exclusion of other obstructions is obvious). Therefore, w′vm 6∈ E(G), and by
symmetry, wvm+3 6∈ E(G).

Let S2 = L(vm+3) if m+3 6= s and S2 = L(vm+3)\L(p2) if m+3 = s. Suppose
now that there exists an L-coloring ϕ of vm+1 and vm+2 such that ϕ(vm+1) 6∈ S1

and ϕ(vm+2) 6∈ S2. Then Lϕ is a (P,N, {ww′})-valid list assignment for Gϕ, and
by the minimality of G, Gϕ violates (O). By (70), Gϕ contains OM1 (the other
cases are easily excluded: ON2 and ON3 since no internal vertex gets a reduced
list and OP3 since `(P ) = 2). But then w′ is adjacent to p0, and the 2-chord
p0w

′vm+2 contradicts (68). Therefore, no such coloring ϕ exists. It follows that
|S1| = |S2| = 3 and S1 ⊆ L(vm+1). Since L(vm+1) = L(vm+2), we also have that
S1 = S2. Since |S1| = |S2| = 3, claim (59)(f) implies that m = 2 and s = 6.
Similarly, we conclude that L(v1) = L(p0) ∪ L(v2) and L(v6) = L(p2) ∪ L(v5), as
otherwise we can color and remove v1 or v6.

Let us now consider the case that v2, v3 and w′ have no common neighbor.
If v1, v2 and v3 have no common neighbor, then let ϕ be an L-coloring of v2, v3
and v4 such that ϕ(v4) 6∈ L(v5). Otherwise, let ϕ be an L-coloring of v1, v3 and
v4 such that ϕ(v4) 6∈ L(v5) and ϕ(v1) = ϕ(v3). In the former case, let G′ = Gϕ,
in the latter case let G′ = Gϕ− v2. Observe that Lϕ is a valid list assignment for
G′ (after possibly adding the edge ww′ into M) and that any Lϕ-coloring of G′

extends to G. Furthermore, G′ satisfies (O) by (70), since w′ cannot be adjacent
to p0. Hence, Gϕ contradicts the minimality of G. Therefore, v2, v3 and w′ have
a common neighbor x′, and by symmetry, v4, v5 and w have a common neighbor
x (see Figure 9.10).

By (68), we have x 6= x′ and x is adjacent neither to p0 nor to p2. Furthermore,
if xp1 ∈ E(G), then consider the cycle K = p1p2v6v5x. Since v6 has degree at
least four, we conclude by (62) that K has two chords incident with v6. However,
that contradicts (63). Therefore, x (and symmetrically x′) has no neighbor in
P . By (68), neither w nor w′ is adjacent to p0 or p2. Claims (60) and (61)
imply that x′w, xw′, xx′ 6∈ E(G). Since both w and w′ have degree at least 5,
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x′ x

w′ w
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Figure 9.10: A subcase in the proof when X and X ′ satisfy (A4) or (A5). The
dotted edges may or may not be present.

we conclude that each of them has a neighbor that is different from all vertices
shown in Figure 9.10. Suppose that w′p1 6∈ E(G). Then let ϕ be an L-coloring
of x and w′ such that ϕ(x), ϕ(w′) 6∈ L(v4) (note that these colors do not belong
to the lists of v2, v3 and v5, as well as to L(v1) \ L(p0) and L(v6) \ L(p2)).
Let G′ = G − {x,w′, v3, v4} if deg(w) > 5 and G′ = G − {x,w′, v3, v4, w} if
deg(w) = 5. Note that G′ is not Lϕ-colorable since any Lϕ-coloring of G′ extends
to G. Furthermore, the only possible vertices with list of size three in G′ are v2,
v5, w and a common neighbor u of x and w′ distinct from w and v4, if such a
vertex exists. By (61), if u exists, then deg(w) = 5 and w 6∈ V (G′). Furthermore,
by (61), u and w are not adjacent to v2 and v5. Therefore, Lϕ is a valid list
assignment, the distance condition implies that G′ satisfies (O), and thus G′

contradicts the minimality of G.
We conclude that w′p1 ∈ E(G). Let G1 and G2 be the p1w

′v4-components of
G, where G1 contains p0. Consider an L-coloring of G2. Note that v3 has only
two neighbors in G2 − w′, thus the coloring of G2 can be extended to v3 in such
a way that its color is different from the color of w′. Then G1 − v4 + w′v3 (with
the precolored path p0p1w

′v3) violates (O). Observe that only v1 and v2 have list
of size at most four and that x′ is a common neighbor of v3 and w′. Therefore,
x′ is a vertex in the corresponding obstruction K, and v2 is a vertex in K with
list of size 3. It follows that K is equal to OP4. However, then v1p1 ∈ E(G),
contradicting (63).

Therefore, |V (Gq) ∩ V (F )| = 1, and thus each of X and X ′ satisfies (A5) or
(A6). Since s ≥ 3, we can assume that X ′ satisfies (A5). Suppose first that X
satisfies (A6), and thus b = 2. Since v1 6∈ X, the inspection of possible cases
for X and X ′ shows that we have |L(v2)| = 3, X ′ = {v2}, and s = 3. If v1, v2
and v3 have no common neighbor, then consider any L-coloring ϕ of v1 and v2
such that ϕ(v1) 6∈ L(p0), and observe that Gϕ with the list assignment Lϕ is a
counterexample contradicting the minimality of G: since v1, v2, v3 do not have
a common neighbor, we do not get adjacent vertices with lists of size 3; but we
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may need to add the neighbor z of v1 along the crossed edge into the set N .
The resulting graph satisfies (O), since z is not adjacent to p0 and p2 by (68)
and (64). Hence, we can assume that v1, v2 and v3 have a common neighbor
w, and thus deg(v2) = 3. Similarly, we conclude that L(v1) = L(p0) ∪ L(v2)
(if not, we color v1 with a color in L(v1) \ (L(p0) ∪ L(v2)) and then consider
G′ = G − {v1, v2}) and that L(v3) = L(p2) ∪ L(v2) (if not, we can color v3 by a
color in L(v3) \ (L(p2) ∪ L(v2)) and then consider G′ = G − {v2, v3}). By (61),
(64) and (68), w has no neighbor in P . Let u be the vertex adjacent to w by
the crossed edge, let ϕ be an L-coloring of w such that ϕ(w) 6∈ L(v2) and let
G′ = G − {v2, w} Note that Lϕ is a (P,N ∪ {u}, ∅)-valid list assignment for G′

and that G′ satisfies (O), since no vertex has list of size three. Thus, G′ is a
counterexample to Theorem 100 contradicting the minimality of G.

Therefore, both X and X ′ satisfy (A5) and b = m + 2. Moreover, (61)
implies that the neighbor w′ of vb in V (Gq) \ {vm+1} is different from w (the
neighbor of vm). Let y be the vertex joined to vm+1 by a crossed edge. If
|L(vm+1)| 6= 3, then both X and X ′ are chosen by cases (X1) or (X3) and
|L(vm)| = |L(vm+2)| = 3. The condition (A5) implies |L(vm+1)| = 4. However,
in that case we have |L(vm+2)| 6= 3 both in (X1) and (X3), which is a contradic-
tion. Therefore, |L(vm+1)| = 3. Consequently, X and X ′ were chosen by (X2) or
(X4) and we have |L(vm)|, |L(vm+2)| ≥ 4 and |L(vm−1)| = |L(vm+3)| = 3. Since
deg(vm) ≥ 4, (68) implies that w has no neighbor in F other than p1, vm and
vm+1, and by symmetry, the only possible neighbors of w′ in F are p1, vm+1 and
vm+2.

Let S1 = L(vm−1) if m = 3 and S1 = L(vm−1) \ L(p0) if m = 2. Let S2 =
L(vb+1) if b = s− 2 and S2 = L(vb+1) \ L(p2) if b = s− 1. By symmetry, we can
assume that if m = 2, then b = s − 1. Let S be the set of colors c ∈ L(vm+1)
such that either

(a) L(vm+2) = S2 ∪ {c}, or

(b) |L(vm)| = 4, c 6∈ S1 and S1 ∪ {c} ⊆ L(vm).

If m = 2, then we have b = s − 1, |S1| = |S2| = 2, there are at most two
colors with the property (b) and no colors with the property (a). If m = 3,
then |S1| = 3 and |S2| ≤ 3, there is at most one color with the property (b) and
at most one color with the property (a). It follows that |S| ≤ 2. Let ϕ be an
L-coloring of vm−1, vm+1 and vm+2 chosen so that ϕ(vm+2) 6∈ S2, ϕ(vm+1) 6∈ S,
ϕ(vm−1) ∈ S1 and |L(vm) \ {ϕ(vm−1), ϕ(vm+1)}| ≥ 3. Note that the choices for
ϕ(vm+2) and ϕ(vm−1) are possible, since ϕ(vm+1) does not satisfy (a) and (b),
respectively. Consider G′ = G− {vm−1, vm+1, vm+2} with the list assignment Lϕ.
By (68), vm−1 has no common neighbor with vm+1 and none with vm+2, and the
only common neighbor of vm+1 and vm+2 is w′. Therefore, the only vertices with
list of size three are v1 if m = 3, vm, vm+3 and w′. Since w′ is not adjacent to
vm+3, Lϕ is (P,N ∪ {y}, ∅)-valid. Furthermore, y is adjacent neither to p0 nor to
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p2 by (68), hence G′ satisfies (O) by (70) and contradicts the minimality of G.
This completes the proof of Theorem 100.

Proof of Theorem 98. Let G be a graph with crossing number at most two. We
may assume that G is nonplanar. Consider a drawing of G in the plane with
one or two crossings and let L be a list assignment such that each vertex has
five admissible colors. Let xy and uv be two edges crossing each other at the
crossing q. Suppose first that the edges xy and uv do not participate in another
crossing. Now remove the two edges and add the edges xu, uy, yv, and vx (if they
are not already present). This gives rise to a graph G′ with at most one crossing,
and we can redraw it so that the cycle xuyv bounds the outer face. Now we
ϕ-precolor the path xuy such that ϕ(x) 6= ϕ(y), and give v the list L(v)\{ϕ(u)}.
Theorem 100 now implies that G′ has a list coloring which in turn shows that G
is L-colorable.

If the edge uv participates in another crossing, then xy does not participate
in another one. Suppose that the segment of uv from u to the crossing q does
not contain the other crossing. Then we proceed similarly as above: we remove
the edges xy and uv and add edges xu and uy. The resulting graph is planar
and the path P = xuy is part of a facial walk. Thus we may ϕ-precolor the path
so that ϕ(x) 6= ϕ(y) and then remove ϕ(u) from the list of v. Now, we apply
Theorem 100 with N = {v} to obtain a coloring that again confirms that G is
L-colorable.
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Chapter 10

3-list-colorability of planar
graphs with (≤4)-cycles far apart1

Motivated by Grötzsch’s theorem, Havel asked whether there exists a constant d
such that if the distance between each pair of triangles in a planar graph is at
least d, then the graph is 3-colorable. This question was open for many years,
finally being answered in affirmative by Dvořák et al. [24] (although the bound
on d is impractically large). Due to the result of Voigt [76], an analogous question
for 3-list-colorability needs also to restrict 4-cycles: does there exist a constant
d such that if the distance between each pair of (≤4)-cycles in a planar graph is
at least d, then the graph is 3-list-colorable? We give a positive answer to this
question:

Theorem 101. If G is a planar graph such that the distance between each pair
of (≤4)-cycles is at least 26, then G is 3-list-colorable.

This bound is quite reasonable compared to one given for Havel’s problem [24].
However, it is far from the best known lower bound of 4, given by Aksionov and
Mel’nikov [3].

10.1 Proof of Theorem 101

For a subgraph H of a graph G, let d(H) = minF d(H,F ), where the minimum
goes over all (≤4)-cycles F of G distinct from H. Let t(G) = minH d(H), where
the minimum goes over all (≤4)-cycles H of G. A path of length k (or a k-path) is
a path with k edges and k+ 1 vertices. For a path or a cycle X, let `(X) denote
its length. Let r be the function defined by r(0) = 0, r(1) = 2, r(2) = 4, r(3) = 9,
r(4) = 13 and r(5) = 16. For a path P , let r(P ) = r(`(P )). Let B = 26. Using
the proof technique of precoloring extension developed by Thomassen [69], we
show the following generalization of Theorem 101:

1The results of this chapter are based on Dvořák [21].
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OBSTa1 OBSTa2 OBSTa3

OBSTa4 OBSTa5 OBSTa6 OBSTa7

OBSTx1 OBSTx1a OBSTx1b OBSTx1c

OBSTx2a OBSTx2b OBSTx3

OBSTx4

Figure 10.1: Forbidden configurations of Theorem 102, `(P ) ≤ 2
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OBSTb1 OBSTb1a OBSTb1b

OBSTb2 OBSTb2a OBSTb2a’ OBSTb2b

OBSTb3 OBSTb4 OBSTb5

OBSTb6

Figure 10.2: Forbidden configurations of Theorem 102, `(P ) ≤ 5
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Theorem 102. Let G be a planar graph with the outer face C such that t(G) ≥ B,
and P a path such that V (P ) ⊆ V (C). Let L be a list assignment such that

(S1) |L(v)| = 3 for all v ∈ V (G) \ V (C);

(S2) 2 ≤ |L(v)| ≤ 3 for all v ∈ V (C) \ V (P );

(S3) |L(v)| = 1 for all v ∈ V (P ), and the colors in the lists give a proper coloring
of the subgraph of G induced by V (P );

(I) the vertices with lists of size two form an independent set;

(T) if uvw is a triangle, |L(u)| = 2 and v has a neighbor with list of size two
distinct from u, then w has no neighbor with list of size two distinct from
u; and

(Q) if a vertex v with list of size two has two neighbors w1 and w2 in P , then
L(v) 6= L(w1) ∪ L(w2).

In this situation, if `(P ) ≤ 2 and

(OBSTa) every subgraph H ⊆ G isomorphic to one of the graphs drawn in Figure 10.1
is L-colorable,

then G is L-colorable. Furthermore, if `(P ) ≤ 5, d(P ) ≥ r(P ) and

(OBSTb) every subgraph H ⊆ G isomorphic to one of the graphs drawn in Figure 10.2
is L-colorable,

then G is L-colorable.

Note that we view the single-element lists as a precoloring of the vertices of P .
Also, P does not have to be a part of the facial walk of C, as we only require
V (P ) ⊆ V (C). The notation used in Figures 10.1 and 10.2 is the following: We
mark the vertices of P (precolored vertices) by full circles, the vertices with list
of size three by empty circles, and the vertices with list of size two by empty
squares. In the conditions (OBSTa) and (OBSTb), we require the lists of the
vertices of H according to L to match the sizes prescribed by Figures 10.1 and
10.2.

Let us remark that the assumption (T) is necessary—Figure 10.3 shows a
non-L-colorable graph G1 with only one precolored vertex x1 satisfying all other
assumptions of Theorem 102. By repeating the left part of this graph, x1 can
be made arbitrarily far apart from the triangle. Let G2 and G3 with precolored
vertices x1 and x2 be the copies of G1 with the color A replaced by colors A′ and
A′′, respectively, in the lists of all vertices. Let G be the graph obtained from
G1, G2 and G3 by identifying the vertices x1, x2 and x3 to a single vertex whose
list is {A,A′, A′′}. Note that G is a counterexample to Theorem 102 without the
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A

AC

AC

ABC

ABC

AB

AB

ABC

AC

AC

ABC

ABC

BC

BC

ABC

AC

AC

ABC

ABC
AB

Figure 10.3: Assumption (T) is necessary

(a) (b) (c)

Figure 10.4: C-obstacles

assumption (T) and that G has no precolored vertices and t(G) can be arbitrarily
large.

In his paper showing that every planar graph with at most three triangles
is 3-colorable, Aksionov [2] also proved that if G is a plane graph with exactly
one (≤ 4)-cycle, then any precoloring of a 5-face of G extends to a 3-coloring of
G. Thomassen [69] showed that in a planar graph of girth 5, any precoloring of
an induced cycle C of length at most 9 extends to a 3-coloring, unless a vertex
has three neighbors in C. Walls [77] extended this characterization for cycles
of length at most 11 (giving more subgraphs that prevent the coloring from
being extended), Thomassen [71] generalized it for list-coloring, and Dvořák and
Kawarabayashi [22] extended both of these results for the cycles of length 12.
Similarly, Theorem 102 implies a result regarding extension of a precoloring of a
(≤8)-cycle, assuming that (≤4)-cycles are far apart.

Let C be a (≤8)-cycle. We call a plane graph F a C-obstacle if C ⊆ F bounds
the outer face of F , F contains exactly one (≤4)-cycle, and

O1: F − V (C) is a tree (with at most `(C)− 6 vertices), or

O2: F − V (C) is a graph (with at most `(C)− 3 vertices) whose only cycle is a
triangle, or

O3: F is one of the graphs drawn in Figure 10.4.
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Corollary 103. Let G be a plane graph with the outer face bounded by an induced
(≤8)-cycle C, such that t(G) ≥ B. Furthermore, assume that G does not contain
a C-obstacle as a subgraph. Let L be an assignment of lists of size 1 to the vertices
of C and lists of size 3 to the other vertices of G. If L prescribes a proper coloring
of C, then G is L-colorable.

Let us give a proof of this result in a slightly more general setting, which we
are going to use in the inductive proof of Theorem 102. A graph G1 is smaller
than G2 if

• G1 has smaller number of (≤4)-cycles than G2, or

• G1 and G2 have the same number of (≤ 4)-cycles and satisfy |V (G1)| <
|V (G2)|, or

• G1 and G2 have the same number of (≤ 4)-cycles, |V (G1)| = |V (G2)| and
|E(G1)| < |E(G2)|.

Lemma 104. Let G be a plane graph satisfying the assumptions of Corollary 103.
If Theorem 102 holds for all graphs smaller than G, then G is L-colorable.

Proof. Suppose for a contradiction that G is a non-L-colorable graph satisfying
the assumptions, such that Lemma 104 holds for all graphs smaller than G. Let
K 6= C be a (≤8)-cycle in G, and H the subgraph of G drawn in the closed disk
bounded by K. If H 6= K, then, by the minimality of G, G− (E(H) \E(K)) has
an L-coloring ϕ, and since G is not L-colorable, the precoloring of K given by ϕ
does not extend to an L-coloring of H. By the minimality of G, we conclude that
either K is not an induced cycle in H or H contains a K-obstacle F . Assume the
latter. Note that each internal face K ′ of F has length at most 7, and let H ′ be
the subgraph of G drawn in the closed disk bounded by K ′. Since F contains a
(≤4)-cycle and t(G) ≥ B, K ′ is an induced cycle in H ′ and H ′ does not contain
any K ′-obstacle. It follows that H ′ = K ′ for every internal face K ′ of F , and
thus H = F . We conclude that

(75) every (≤ 8)-cycle K 6= C in G either bounds a face, has a chord drawn
inside the disk bounded by K, or the subgraph drawn inside K is a K-obstacle.

In particular, every (≤5)-cycle bounds a face.
Consider a vertex v ∈ V (G) \ V (C), and assume that v has more than one

neighbor in C. If v has at least three neighbors in C, then G contains the
C-obstacle consisting of v, C and three edges incident with v (satisfying the
condition O1). Thus, suppose that v has exactly two neighbors w1, w2 ∈ V (C).
Furthermore, suppose that `(C) ≤ 7 or that w1 and w2 are non-adjacent. Let
K1 and K2 be the two cycles formed by w1vw2 and the two paths between w1

and w2 in C, and note that `(K1), `(K2) ≤ 8 and both K1 and K2 are induced
cycles. By (75) and the assumption that t(G) ≥ B, we conclude that at least one
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of K1 and K2 (say K1) bounds a face. By the minimality of G, v has degree at
least three, thus K2 does not bound a face. Again, since t(G) ≥ B, this implies
that `(K1) ≥ 5 and 6 ≤ `(K2) ≤ 7. Thus, the subgraph F2 drawn inside K2 is a
K2-obstacle satisfying condition O1 or O2, and F2 ∪K1 is a C-obstacle in G. It
follows that

(76) no vertex v ∈ V (G) \ V (C) has more than one neighbor in C, unless
`(C) = 8 and the neighbors of v in C are adjacent.

Also, observe that

(77) if `(C) = 8 and v has two adjacent neighbors w1 and w2 in C, then no
neighbor x of v distinct from w1 and w2 is adjacent to a vertex in C,

as otherwise (75) together with t(G) ≥ B implies that x has two (non-
adjacent) neighbors in C.

Suppose now that two adjacent vertices v1, v2 ∈ V (G) \ V (C) both have a
neighbor in C. By (76) and (77), each of them has exactly one such neighbor; let
wi ∈ V (C) be the neighbor of vi, for i ∈ {1, 2}. Furthermore, suppose that both
(induced) cycles K1 and K2 consisting of w1v1v2w2 together with a path joining
w1 with w2 in C have length at least 6. Note that `(K1) + `(K2) = `(C) + 6, thus
`(K1), `(K2) ≤ `(C) and `(C) ≥ 6. Since t(G) ≥ B, (75) implies that say K1

bounds a face and the subgraph of G in K2 is a K2-obstacle. Consider the graph
G′ obtained from G by contracting an edge e of the path K1 − {w1, v1, v2, w2}
and giving the resulting vertex a color different from the color of its neighbors.
By (75), e does not belong to a (≤ 5)-cycle in G, thus the contraction does not
create any (≤ 4)-cycle. Also, as G contains only one cycle of length at most 4
(drawn inside K2), the restriction on the distance between (≤ 4)-cycles in G′ is
vacuously true. The graph G′ is not L-colorable, and by the minimality of G, it
contains an obstacle satisfying O1 or O2. However, this gives a corresponding
C-obstacle in G. Therefore,

(78) if each of two adjacent vertices v1, v2 ∈ V (G) \ V (C) has a neighbor in C,
then they together with a path in C bound a face of length at most 5.

If 3 ≤ `(C) ≤ 4, then consider the graph G′ obtained from G by subdividing
an edge of C by 5 − `(C) new vertices, and giving these vertices distinct colors
that do not appear in any of the lists of G. Note that G′ is smaller than G, since
it contains fewer (≤ 4)-cycles, and by the minimality of G, we conclude that G′

is L-colorable. However, that gives an L-coloring of G, thus we may assume that
`(C) ≥ 5.

Let us now show that there exists a set X ⊆ V (C) of max(1, `(C) − 5)
consecutive vertices of C such that

• every path of length at most 3 whose endvertices belong to X is contained
in the subgraph of G induced by X, and
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• no vertex of X has a neighbor in a triangle.

If `(C) ≤ 7, then by (76), at most three vertices of C are incident with or have a
neighbor in a triangle, and at most two vertices are incident with a 4-cycle. Since
t(G) ≥ B, these cases are mutually exclusive, thus we can choose X as a subset
of the remaining (at least `(C)− 3) vertices. Hence, suppose that `(C) = 8 and
C = v1v2 . . . v8. If say v2v3 is an edge of a triangle, then none of v5, . . . , v8 has a
neighbor in a triangle. If v5v6v7 is not a part of the boundary walk of a 5-face,
then set X = {v5, v6, v7}; otherwise, v6v7v8 is not a part of the boundary walk of
a 5-face by (76), and we set X = {v6, v7, v8}. We choose the set X in the same
way in case that a triangle shares a single vertex v2 with C, or a 4-cycle shares at
most two vertices v2 and v3 with C, or no (≤4)-cycle intersects C and at least 4
consecutive vertices v5, v6, v7 and v8 have no neighbor in a triangle. It remains to
consider the case that no (≤4)-cycle intersects C and among each 4 consecutive
vertices, at least one has a neighbor in a triangle. If three vertices of C had a
neighbor in a triangle, then (75) would imply that G−V (C) is a triangle, giving
a C-obstacle satisfying O2. Therefore, two opposite vertices of C, say v1 and v5,
have a neighbor in a triangle. However, this contradicts (76) or (78).

Let C−X = v1v2 . . . vk, where k = `(C)−|X| ≤ 5. Let G′ = G−X, with the
list assignment L′ obtained from L by removing from the list of each vertex the
color of its neighbor (if any) in X. Furthermore, we set L′(v1) = L(v1) ∪ L(v2)
and L′(vk) = L(vk) ∪ L(vk−1). By the choice of X, G′ with the list assignment
L′ satisfies the assumptions of Theorem 102, and every vertex incident with a
triangle that does not belong to V (C) has list of size three. An L′-coloring of G
would correspond to an L-coloring of G, thus we conclude that k = 5 (and hence
`(C) ≥ 6) and G′ contains a subgraph H isomorphic to one of the graphs OBSTa1
– OBSTa7 drawn in Figure 10.1 (with matching lengths of lists according to L′).
However, a case analysis shows that

• if H is OBSTa1 or OBSTa2, then G contains a C-obstacle satisfying (O2),

• if H is OBSTa3, then G contains the C-obstacle drawn in Figure 10.4(a).

• if H is OBSTa4, OBSTa5 or OBSTa7, then G contains the C-obstacle drawn
in Figure 10.4(b).

• if H is OBSTa6, then G contains the C-obstacle drawn in Figure 10.4(c).

Let us now give a short outline of the proof of Theorem 102. We basically
follow the proof of Grötzsch’s theorem by Thomassen [69], which the reader
should be familiar with. We consider the hypothetical smallest counterexample.
First, we give constraints on short paths Q whose endvertices belong to V (C) and
internal vertices do not belong to V (C) (claims (80), (81) and (83) in the proof),
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by splitting the graph along Q, coloring one part and extending the coloring to
the second one, with Q playing the role of the precolored path in the second
part. However, due to the existence of counterexamples to the statement “every
precoloring of a path of length two can be extended” (depicted in Figure 10.1), we
cannot exclude such paths entirely. However, using the ability to color vertices of
a path of length up to 5 if we can in the process ensure that there are no (≤4)-
cycles nearby, we can strengthen these constraints sufficiently if the vertices of Q
are close to P (claims (89) and (92)). Then, as in the Thomassen’s proof, we try
to color up to five appropriately chosen vertices of G near to P and remove their
colors from the lists of their neighbors, so that the resulting graph G′ satisfies
the assumptions of Theorem 102. This may only fail if a (≤ 4)-cycle T appears
near to the colored vertices, making (I) or (T) false (claims (93) and (95)). Note
that this implies that `(P ) ≤ 2. Many of these problematic configurations (those
where T is a 4-cycle, or where (T) is false in G′) can be reduced by precoloring up
to three more vertices near to T , extending the precolored path and at the same
time removing some vertices so that T disappears. Still, some cases (e.g., when T
contains a vertex in C whose distance from P is at most four) remain. However,
then we observe that we can apply the symmetric argument on the other side of
P , and if that fails as well, a (≤ 4)-cycle T ′ must be close to the vertices that
we try to color there as well. Since the distance between any two (≤4)-cycles in
G is at least B, it follows that T ′ = T , which implies that G contains a short
path Q with endvertices in C. Using the constraints on such paths, we can find
a suitable set of vertices to color and remove in this case as well, finally finishing
the proof.

Let us now provide the details of this argument, which unfortunately turns
out to be rather lengthy and technical.

Proof of Theorem 102. Suppose that G together with lists L is a smallest coun-
terexample, i.e., Theorem 102 holds for every graph smaller than G and G satisfies
the assumptions of Theorem 102, but G is not L-colorable. Let C be the outer
face of G and P a path with V (P ) ⊆ V (C) as in the statement of the theorem.
We first derive several properties of this counterexample. Note that each vertex
v of G has degree at least max(2, |L(v)|), and if two vertices u and v are adjacent,
then L(u) ∩ L(v) 6= ∅, unless uv is an edge of P . In particular, if v 6∈ V (P ) is
adjacent to a vertex p ∈ V (P ), then L(p) ⊂ L(v).

Lemma 104 implies that

(79) every (≤ 8)-cycle K in G either bounds a face, has a chord drawn inside
the disk bounded by K, or the subgraph drawn inside K is a K-obstacle.

In particular, every (≤5)-cycle in G bounds a face. Furthermore,

(80) The graph G is 2-connected.
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Proof. Clearly, G is connected. Suppose that G is not 2-connected, and let
G = G1 ∪ G2, where V (G1) ∩ V (G2) = {v} and |V (G1)|, |V (G2)| ≥ 2. If say
P ⊆ G1, then by the minimality of G, an L-coloring ϕ1 of G1 exists. Let L2 be
the list assignment such that L2(x) = L(x) for x 6= v and L(v) = {ϕ1(v)}. By
the minimality of G, we have that G2 is L2-colorable. However, this gives an
L-coloring of G. Similarly, in case that the cut-vertex v is an internal vertex of
P , the minimality of G implies that both G1 and G2 are L-colorable, giving an
L-coloring of G. This is a contradiction.

A chord of a cycle K is an edge e 6∈ E(K) joining two vertices of K. A vertex
of a path is internal if its degree in the path is two, and an endvertex otherwise.

(81) Every chord of C joins two vertices u and v with list of size three, such
that either u and v have a common neighbor with list of size two, or there exists a
triangle w1w2w3 with |L(w2)| = 2, a neighbor z 6∈ {w2, w3} of w1 with |L(z)| = 2,
and uz, vw3 ∈ E(G) or uw3, vz ∈ E(G).

Proof. Let uv be a chord of C. Let G = G1 ∪G2, where V (G1)∩ V (G2) = {u, v}
and |V (G1)|, |V (G2)| ≥ 3. By symmetry, we may assume that |V (G1)∩ V (P )| ≥
|V (G2) ∩ V (P )|. If u, v ∈ V (P ), then by the minimality of G, both G1 and G2

are L-colorable, and their colorings combine to an L-coloring of G. This is a
contradiction, thus we may assume that v 6∈ V (P ). Let Pi = (P ∩Gi)∪ {uv} for
i ∈ {1, 2}.

By the minimality of G, there exists an L-coloring ϕ of G1. Let L′ be the
list assignment such that L′(x) = L(x) for x 6∈ {u, v} and L′(x) = {ϕ(x)} for
x ∈ {u, v}. Since G is not L-colorable, G2 is not L′-colorable, thus it violates
(Q), (OBSTa) or (OBSTb).

Suppose first that u is not an internal vertex of P . Then only two vertices
are precolored in G2, and thus G2 contains either a vertex with list of size two
adjacent to u and v or OBSTx1. By (I) and (T), neither u nor v have a list of
size two. Furthermore, note that u cannot be an endvertex of P : Otherwise, we
have d(P ) ≤ 2, thus `(P ) ≤ 2. Let c 6= ϕ(v) be a color in L(v) \L(u) and L2 the
list assignment such that L2(v) = {c} and L2(x) = L(x) for x 6= v. Note that
G2 with list assignment L2 satisfies (Q) and (OBSTa), and by the minimality
of G, G2 is L2-colorable. It follows that G1 cannot be L2-colorable. However,
we have d(P1) ≥ B − 4 ≥ r(P1) in G1. Since G1 is not L2-colorable, it follows
that G1 violates (Q). However, that implies that G contains a non-L-colorable
OBSTx1c, OBSTx2a or OBSTx2b, which is a contradiction. Therefore, the chord
uv satisfies the conclusion of (81) in this case.

Let us now consider the case that u is an internal vertex of P . By the choice
of G1 and G2, we have 2`(P2) ≤ `(P ) + 2. Suppose first that `(P2) = 2. By
the minimality of G, we conclude that (S3), (Q) or (OBSTa) fails for G2 with
the list assignment L′. This implies that d(P ) ≤ 3, and since G satisfies the
assumptions of Theorem 102, we have `(P ) = 2. However, by symmetry G1 with
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the precolored path P1 also fails (S3), (Q) or (OBSTa), implying that t(G) ≤ 6.
This is a contradiction.

Therefore, we may assume that `(P2) = 3, and thus `(P ) ≥ 4 and d(P ) ≥
r(P ). Note that d(P2) ≥ d(P )− 1, and thus d(P2) ≥ r(P2). By the minimality of
G, we have that G2 fails (Q), and G2 contains a vertex w with |L(w)| = 2 adjacent
both to v and to an endvertex of P . Analogously, G1 (with the precolored path
P1) also fails (Q), or `(P ) = 5 and G1 fails either (S3) or (OBSTb) due to a
subgraph isomorphic to OBSTb1 or OBSTb2. The obstruction in G1 together
with the 5-cycle G2 form one of the subgraphs H described in (OBSTb), namely
OBSTb1, OBSTb1a, OBSTb1b, OBSTb5 or OBSTb6; and by (79), this subgraph
H is unique. By (OBSTb), H has an L-coloring ψ. However, by the minimality
of G, this implies that the precoloring that assigns v the color ψ(v) extends both
to G1 and G2, contradicting the assumption that G is not L-colorable.

Let us note that (81) implies that P is a subpath of C. Furthermore, observe
that there exists an L-coloring of the subgraph of G induced by V (C), unless G
contains a non-L-colorable OBSTx1, OBSTx1a or OBSTx1b. Lemma 104 then
implies that

(82) `(C) ≥ 9.

Proof. If `(C) ≤ 8, then G would contain a C-obstacle H, and by (79), it would
actually be equal to this C-obstacle. Since each C-obstacle contains a (≤4)-cycle
whose distance from any vertex of C is at most 4, this is only possible if `(P ) ≤ 2.
However, a straightforward case analysis shows that either G is L-colorable or
violates (OBSTa). More precisely,

• If H satisfies (O1) and |V (H) \ V (C)| = 1, then G contains OBSTa1 or is
L-colorable.

• If H satisfies (O1) and |V (H) \ V (C)| = 2, then G contains OBSTa6 or
OBSTx4, or is L-colorable.

• If H satisfies (O2) and |V (H) \ V (C)| = 3, then G contains OBSTa2 or is
L-colorable.

• If H satisfies (O2) and |V (H) \ V (C)| = 4, then G is L-colorable.

• If H satisfies (O2) and |V (H) \ V (C)| = 5, then G contains OBSTa3,
OBSTa4 or OBSTa7, or is L-colorable.

• If H satisfies (O3), then G is L-colorable.
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For k ≥ 2, a k-chord of a cycle K is a path Q = q0q1 . . . qk of length k joining
two distinct vertices of K, such that V (K) ∩ V (Q) = {q0, qk}. We consider a
chord to be a 1-chord. Suppose that neither q0 nor qk is an internal vertex of P .
Let G1 and G2 be the maximal connected subgraphs of G intersecting in Q, such
that P ⊆ G1. We say that Q splits off a face if G2 is a cycle. For one of the
obstructions O drawn in Figures 10.1 and 10.2, the k-chord Q splits off O if G2

is isomorphic to O and

• the vertices drawn in the Figures by full circles coincide with the (not
necessarily proper) subpath of Q consisting of the vertices x ∈ V (Q) such
that |L(x)| ∈ {1, 3}, and

• the sizes of the lists of all other vertices of G2 are equal to those given by
Figure 10.1 or 10.2.

(83) Let Q = q0q1 . . . qk be a k-chord of C such that no endvertex of Q is an
internal vertex of P and Q does not split off a face. If k ≤ 2, or if k = 3 and q3
has list of size two, then Q splits off one of the obstructions drawn in Figure 10.1.

Proof. Suppose for a contradiction that there exists a k-chord Q violating (83).
Let G1 and G2 be the maximal connected subgraphs of G intersecting in Q, such
that P ⊆ G1. Let us choose Q among all (≤ 3)-chords of C that violate (83) so
that |V (G2)| is minimal.

By the minimality of G, there exists an L-coloring ϕ of G1. Let L′ be the list
assignment such that L′(x) = L(x) if x 6∈ V (Q), L′(q3) = {ϕ(q2), ϕ(q3)} if k = 3
and L′(qi) = {ϕ(qi)} for 0 ≤ i ≤ 2. Observe that G2 is not L′-colorable, thus it
violates (Q) or (OBSTa). Let H be the minimal subgraph of G2 that contains
Q and violates (Q) or (OBSTa). Note that H contains a (≤ 4)-cycle T whose
distance to any vertex of H is at most four. By (79), each face of H except for
the outer one is also a face of G.

We claim that G2 = H, that is, Q splits off H. Otherwise, consider a k′-chord
Q′ 6= Q of G2 that is a subpath of the union of Q and of the outer face of H.
If Q′ satisfies the assumptions of (83), then by the choice of Q, we have that
that Q′ splits off a subgraph H ′ that is either a face or an obstruction drawn in
Figure 10.1. However, H ′ contains a (≤4)-face T ′, whose distance to Q′ is at most
three. It follows that d(T, T ′) ≤ 7 < B, which is a contradiction. Therefore, Q′

does not satisfy the assumptions of (83). Since every vertex with list of size two
in H belongs to the outer face of G, the inspection of the graphs in Figure 10.1
shows that this is only possible if k = 3, H is OBSTx1 and Q′ = q3q2q1uv for
vertices u, v ∈ V (H) \ V (Q) such that |L(u)| = 3 and |L(v)| = 2. However, in
this case let G′1 and G′2 be the subgraphs of G that intersect in Q′, let ϕ′ be an
L-coloring of G′1 and let L2 be the list assignment such that L2(x) = {ϕ′(x)} for
x ∈ {v, q1, q2}, L2(q3) = {ϕ′(q2), ϕ′(q2)}, L2(v) = {ϕ′(u), ϕ′(v)} and L2(x) = L(x)
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for other vertices x ∈ V (G′2). Since t(G) ≥ B and H contains T , we conclude
that G′2 satisfies the assumptions of Theorem 102, hence G′2 is L2-colorable. This
gives an L-coloring of G, which is a contradiction.

(79) and (83) imply that G does not contain a subgraph isomorphic to ones
described in (OBSTa) or (OBSTb), such that the sizes of the lists match those
prescribed by Figures 10.1 and 10.2: If G contained such a subgraph H, we would
conclude that G = H as in the proof of (83), and by the assumptions, G would
be L-colorable.

(84) If Q = q0q1q2 is a 2-chord of C in G, then at most one endvertex of Q
belongs to P .

Proof. Suppose that both q0 and q2 belong to P . Then Q together with a subpath
of P forms a cycle K of length at most `(P ) + 2, and by (79) together with the
assumption that d(P ) ≥ r(P ) if `(P ) > 2, this cycle bounds a face. Observe
that q1 cannot have a neighbor in P distinct from q0 and q2. Let L′ be the list
assignment such that L′(q1) ⊆ L(q1)\(L(q0)∪L(q2)) has size one and L′(x) = L(x)
for x 6= q1. Let G′ = G − q0q2 if K is a triangle and G′ = G − (V (K) \ V (Q))
otherwise. Note that the vertices with list of size one form an induced path
P ′ in G′, and the length of P ′ is at most `(P ) − 1 if K has length at least
5 and at most `(P ) + 1 otherwise. In the former case, if d(P ) ≥ r(P ), then
d(P ′) ≥ r(P ′), since d(P ′) ≥ d(P ) − 1. In the latter case, we have `(P ) ≤ 2
and d(P ′) ≥ r(P ′), since d(K) ≥ B. Since G′ is smaller than G and is not L′-
colorable, we conclude that it violates (Q) or (OBSTb). However, in these cases,
G itself would violate (OBSTb): If G′ violates (Q), then G contains OBSTb1b;
if G′ contains OBSTb1, then G contains OBSTb3; and if G′ contains OBSTb2,
then G′ contains OBSTb4.

(85) Suppose that C has either a 3-chord Q = q0q1q2q3, or a 4-chord Q =
q0q1q2q3q4 such that |L(q4)| = 2, where no endvertex of Q is an internal vertex of
P . Let G1 and G2 be the maximal connected subgraphs of G that intersect in Q,
such that P ⊆ G1. Assume that either

• `(P ) ≥ 4 and d(P, qi) ≤ r(4)− r(3) = 4 for 0 ≤ i ≤ 3, or

• G1 contains a (≤4)-cycle T such that d(P, qi) ≤ B − r(3) for 0 ≤ i ≤ 3.

Then G2 is a 5-cycle, and hence q0 and q3 have a common neighbor with list of
size two (equal to q4 if Q is a 4-chord).

Proof. Let ϕ be an L-coloring of G1 that exists by the minimality of G. Let L2 be
the list assignment such that L2(qi) = {ϕ(qi)} for 0 ≤ i ≤ 3, if Q is a 4-chord, then
L2(q4) = {ϕ(q3), ϕ(q4)}, and L2(x) = L(x) for x 6∈ V (Q). The graph G2 is not L2-
colorable. Furthermore, we have d(q0q1q2q3) ≥ r(q0q1q2q3), since either `(P ) ≥ 4
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and d(q0q1q2q3) + (r(4)− r(3)) ≥ d(P ) ≥ r(P ), or d(q0q1q2q3) + (B − r(3)) ≥ B.
By the minimality of G, we conclude that G2 violates (Q), hence a vertex x with
a list of size two is adjacent to both q0 and q3. Furthermore, by (79) and (83),
G2 is equal to the 5-face q0q1q2q3x.

We may assume that `(P ) ≥ 2; otherwise, we can color 2 − `(P ) vertices
adjacent to P in C so that the resulting list assignment L′ either still satisfies
the assumptions of Theorem 102 or violates (OBSTa). But, in the latter case,
(79) and (83) would imply that G with the list assignment L′ is equal to one of
the obstructions in Figure 10.1. However, then it is easy to see that G either is
L-colorable or contains OBSTx1. Let P = p0p1 . . . pm, where m = `(P ).

A subgraph H of G is a near-obstruction if it is isomorphic to one of the
graphs in Figure 10.1 or 10.2, where the vertices drawn by full circles coincide
with the vertices of H belonging to P and the sizes of lists of other vertices of H
are greater or equal to the sizes prescribed by the Figure. A near-obstruction H
is tame when for every vertex v of H that is depicted in Figure 10.1 or 10.2 by a
square, if v is adjacent to a vertex in P , then v ∈ V (C).

(86) The graph G contains no tame near-obstruction.

Proof. Suppose that H is a tame near-obstruction in G, and let K be the cycle
bounding the outer face of H. Let Q0 = q0q1 . . . qk be the subpath of K vertex-
disjoint with P such that V (K) ⊆ V (Q0)∪V (P ). Suppose first that both q0 and
qk are adjacent to an endvertex of P , say q0 to p0 and qk to pm; by the assumption
that d(P ) ≥ r(P ) and that H is tame and by (81), this is the case unless H is
OBSTx1 and `(P ) = 2. Let Q be the path consisting of Q0 and those of the
edges q0p0 and qkpm that do not belong to C.

Note that |V (H)| < |V (G)|, since otherwise either G violates (OBSTa) or
(OBSTb), or is L-colorable. Let G′ = G− (V (H) \ V (Q)). By the minimality of
G, the graph H is L-colorable. Let ϕ be an L-coloring of H, and let L′ be the list
assignment such that L′(x) = {ϕ(x)} if x ∈ V (Q) and L′(x) = L(x) otherwise.
Note that G′ is not L′-colorable, and by the minimality of G, it cannot satisfy
the assumptions of Theorem 102. But, clearly G′ satisfies (I) and (T). Let us
now discuss several cases; we always assume that the precolored vertices of the
drawing of H in Figure 10.1 or 10.2 are labeled from left to right, i.e., p0 is the
the leftmost precolored vertex in the drawing.

• H is OBSTx2a or OBSTx2b: Since q1p2 is not a chord by (81), we have
q1 6∈ V (C). By (83), the 2-chord q0q1p2 splits off a subgraph H ′ which is
isomorphic to one of the graphs drawn in Figure 10.1. Since V (H) 6= V (G),
H ′ is not OBSTx1. Since H ⊆ G, we have that q1 has degree at least
three in H ′ and that q1, p2 and two vertices of a triangle are incident with
a common 5-face in H ′. This implies that H ′ is OBSTa1, OBSTa3 or
OBSTx4. However, then q0 is adjacent to a vertex with list of size two in
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H ′, and thus |L(q0)| = 3. It follows that the 5-cycle p0p1p2q1q0 has at least
two L-colorings, and at least one of them extends to H ′. Therefore, G is
L-colorable, which is a contradiction.

• `(Q) ≤ 5: Since t(G) ≥ B or d(P ) ≥ r(P ), no vertex of Q is contained
in a (≤ 4)-cycle. The inspection of the graphs depicted in Figures 10.1
and 10.2 shows that among any three consecutive internal vertices of Q, at
least one has degree two in H. This implies that Q is an induced path in
G, since otherwise by (79), G would contain a vertex of degree two with
list of size three. Similarly, we conclude that in G, no vertex with list of
size two has two neighbors in Q, unless H is OBSTa1 (or OBSTx2a, but
that was already excluded). However, if H is OBSTa1 and q0 and q3 have
a common neighbor x with list of size two, then (79) and (83) imply that
V (G) = V (H)∪{x}, and it is easy to see that G is L-colorable. We conclude
that G′ satisfies (S3) and (Q).

Let us discuss several subcases regarding m:

– m = 2: That is, H is one of the obstructions drawn in Figure 10.1,
except for OBSTa5, OBSTx1, OBSTx2b or OBSTx3 (or OBSTx2a,
which was already excluded). Note that in all these cases, `(Q) ≤ 4.
Also, H contains a triangle whose distance from any vertex of Q is
at most three, and thus G′ satisfies d(Q) ≥ r(Q). It follows that G′

violates (OBSTb), i.e., `(Q) = 4, H is OBSTa3, OBSTa4, OBSTa6,
OBSTa7, OBSTx1a, OBSTx1b or OBSTx4 and G′ is OBSTb1 or OB-
STb2. Since G does not contain a vertex of degree two with list of size
three, if G′ is OBSTb2, then H is OBSTa7. The case analysis of the
possible combinations of H and G′ shows that G is L-colorable, which
is a contradiction.

– m = 4: The case that H is OBSTb1 is excluded by (83), since d(P ) ≥
d(T ), thus H is OBSTb2. (83) furthermore implies that |L(q2)| = 3,
and thus we may choose the L-coloring ϕ so that ϕ(q1) 6∈ L(q0)\L(p0).
Let L′′ be the list assignment defined by L′′(q0) = (L(q0) \ L(p0)) ∪
{ϕ(q1)} and L′′(x) = L′(x) otherwise. Note that only a path q1q2q3q4
of length three is precolored in G′ according to this list assignment
and d(q1q2q3q4) ≥ d(P ) − 3 ≥ r(P ) − 3 ≥ r(q1q2q3q4) and thus G′ is
L′′-colorable. This gives an L-coloring of G, which is a contradiction.

– m = 5: By (84), H cannot be OBSTb3 or OBSTb4. Thus, H is
OBSTb1a, OBSTb1b, OBSTb2a, OBSTb2a’, OBSTb2b or OBSTb5,
and `(Q) ≤ 4. We conclude that G′ is OBSTb1 or OBSTb2 and
`(Q) = 4 (excluding the cases that H is OBSTb1a or OBSTb1b).
Note that q2 has degree two in H, and since it has degree at least
three in G, we conclude that G′ is OBSTb1. The case analysis of the
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possible combinations of H and G′ shows that G is L-colorable, which
is a contradiction.

• `(Q) > 5: Thus, H is OBSTa5, OBSTx3 or OBSTb6. Let us discuss these
cases separately:

– H is OBSTa5: Let w be the common neighbor of q1 and q6, and
w′ the common neighbor of w, q3 and q4. If there exist colors c1 ∈
L(q1) \ (L(q0) \L(p0)) and c2 ∈ L(q6) \ (L(q7) \L(p2)) so that L(w) 6=
L(p1) ∪ {c1, c2}, then consider the graph G1 = G − V (P ) with the
list assignment L1 such that L1(q1) = {c1}, L1(q6) = {c2}, L1(w)
chosen as an arbitrary one-element subset of L(w) \ (L(p1)∪ {c1, c2}),
L1(q0) = (L(q0) \ L(p0)) ∪ {c1}, L1(q7) = (L(q7) \ L(p2)) ∪ {c2} and
L1(x) = L(x) otherwise. The graph G1 cannot be L1-colorable, thus
it violates (OBSTa). This is only possible if G1 is OBSTa1, but then
V (G) = V (H) and thus G is L-colorable.

So, we have |L(q0)| = |L(q7)| = 3, L(q1) = (L(q0) \ L(p0)) ∪ {c1},
L(q6) = (L(q7) \ L(p2)) ∪ {c2} and L(w) = L(p1) ∪ {c1, c2}. Let ψ be
an L-coloring of q1q0p0p1p2q7q6 such that ψ(q1), ψ(q6) 6∈ L(w) \ L(p1).
Let G2 = G − (V (P ) ∪ {w′}), with the list assignment L2 such that
L2(x) = {ψ(x)} for x ∈ {q0, q1, q6, q7}, L2(w) is an arbitrary singleton
list disjoint with L2(q1) and L2(q6) and L2(x) = L(x) otherwise. Since
an L2-coloring of G2 corresponds to an L-coloring of G (choosing the
color of w′ different from the colors of q3 and q4, and the color of w
different from the color of p1 and w2), we have that G2 is not L2-
colorable. By (79), G2 satisfies (S3) and (Q), and the internal face of
G2 incident with w has length at least six, thus G2 satisfies (OBSTb).
Furthermore, since d(q3q4w

′) ≥ B in G, we have d(q0q1wq6q7) ≥ B −
3 ≥ r(q0q1wq6q7). Therefore, G2 is a counterexample to Theorem 102
smaller than G, which is a contradiction.

– H is OBSTx3: Let q1w1w2q3 be the path in H such that w1, w2 6= q2. If
|L(q0)| = 2, then consider an L-coloring ψ of the subgraph ofG induced
by {q0, q1, w1, w2, p0, p1} such that ψ(w2) 6∈ L(q7)\L(p2). Let L′ be the
list assignment defined by L′(q0) = {ψ(q0), ψ(q1)}, L′(x) = {ψ(x)} for
x ∈ {q1, w1, w2}, L′(q7) = (L(q7) \ L(p2)) ∪ {ψ(w2)} and L′(x) = L(x)
otherwise. We conclude that G − V (P ) is not L′-colorable, thus it
violates (OBSTa). Note that w1 has degree two in G− V (P ) and the
face with that it is incident does not share any vertex with the triangle,
and that q7 is not incident with the triangle, thus G− V (P ) contains
OBSTx2a. By (79) and (83), G−V (P ) is equal to OBSTx2a. However,
then q2, q5 and q7 have list of size two and G contains OBSTx3, which
is a contradiction.
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So, we have |L(q0)| = 3. Then, there exist c1 ∈ L(q1) \ (L(w1) \L(p1))
and c0 ∈ L(q0)\L(p0) such that c0 6= c1. Let G1 be the graph obtained
from G − {p0, p1, w1, w2} by adding the edge q1p2. Let c be a color
that does not appear in any of the lists of G. Let L1 be the list
assignment such that L1(q0) = {c0}, L1(q1) = {c1}, L1(p2) = {c},
L1(q7) = (L(q7) \ L(p2)) ∪ {c} and L1(x) = L(x) for all other vertices
of G1. Observe that G1 is not L1-colorable. Furthermore, the distance
of q1 from the triangle q4q5q6 is three both in G and G1, and the
distance of q1 and q7 to any other (≤ 4)-cycle is at least B − 3, thus
t(G1) ≥ B. The internal face F of G1 incident with q1p2 has length
at least six, as otherwise the cycle F − q1p2 + q1w1p1p2 has length at
most seven and contradicts (79). Furthermore, observe that neither q0
nor q1 is adjacent to a vertex of the triangle q4q5q6, thus G1 contains
neither OBSTx1 nor OBSTx1a. It follows that G1 satisfies (OBSTa),
and thus it is a counterexample to Theorem 102 smaller than G. This
is a contradiction.

– H is OBSTb6: Let q1w1w2p3 be the path in H with w1 adjacent to p1.
If |L(q6)| = 2, then let c′ be the unique color in L(q6)\L(p5), and note
that there exists c ∈ L(q5) \ (L(p3)∪ {c′}). Let G1 = G−{p4, p5} and
let L1 be the list assignment such that L1(q5) = {c}, L1(q6) = {c, c′}
and L1(x) = L(x) for x 6∈ {q5, q6}. Note that G1 is not L1-colorable,
and since a path of length 4 is precolored in G1 and H is a subgraph
of G, we conclude that G1 contains OBSTb2. However, this implies
that G contains OBSTb6, which is a contradiction.

Therefore, |L(q6)| = 3. Then, there exists an L-coloring ψ of the sub-
graph of G induced by {q3, q4, q5, q6, p3, p5} such that ψ(q3) 6∈ L(w2) \
L(p3). Let G2 be the graph obtained from G − (V (P ) ∪ {w1, w2})
by adding a vertex w adjacent to q0 and q3. Let c be a new color
that does not appear in L(q0) ∪ L(q3). Let L2 be the list assign-
ment such that L2(x) = ψ(x) for x ∈ {q3, q4, q5, q6}, L2(w) = {c},
L2(q0) = (L(q0) \ L(p0)) ∪ {c} and L2(x) = L(x) otherwise. Observe
that an L2-coloring of G2 corresponds to an L-coloring of G, thus G2

is not L2-colorable. Furthermore, a path P2 = wq3q4q5q6 of length 4
is precolored in G2. Let us remark that the newly added vertex w is
not incident with a (≤ 4)-cycle, as otherwise either t(P ) < r(P ) in
G, or (79) implies that q2 is a vertex of degree two with list of size
three. Furthermore, t(G2) ≥ B, since only the added path q0wq3 could
result in shortening the distance between (≤ 4)-cycles, in G we have
d(q0) ≥ d(P ) − 1 ≥ r(P ) − 1 and d(q3) ≥ d(P ) − 2 ≥ r(P ) − 2, and
2r(P )− 1 > B. Also, d(P2) ≥ d(P )− 2 ≥ r(P2).

Note that G2 satisfies (S3), since w is not adjacent to q6 and d(P ) ≥
r(P ). Similarly, G2 satisfies (Q), since otherwise (79) would imply that
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q4 is a vertex of degree two with list of size three. Hence, G2 violates
(OBSTb). Since q4 has degree at least three, G2 contains OBSTb1.
But then q4 and q0 have a common neighbor x, and the existence of
q2 together with d(P2) ≥ r(P2) contradicts (79) applied to the 7-cycle
q0q1w1w2q3q4x.

Finally, let us consider the case that say q0 is not adjacent to an endvertex
of P , that is, `(P ) = 2, H is OBSTx1, q0 is adjacent to p1 and q3 is adjacent to
p2. An L-coloring of H does not extend to an L-coloring of the subgraph G′ that
is split off by the path p0p1q0q1q2q3. If p0 and q1 have a common neighbor with
list of size two, then either G is L-colorable or contains OBSTa1. Otherwise,
G′ satisfies (S3) and (Q), as q1 cannot be a vertex of degree two with list of
size three. Therefore, G′ violates (OBSTb). If |L(q3)| = 2, then G′ may only
be OBSTb1, OBSTb1b, OBSTb2 or OBSTb2b. OBSTb1 and OBSTb1b are
excluded, since q1 must have degree at least three; if G′ is OBSTb2, then G is
L-colorable, and if G′ is OBSTb2b, then G contains OBSTa3. If |L(q3)| = 3, then
there exist L-colorings ψ1 and ψ2 of H such that ψ1(q0) = ψ2(q0), ψ1(q1) 6= ψ2(q1),
ψ1(q2) 6= ψ2(q2) and ψ1(q3) 6= ψ2(q3). The inspection of the graphs in Figure 10.2
shows that at least one of ψ1 and ψ2 extends to an L-coloring of G′, unless G′

contains a subgraph H ′ isomorphic to OBSTb1, OBSTb1a, OBSTb1b, OBSTb3
or OBSTb5. By (79) and (83) we conclude that G′ = H and G = H ∪ H ′.
However, all possible combinations of H and H ′ result in an L-colorable graph,
which is a contradiction.

Let v1, v2, . . . , vs be the vertices of C−V (P ) labeled so that C = p0 . . . pmv1v2 . . . vs,
where s = `(C)−m− 1. Let us also define v0 = pm.

(87) For 1 ≤ i ≤ 4, if the edge vi−1vi is not contained in a cycle of length at
most 4 and a vertex v ∈ V (G) is adjacent to both vi and an endvertex p of P ,
then v ∈ V (C).

Proof. Suppose for a contradiction that v 6∈ V (C). Let G2 be the subgraph of G
that is split off by the 2-chord vivp according to (83), and G1 = G − (V (G2) \
{vi, v, p}). If p = pm, then i ∈ {3, 4}, since vi−1vi does not belong to a (≤ 4)-
cycle. By (79) and the fact that every vertex of degree two has list of size two, we
have that i = 4 and G2 contains a triangle. It follows that m ≤ 2. Consider an
L-coloring ψ of G2, and let L1 be the list assignment such that L1(v) = {ψ(v)},
L1(v4) = {ψ(vi)} and L1(x) = L(x) for x 6∈ {v, v4}. Note that G1 is not L1-
colorable. By (81), (83), (82) and the assumption that v 6∈ V (C), we conclude
that G1 satisfies (S3) and (Q). Therefore, using (79) and (83) we conclude that
G1 is equal to (OBSTb1) or (OBSTb2). However, all combinations of (OBSTb1)
or (OBSTb2) with a pmv1v2v3v4v-obstacle are L-colorable.

Let us now consider the case that p = p0. Since a (≤ 4)-cycle in G2 is in
distance at most 4 from P , we have `(P ) ≤ 2. Let K be the cycle of length
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at most 8 formed by the 2-chord vivp0, the path P , and the vertices v1, v2,
. . . , vi. Since t(G) ≥ B, G1 cannot be a K-obstacle, and if K is not a face,
then `(K) = 8 and K has a chord splitting K to two 5-faces. If K is not
a face, then since each vertex with list of size three has degree at least three,
we conclude that |L(v1)| = |L(v3)| = 2, |L(v2)| = 3 and the chord of K is v2p0.
However, this contradicts (81). Therefore, K is a face. Since v has degree at least
three, G2 is not a face. Furthermore, G2 is not (OBSTx1b), thus |L(vi)| = 3.
Hence, there exist L-colorings ψ1 and ψ2 of K such that ψ1(v) 6= ψ2(v) and
ψ1(vi) 6= ψ2(vi). The inspection of the graphs in Figure 10.1 shows that at least
one of ψ1 and ψ2 extends to an L-coloring of G2, giving an L-coloring of G. This
is a contradiction.

(88) Suppose that m = 5. For 1 ≤ i ≤ 4, if a vertex v ∈ V (G) is adjacent to
both vi and to p ∈ {p1, p4}, then v ∈ V (C), unless p = p4 and i = 2, or p = p1
and i = s− 1.

Proof. Suppose that v 6∈ V (C) is adjacent to p4 and vi. Since d(P ) ≥ r(P ) and
every vertex with list of size three has degree at least three, (79) implies that
i = 2.

Hence, assume that v 6∈ V (C) is adjacent to p1 and vi. Let Q = p0p1vvi,
let G1 be the subgraph of G drawn in the cycle bounded by vp1 . . . p5v1 . . . vi
and G2 = G − (V (G1) \ V (Q)). By the minimality of G, there exists an L-
coloring ϕ of G1. Let L2 be the list assignment such that L2(x) = ϕ(x) for
x ∈ {v, vi} and L2(x) = L(x) otherwise; the graph G2 cannot be L2-colorable.
Since only an induced path Q of length three is precolored in G2 (and d(Q) ≥
d(P ) − 2 ≥ r(P ) − 2 ≥ r(Q)), we conclude that G2 violates (Q), thus there
exists a vertex w with list of size two adjacent to p0 and vi. By (81), we have
C = p0p1 . . . p5v1 . . . viw, and thus i = s− 1.

(89) If vi has degree two and is incident with a triangle, then i ≥ 4. Furthermore,
if 4 ≤ i ≤ 6, vi has degree two and is incident with a triangle, then |L(vi+2)| 6= 2.

Proof. Suppose first that vi is such a vertex, with 1 ≤ i ≤ 3. Clearly, this is only
possible if `(P ) ≤ 2. By the minimality of G, the subgraph G0 of G induced by
V (P ) ∪ {v1, . . . , vi+1} has an L-coloring ψ. Let L′ be the list assignment such
that L′(x) = {ψ(x)} for x ∈ {v1, . . . , vi+1} and L′(x) = L(x) otherwise, and
let Q = p0p1p2v1 . . . vi−1vi+1. Let G′ = G − vi. Then, G′ is not L′-colorable.
Furthermore, by (81) and (82), G′ satisfies (Q). Since d(Q) ≥ d(vi−1vivi+1)− 4 ≥
B − 4 ≥ r(Q), G′ violates (OBSTb), and by (79) and (83), G′ is equal to one of
the graphs drawn in Figure 10.2. If i = 2, then either G′ is OBSTb1 and thus G
contains OBSTx2b, or G′ is OBSTb2 and G is L-colorable. Therefore, i = 3. If
|L(v1)| = 3, then we can assume that ψ(v2) 6∈ L(v1) \ L(p2), thus there exist two
L-colorings of the subgraph of G0 that differ only in the color of v1. Furthermore,
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the degree of v1 in G′ is at least three. The inspection of the graphs drawn in
Figure 10.2 shows that at least one of these colorings extends to G′, which is a
contradiction. If |L(v1)| = 2, then by (T) we have that either G′ is OBSTb1b
and G contains OBSTx2a, or G′ is OBSTb2b and G contains OBSTx3.

Suppose now that 4 ≤ i ≤ 6 and |L(vi+2)| = 2. Again, m = 2. By (T),
|L(vi−2| = 3, and by (81), p0p1p2v1 . . . vi−1vi+1 is an induced path. Thus, there
exists its L-coloring ψ such that L(vi) 6= {ψ(vi−1), ψ(vi+1)} and ψ(vi+1) 6∈ L(vi+2).
Let G′ = G−{vi−1, vi, vi+1} with the list assignment L′ such that L′(vj) = {ψ(vj)}
for 1 ≤ j ≤ i−3, L′(vi−2) = {ψ(vi−3), ψ(vi−2)}, L′(x) = L(x)\{ψ(y)} for a vertex
x ∈ V (G′) with a neighbor y ∈ {vi−1, vi+1} and L′(x) = L(x) otherwise. The
graph G′ is not L′-colorable. Furthermore, by (81), (S2) holds, and by (83),
(I) is satisfied as well. Let w be a common neighbor of two vertices of the
path Q = p0p1p2v1 . . . vi−3 in G′. By (81), we have w 6= vi−2 and |L(w)| = 3.
Furthermore, |L′(w)| = 3, since otherwise w would be adjacent to vi−1 or vi+1

as well, and (79) would imply that vi−2 has degree two in G. This shows that
(Q) is true. Note that d(Q) ≥ B − 7 > r(P ). Therefore, G′ violates (OBSTb).
This implies that i ≥ 5; observe that there exist L-colorings ψ1 and ψ2 of Q such
that ψ1(vi−1) = ψ2(vi−1) = ψ(vi−1), ψ1(vi+1) = ψ2(vi+1) = ψ(vi+1), ψ1(vi−2) 6=
ψ2(vi−2), ψ1(vi−3) 6= ψ2(vi−3) and if i = 6, then ψ1(v1) = ψ2(v1). Note that vi−4 is
not adjacent to a vertex x with |L′(x)| = 2 and that vi−2 is the only such vertex
adjacent to vi−3, by (81), (79) and the fact that vi−2 has degree at least three in
G. Since neither ψ1 nor ψ2 extends to an L′-coloring of G′, the inspection of the
graphs depicted in Figure 10.2 shows that i = 6 and G′ contains OBSTb3. If v8
is adjacent to p0, then G contains OBSTx3. Otherwise, (81) and (83) imply that
the edge of OBSTb3 incident with vi−2 (distinct from vi−3vi−2) is a chord of C
that splits off OBSTx1 in G; however, the resulting graph is L-colorable.

(90) We have |L(v1)| = 2 or |L(v2)| = 2.

Proof. Suppose that |L(v1)| = |L(v2)| = 3. Let L′ be the list assignment such
that L′(v1) = L(v1) \ L(pm) and L′(x) = L(x) otherwise. Let G′ = G − pmv1.
By (81), G′ with the list assignment L′ satisfies (I). Suppose that (T) is violated.
Then there exists a triangle w1w2w3 such that either v1 = w2 and both w1 and
w3 have a neighbor with list of size two, or |L(w2)| = 2, w1 is adjacent to v1 and
w3 has a neighbor w distinct from w1 with list of size two. By (83), the former
is not possible, and in the latter case, we have w1 = v2, w2 = v3 and w3 = v4.
However, that contradicts (89). Therefore, (T) holds. Furthermore, by (81), v1
is not adjacent to any vertex of P other than pm, and thus (Q) is satisfied. Since
an L′-coloring of G′ would give an L-coloring of G, it follows that G′ with the
assignment L′ violates (OBSTa) or (OBSTb). However, this implies that G with
the list assignment L contains a tame near-obstruction H, contradicting (86).

(91) If `(P ) = 5, then `(C) ≥ 10.
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Proof. By (82), we have `(C) ≥ 9. Suppose that `(C) = 9. By (90), either
|L(v1)| = 2 or |L(v2)| = 2. Applying (90) symmetrically on the other end of P , we
also have that |L(v2)| = 2 or |L(v3)| = 2. Therefore, either |L(v1)| = |L(v3)| = 2
and |L(v2)| = 3, or |L(v1)| = |L(v3)| = 3 and |L(v2)| = 2. In the former case,
L-color the path v1v2v3 so that v1 gets a color different from the color of p5 and
v3 a color different from the color of p0. Let G′ = G − {v1, v2, v3}, with the list
assignment L′ obtained from L by removing the colors of the vertices v1, v2 and v3
from the lists of their neighbors. Note that G′ satisfies (I), since otherwise v1v2v3
would be a part of a 5-cycle, and by (79), v2 would have degree two. Furthermore,
(T) is satisfied since d(P ) ≥ r(P ) and (Q) is satisfied by (84). Note also that no
vertex adjacent to p0 or p5 has list of size 2, thus G′ satisfies (OBSTb). This is
a contradiction, since an L′-coloring of G′ corresponds to an L-coloring of G.

In the latter case, let G′ be the graph with list assignment L′ obtained from
G by coloring v2 from its list arbitrarily, removing v2 and removing its color from
the lists of its neighbors. Again, (I), (T) and (Q) are obviously satisfied by G′.
Furthermore, since d(P ) ≥ r(P ), the distance between any pair of vertices of G′

with list of size two is at least three. This implies that G′ satisfies (OBSTb),
unless it contains OBSTb1b. However, that is excluded by (84).

Let X be the set of vertices defined as follows: If |L(v1)| = 3 (and thus
|L(v2)| = 2 by (90) and |L(v3)| = 3) and |L(v4)| = 3, then X = {v2}. If
|L(v1)| = 3 and |L(v4)| = 2, then X = {v2, v3}. If |L(v1)| = 2 (and thus
|L(v2)| = 3) and |L(v3)| = 3, then X = {v1}. If |L(v1)| = |L(v3)| = 2 (and
thus |L(v4)| = 3) and v5 = p0 or |L(v5)| = 3, then X = {v2, v3}. Otherwise,
X = {v2, v3, v4}.
(92) Let Q = q0q1 . . . qk be a k-chord of C such that no endvertex of Q is an
internal vertex of P and Q does not split off a face. If k ≤ 2, or if k = 3 and q3
has list of size two, then q0 6∈ X.

Proof. Let G2 be the subgraph of G that is split off by Q and G1 = G− (V (G2)\
V (Q)). Let Q be chosen so that G2 is as large as possible. Let i be the index such
that vi = q0. By (83) we can assume that `(P ) = 2, since otherwise G2 contains
a triangle whose distance from q0 is at most four, hence its distance from P is at
most 8, contradicting d(P ) ≥ r(P ).

By (81) and (89), the path consisting of P and v1v2v3v4 is induced. Suppose
now that qk ∈ {v1, v2, v3, v4}, and let K be the cycle bounded by Q and a subpath
of v1v2v3v4. Since Q does not split off a face, (79) implies that `(K) ≥ 6, thus
k = 3 and {q0, qk} = {v1, v4}. If q0 = v1 ∈ X, then |L(v1)| = 2 and |L(v2)| =
|L(v3)| = 3. However, (79) implies that v2 or v3 has degree two, which is a
contradiction.

If q0 = v4 ∈ X, then (79), (89) and the choice of X imply that either v2q2 ∈
E(G), or v2, q2 and q0 are adjacent to vertices of a triangle T . In the former case,
let ψ1 and ψ2 be L-colorings of the subgraph of G induced by V (P )∪ {v1, v2, q2}
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such that ψ1(v1) = ψ2(v1), ψ1(v2) 6= ψ2(v2) and ψ1(q2) 6= ψ2(q2), let G′ = G−v1v2
and let L1 and L2 be the list assignments such that Lj(x) = {ψj(x)} for x ∈
{v1, v2, q2} and Lj(x) = L(x) otherwise. Note that G′ satisfies (Q) by (83) and
that G′ is not Lj-colorable for j ∈ {1, 2}, thus G′ with both of these assignments
violates (OBSTb). This is only possible if G′ contains OBSTb3, but then G
contains OBSTx4. In the latter case, let t1 and t2 be the vertices of T adjacent
to v2 and v4, respectively, let ψ be an L-coloring of pmv1v2v3v4 such that either
ψ(v2) 6∈ L(t1) or L(t1) \ {ψ(v2)} 6= L(t2) \ {ψ(v4)}, and let G′ be the graph
obtained from G− V (T ) by identifying v2 with v3 to a new vertex z. Note that
z is not contained in a (≤4)-cycle by (79), and observe that t(G′) ≥ B. let L′ be
the list assignment defined in the following way: L′(vi) = {ψ(vi)} for i ∈ {1, 4},
L′(z) = {c} for a new color c that does not appear in any of the lists, and
L′(x) = L(x) for any other vertex x ∈ V (G′). Observe that G′ is not L′-colorable
and satisfies (Q) by (81) and (82), hence G′ contains a subgraph H violating
(OBSTb). Since q1 has degree at least three, (79) implies that v1zv4q1q2 is the
only cycle of length at most 5 in G′ containing z, and that every cycle of length 6
containing z also contains q1. It follows that q1 ∈ V (H). Unless H is OBSTb1b or
OBSTb2b, |L′(q1)| = 3 implies that v5 ∈ V (H), thus v4 has degree at least three
in H. Note that H is neither OBSTb1b nor OBSTb2b, since then we would
have v5 6∈ V (H) and a (≤ 3)-chord contained in the outer face of H incident
with v4 would contradict (83). The only obstruction in that the endvertex of
the precolored path has degree greater than two is OBSTb4, however H is not
OBSTb4 since q1 is not adjacent to pm.

Therefore, qk 6∈ {v1, v2, v3, v4}. By (83), G2 is one of the graphs depicted in
Figure 10.1. Observe that there exists a color c ∈ L(q0) such that every L-coloring
of Q that assigns c to q0 extends to an L-coloring of G2. Suppose first that there
exists an L-coloring ψ of the path P ′ = p0p1p2v1 . . . vi such that ψ(q0) = c. Let L1

be the list assignment such that L1(x) = {ψ(x)} for x ∈ {v1, . . . , vi−1}, L1(vi) =
{ψ(vi), ψ(vi−1)} and L1(x) = L(x) otherwise. Note that the path P1 = P ′ − vi
that is precolored in G1 has length at most 5. Furthermore, G2 contains a triangle
whose distance from vi is at most 4, thus d(P1) ≥ B − 10 ≥ r(P1), and since G
is not L-colorable, G1 is not L1-colorable. By (81), G1 satisfies (I) and (Q). Note
that the distance in G1 from vi to any triangle is at least B − 4 > 1, thus G1

satisfies (T). We conclude that G1 violates (OBSTb), and thus i ∈ {3, 4}. The
choice of Q implies that if Q′ 6= Q is a path in G1 of length at most three from a
vertex vj with j ≤ i to a vertex with list of size two, then the endvertex of Q′ is
q0 and Q′ bounds a face. The inspection of the graphs in Figure 10.2 shows that
G1 can only satisfy this condition if it contains OBSTb1, OBSTb1a or OBSTb1b.
However, if G1 contains one of these graphs, then (79) and (81) imply that both
v1 and v2 have degree two, which is a contradiction.

Let us now consider the case that there is no L-coloring of the path P ′ assign-
ing the color c to vi. Since the path P ′ is induced, this is only possible if i = 1,
or if i = 2 and |L(v1)| = 2. If |L(vi)| = 2, then i = 1 and (83) implies that k = 2
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and G2 is OBSTx1b. However, that is excluded by (89). Therefore, |L(vi)| = 3.
There exist two L-colorings ψ1 and ψ2 of P ′ such that ψ1(vi) 6= ψ2(vi), and by
the minimality of G, both of them extend to L-colorings ϕ1 and ϕ2 of G1. Fur-
thermore, neither ϕ1 nor ϕ2 extends to an L-coloring of G2. The inspection of
the graphs in Figure 10.1 shows that this is only possible if G2 is OBSTa1 or
OBSTx1c, or if k = 3 and G2 is OBSTa2 or OBSTx2a. The case that G2 is
OBSTx2a is excluded by (89). Let us discuss the rest of the cases separately:

• If G2 is OBSTa1, then there exists a color c1 ∈ L(q1) \ {ψ1(q0)} such that
every coloring of Q that assigns ψ1(q0) to q0 and c1 to q1 extends to an
L-coloring of G2. By (83), no neighbor of q1 has list of size two. Let
L′ be the list assignment such that L′(vj) = {ψ1(vj)} for 1 ≤ j ≤ i,
L′(q1) = {ψ1(q0), c1} and L′(x) = L(x) otherwise. Note that G1 is not L′-
colorable, thus it violates (Q) or (OBSTb). If (OBSTb) is violated, i.e., G1

contains OBSTb1 or OBSTb2, then G contains a (≤3)-chord contradicting
the choice of Q, thus suppose that (Q) is false. Then, (83) implies that i = 2
and q1 is adjacent to p1. However, then consider the path Q′ = p0p1q1q2
(or Q′ = p0p1q1q2q3 if k = 3). Similarly to (85), we conclude that p0 and
q2 have a common neighbor with list of size two, and since q2 has degree
at least three, this common neighbor is not equal to q3. However, then G
contains OBSTa5.

• If G2 is OBSTx1c, then by (89), q0 has degree two in G2. Since neither
ϕ1 nor ϕ2 extends to an L-coloring of G2, this implies that Q is a 3-chord.
Note that there exists an L-coloring ϕ of the path pmv1 . . . vi+2 such that
ϕ(vi+2) 6∈ L(q3). Let L′ be the list assignment such that L′(vj) = {ϕ(vj)}
for 1 ≤ j ≤ i+1, L′(vi+2) = {ϕ(vi+1), ϕ(vi+2)} and L′(x) = L(x) otherwise.
The graph G′ = G− vi+2q3 is not L′-colorable, thus it contains a subgraph
H violating (OBSTb). By (83), if i = 2 then G′ does not contain OBSTb1
or OBSTb2, hence vi+1, vi+2 ∈ V (H). By (79), we conclude that vi has
degree at least three in H, and by the choice of Q, we have q3 ∈ V (H).
By (79) and (83), we have G′ = H. If H is OBSTb3, then G is OBSTx4.
Otherwise, G contains a subgraph H ′ depicted in Figure 10.5. Observe that
every L-coloring of G−V (H ′) extends to an L-coloring of G, contradicting
the minimality of G.

• If G2 is OBSTa2, then let w1 and w2 be the neighbors of vi and vi+2,
respectively, that are incident with the triangle T of the configuration. Since
neither ϕ1 nor ϕ2 extends to an L-coloring of G2, we have L(w1) = L(w2).
Let ϕ be a coloring of the path pmv1 . . . vi+2 such that ϕ(vi) 6= ϕ(vi+2). Let
G′ be the graph obtained from G−(V (T )∪{vi+1}) by adding the edge vivi+2,
and L′ the list assignment such that L′(vj) = {ϕ(vj)} for 1 ≤ j ≤ i + 2
and L′(x) = L(x) otherwise. Note that G′ is not L′-colorable. By (79),
no (≤ 4)-cycle in G′ contains the edge vivi+2, thus the minimality of G
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q1
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q3

Figure 10.5: A configuration from claim (92).

implies that G′ violates (Q) or (OBSTb). If G′ violates (Q), then q3 is
adjacent to p0, and since q1 has degree at least three, (79) applied to the
cycle p0p1 . . . q0q1q2q3 shows that i = 2 and q1 is adjacent to p1. It follows
that G contains OBSTa4. Suppose now that G′ contains a subgraph H
violating (OBSTb). Observe that vi+3 belongs to H; and, the inspection of
the graphs in Figure 10.2 shows that vi+3 has degree two in H. However,
since Q is a 3-chord, vi+3 = q3 has degree at least three in G, contradicting
(79) or (83).

Let k be the index such that vk ∈ X and vk+1 6∈ X. We now show that G
contains one of several subgraphs near to P ; see Figure 10.6 for cases (A4) and
(A5).

(93) One of the following holds:

(A1) |X| = 3 and v2v3v4 is a part of the boundary walk of a 5-face, or

(A2) a vertex of X is incident with a triangle, or

(A3) an edge of the path pmv1v2 . . . vk is incident with a 4-face, or

(A4) |X| = 3 and there exists a path w1w2w3w4w5 in G− (X ∪ V (P )) such that
w2w4, v2w1, v3w3, v4w5 ∈ E(G), or

(A5) |L(v1)| = |L(v3)| = |L(v6)| = 2 and there exist adjacent vertices z1, z2 ∈
V (G) \ (X ∪ V (P )) such that z1v2, z2v4, z2v5 ∈ E(G).

Proof. Assume for a contradiction that X satisfies none of these conditions. Since
no vertex of X is incident with a triangle, (81) implies that the subgraph R
induced by V (P )∪ {v1, . . . , vk} is either a path or equal to the cycle C. Observe
that there exists an L-coloring ψ of R such that

• if v1 ∈ X, then ψ(v1) 6∈ L(pm), and
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Figure 10.6: Configurations from claims (93) and (95)
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• if v1 6∈ X and |L(v1)| = 2, then ψ(v2) is different from the unique color in
L(v1) \ L(pm), and

• if |L(vk+1)| = 2, then ψ(vk) ∈ L(vk) \ L(vk+1).

Let G′ = G−X and let L′ be the list assignment obtained from L by removing
the colors of vertices of X from the lists of their neighbors, with the following
exception: if v1 6∈ X and |L(v1)| = 2, then L′(v1) = L(v1) (note that still, an
L′-coloring of G′ corresponds to an L-coloring of G, since ψ(v2) does not belong
to L(v1) \ L(pm)). By (81), no neighbor of a vertex of X other than v1 and
vk+1 has list of size less than three in L; furthermore, since (A2) and (A3) are
false, no vertex of G′ has two neighbors in X. It follows that G′ satisfies (S2).
By (81) and (84), no vertex of V (G) \ V (P ) has two neighbors in P , thus (Q)
holds. Let us now show that (I) holds: otherwise, there would exist adjacent
vertices w1, w2 ∈ V (G′) such that |L′(w1)| = |L′(w2)| = 2. We may assume that
|L(w1)| = 3, and thus w1 has a neighbor in X. If |L(w2)| = 3, then w2 has a
neighbor in X as well, and by (79), it follows that (A1), (A2) or (A3) holds. If
|L(w2)| = 2 and w1 6∈ V (C), then (92) is contradicted, unless (A2) holds. If
w1 ∈ V (C), then since (A2) is false, (92) implies that w1 ∈ {v1, vk+1}. If w1 = v1,
then the chord w1w2 contradicts (81), hence w1 = vk+1 and w2 = vk+2. However,
the set X was chosen so that if |L(vk+1)| = 3, then |L(vk+2)| = 3, which is a
contradiction.

Suppose now that (T) is violated, that is, there exists a path w1w2w3w4w5 in
G′ such that |L′(w1)| = |L′(w3)| = |L′(w5)| = 2 and w2w4 ∈ E(G). If |L(w3)| = 2,
then by (T) and symmetry, we may assume that |L(w1)| = 3, and hence w1 has
a neighbor x ∈ X. If w1 6∈ {v1, vk+1}, then (92) implies that a subpath of
xw1w2w3 splits off a face F , and since |L(w3)| = 2, we have `(F ) ≤ 4. However,
d(F,w2w3w4) < B, which is a contradiction. If w1 = v1, then by (83), a subpath
of w1w2w3 splits off a triangle T or OBSTx1. However, then (A2) holds. It follows
that w1 = vk+1. If |L(w5)| = 3, by symmetry we have w5 = vk+1 = w1, which
is a contradiction. Therefore, |L(w5)| = 2 and by (83), w3w4w5 is a subpath of
C. Since the triangle w2w3w4 is outside of the subgraph split off by w1w2w3,
we also conclude that w1w2w3 ⊂ C, thus wj = vk+j for 1 ≤ j ≤ 5. However,
then k ≤ 3, since both vk+1 and vk+2 have a list of size three, and |L(vk+5)| = 2
and vk+3 is a vertex of degree two incident with a triangle, contradicting (89).
Thus, |L(w3)| = 3 and w3 has a neighbor y ∈ X. If |L(w1)| = |L(w5)| = 3,
then each of them has a neighbor in X, and thus (A4) holds. Therefore, assume
that say |L(w1)| = 2. If w3 6∈ {v1, vk+1}, then by (92) a subpath of yw3w2w1

splits off a face of length at most four whose distance from w2w3w4 is less than
B, which is a contradiction. Similarly, (83) shows that w1w2w3 ⊂ C, hence
wj = vk+4−j for 1 ≤ j ≤ 3. If |L(w5)| = 2, a symmetrical argument would show
that w5 = vk+3 = w1, thus we have |L(w5)| = 3 and w5 has a neighbor in X. By
the choice of X, it follows that (A5) holds.
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Therefore, G′ satisfies (S1), (S2), (S3), (I), (Q) and (T), and by the minimality
of G, we conclude that G′ violates (OBSTa) or (OBSTb). Thus G contains a near-
obstruction H, and by (86), there exists a vertex v ∈ V (H) \ V (C) such that
|L′(v)| = 2. By (87), v is not adjacent to an endvertex of P , hence either m = 2
and H is OBSTx1, or m = 5 and H is OBSTb1 or OBSTb2, with a vertex
p ∈ {p0, pm} not contained in H. Let vt be the neighbor of v in X.

Suppose first that m = 2. Let q0q1q2q3 be the subpath of the outer face of
H, where q0q2 ∈ E(G) and q3 = v. If p = p0, then H is drawn inside the closed
disk bounded by K = p2p1vvtvt−1 . . . v1. Then, (79) implies that t ≥ 3. Since
at most one of v2 and v3 has degree two, only the vertices q0, q1 and q2 are
contained in the open disk bounded by K. Since at most one of v1 and v2 has
degree two, v2 is adjacent to a vertex of the triangle q0q1q2. Considering the path
Q = p0p1vvt, as in (85) we conclude that Q splits off a face and p0 and vt have a
common neighbor with list of size two. However, such a graph G is L-colorable.
Hence, suppose that p = p2 and observe that t = 2 and v2 has list of size three.
Therefore, v2 has degree at least three, and q1, q2, q3 6∈ V (C) by (85). It follows
that |L(q1)| = 3 and q1 is adjacent to a vertex x ∈ X. Note that x and p0 have
a common neighbor with list of size two by (85) applied to xq1q0p0. But, such a
graph G is L-colorable.

Let us now consider the case that m = 5. By (88) and symmetry (we will
no longer use any properties of the set X), we may assume that p = p5 and v
is adjacent to v2 and p4. Let K be the cycle bounding the outer face of H and
Q = K − (V (P ) ∪ {v1}) = q0q1 . . ., where q0 is adjacent to p0. By (87), we have
q0 ∈ V (C). Let G1 = G− (V (H) \ V (Q)).

If H is OBSTb1, then note that v2 has degree at least three, thus by (85) q0
and v2 have a common neighbor with list of size two. However, then G contains
OBSTb2b. Therefore, H is isomorphic to OBSTb2. There exists an L-coloring
ϕ of H such that ϕ(q1) 6∈ L(q0) \ L(p0). Let L1 be the list assignment defined
by L1(x) = ϕ(x) for x ∈ V (Q) \ {q0}, L1(q0) = (L(q0) \ L(p0)) ∪ {ϕ(q1)} and
L1(x) = L(x) otherwise; G1 cannot be L1-colorable. Since a path Q−q0 of length
4 is precolored in G1 and d(Q − q0) ≥ d(P ) − 3 ≥ r(P ) − 3 = r(Q − q0), the
minimality of G implies that G1 violates (Q) or (OBSTb). In the former case,
as q2 cannot be a vertex of degree two with a list of size three, (83) implies that
G consists of H and a vertex with list of size two adjacent to q2 and v2, and
it is L-colorable. Similarly, in the latter case, G1 must be OBSTb2 and G is
L-colorable. This is a contradiction.

Let H be one of the obstructions from Figure 10.1 or 10.2. A set U ⊆
V (H) has lists determined by the rest of H if whenever L1 and L2 are two list
assignments to H such that

• the size of the list of each vertex is given by Figure 10.1 or 10.2,

• L1(x) = L2(x) for each x 6∈ U ,
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• vertices with list of size one give a proper coloring of the path induced by
them, and

• H is neither L1-colorable nor L2-colorable,

then L1 = L2. That is, the list assignment that does not extend to H is uniquely
determined once it is known on all the vertices except for those in U . We call
H k-determined if every subset U of vertices of H of size at most k consisting
only of vertices with list of size two has lists determined by the rest of H. A
straightforward case analysis shows the following.

(94) All graphs in Figures 10.1 and 10.2 are 1-determined. All except OBSTa2,
OBSTx1c, OBSTx2b, OBSTb1, OBSTb1a, OBSTb3, OBSTb5 and OBSTb6 are
2-determined.

Let us now further discuss the subcase (A1) of (93); see Figure 10.6 for cases
(B3) and (B4).

(95) If |X| = 3 and v2v3v4z2z1 is a 5-face, then there exists

(B1) a triangle incident with v2, v4, z1 or z2, or

(B2) a 4-face incident with z1 or z2, or

(B3) adjacent vertices w1, w2 ∈ G − (X ∪ {z1, z2}) such that w1z2, w2v5, w2v6 ∈
E(G), and furthermore, |L(v7)| = 2, or

(B4) a path w1w2w3w4w5 in G − (X ∪ {z1, z2}) such that w2w4 ∈ E(G), and
either v2w1, z1w3, z2w5 ∈ E(G) or z1w1, z2w3, v4w5 ∈ E(G) (possibly with
w1 = v1 in the former case or w5 = z5 in the latter case).

Proof. Suppose that none of these conditions is satisfied. Since v2 and v4 have
list of size three, they must have degree at least three in G, and thus (92) implies
that z1, z2 6∈ V (C), unless (B1) holds. Let ϕ be the coloring of X, G′ = G −
X and L′ the list assignment to G′ as chosen in the proof of (93). Note that
|L′(z1)|, |L′(z2)| ≥ 2. As in the proof of (93), we conclude that G′ − {z1, z2} is
L′-colorable.

There exist at least two L′-colorings ϕ1 and ϕ2 of the path z1z2 such that
ϕ1(z1) 6= ϕ2(z1) and ϕ1(z2) 6= ϕ2(z2). For i ∈ {1, 2}, let Li be the list assignment
obtained from L′ by removing the colors of z1 and z2 according to ϕi from the
lists of their neighbors. Then (92) implies that Li satisfies (S2), and by (84), (Q)
holds as well.

Let G′′ be the graph obtained from G′ − {z1, z2} by repeatedly removing the
vertices whose degree is less than the size of their list both in L1 and in L2. Note
that G′′ is Li-colorable if and only if G is L-colorable, for i ∈ {1, 2}. Let us
argue that (I) is satisfied in G′′. Unless (B1) or (B2) holds, (92) implies that no
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neighbor of z1 and z2 other than v2 and v4 lies in C, and furthermore, there exists
no path wxy, where w ∈ {z1, z2}, x 6∈ {v2, v4, z1, z2} and |L(y)| = 2. Thus, (I)
holds unless there exists a path wxyv with w ∈ {z1, z2}, v ∈ {v2, v4, z1, z2} and
x, y ∈ V (G) \ (V (C) ∪ {z1, z2}. Since (B1) and (B2) are false, we have w = z1
and v = v4 or w = z2 and v = v2. However, then (79) implies that z1 or z2 has
degree two, which is a contradiction.

Let us now consider the condition (T) for G′′. Suppose that there exists a
path w1w2w3w4w5 with w2w4 ∈ E(G) and |Li(w1)| = |Li(w3)| = |Li(w5)| = 2
for some i ∈ {1, 2}. If |L(w3)| = 2, then by (T) and symmetry, we may assume
that |L(w1)| = 3, and thus w1 6∈ {v1, v5} and by (92), w1 6∈ V (C). Consider the
(≤ 5)-chord Q contained in X ∪ {z1, z2, w1, w2, w3, w4} such that the subgraph
F of G that is split off by Q contains neither P nor the triangle w2w3w4. We
have d(Q) ≥ B − 3 ≥ r(Q) in F , since the triangle w2w3w4 intersects Q. By
the minimality of G and the choice of Q, we conclude that F violates (S3), (Q)
or (OBSTb) (with the list assignment matching L on V (F ) \ V (Q) and an L-
coloring of the rest of the graph on Q). If F violates (OBSTb), then by (79) and
(83), F is isomorphic to one of the graphs in Figure 10.2. Since |L(w3)| = 2,
this is only possible if `(Q) = 5 and w5 ∈ V (F ) \ V (Q). However, note that
v5 has degree two in F and thus it has degree one in G − X. It follows that
v5 6∈ V (G′′), and similarly we conclude that (V (F ) \ V (Q)) ∩ V (G′′) = ∅. This
implies that w5 6∈ V (G′′), which is a contradiction. If F violates (S3) or (Q), then
(79) and (83) imply that Q splits off a face. In particular, we have v4 ∈ V (Q).
If (S3) fails, then we have that v5 = w3 and that w1 is adjacent to z2. Since
w1 has degree at least three, (79) implies that w5 is not adjacent to v2, z1 or
z2; therefore, |L(w5)| = 2, and by (83) we have w5 = v7 and G satisfies (B3).
If (Q) fails, then note that v5 has degree one in G − X, hence v5 6∈ V (G′′) and
consequently, v5 6= w5. It follows that v5 is adjacent to w2, and by (T), we have
|L(w5)| = 3. However, by symmetry of the path w1w2w3w4w5, we conclude that
v5 is also adjacent to w4, which is a contradiction since v5 6= w3.

Suppose now that |L(w3)| = 3 and w3 has a neighbor in X ∪ {z1, z2}. If
|L(wi)| = 3 or wi ∈ {v1, v5} holds for each i ∈ {1, 5}, then since both z1 and z2
have degree at least three, (79) implies that (B4) holds. Therefore, by symmetry
we may assume that |L(w1)| = 2 and w1 6∈ {v1, v5}. Again, we consider the (≤5)-
chord Q contained in X ∪{z1, z2, w1, w2, w3, w4} and the subgraph F of G that is
split off by Q containing neither P nor the triangle w2w3w4. As in the previous
paragraph, we conclude that F is a face and violates (S3) or (Q). If |L(w5)| = 2,
then by symmetry we can assume that w5 ∈ V (F ), and thus w5 = v5. However,
in that case w5 6∈ V (G′′), which is a contradiction. Therefore, |L(w5)| = 3 and
w5 6∈ V (F ). Since z1 has degree at least three, w5 is adjacent to z1 by (79).
However, v5 is adjacent to w2, and the path v5w2w3w4w5 satisfies (B4).

It follows that G′′ satisfies (T). Let us now show that G′′ is L1-colorable or
L2-colorable, thus obtaining an L-coloring of G and a contradiction. Suppose
first that neither z1 nor z2 have a neighbor in P . Then both L1 and L2 satisfy
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(S3). We conclude that G′′ violates (OBSTa) or (OBSTb). Thus, G contains a
(unique) near-obstruction H. The case that |Li(v)| = |L′(v)| for every v ∈ V (G)
is excluded similarly to (93), thus H has at least one vertex u1 such that say
|L′(u1)| = 3 and |Li(u1)| = 2. Let K be the outer face of H, and let q0q1 . . . qt =
K − V (P ), where q0 is the neighbor of p0 (or of p1, if H is OBSTb1, OBSTb2 or
OBSTx1 and p0 6∈ V (H)).

The vertex u1 cannot be adjacent to both z1 and z2, thus L1(u1) 6= L2(u1).
Since H is neither L1-colorable nor L2-colorable and H is 1-determined by (94), it
follows that H contains another vertex u2 such that |L′(u2)| = 3 and |Li(u2)| = 2.
Suppose that u1 and u2 are both adjacent to z1 or both adjacent to z2. Since
(B1) and (B2) are false, the distance between u1 and u2 must be at least three.
Furthermore, we may assume that no other vertex between u1 and u2 in K−V (P )
has list of size two. This is only possible if H is OBSTa1, OBSTa5, OBSTx2a,
or OBSTx3. Note that H is not OBSTa1, OBSTa5 or OBSTx3, since OBSTa1 is
2-determined and OBSTa5 and OBSTx3 are 4-determined. Therefore, either H
is OBSTx2a or we may assume that u1 is adjacent to z1, u2 is adjacent to z2, and
that Li(x) = L′(x) for i ∈ {1, 2} and x ∈ V (H) \ {u1, u2}. In the latter case, we
conclude that H is not 2-determined. By (94), H is one of OBSTa2, OBSTx1c,
OBSTx2b, OBSTb1, OBSTb1a, OBSTb3, OBSTb5 or OBSTb6.

Let us make one more useful observation: suppose that `(P ) = 2, q0 is adjacent
to p0 and |L1(q0)| = 2. If |L′(q0)| = 3, then consider the subgraph G2 of G
that is split off by the path Q = p0q0zv, where z ∈ {z1, z2} and v ∈ {v2, v4}.
By the minimality of G, there exists an L-coloring of this path that does not
extend to G2. Since H contains a triangle whose distance to Q is at most 3,
we conclude that G2 violates (Q), and thus v5 is adjacent to p0. However, then
`(C) ≤ 8, contradicting (82). Therefore, |L′(q0)| = 2, and by (92), if (B1) and
(B2) are false, then |L(q0)| = 2. Since u1 and u2 exist, in this situation H
has at least three vertices with list of size two. This implies that H is neither
OBSTa2 not OBSTx1c. It also implies that H is not OBSTx2a, since OBSTx2a
is 2-determined.

Let us consider other obstructions separately:

• H is OBSTx2b: If p0 has degree two in H, then by the observation we have
|L(q0)| = 2, and thus H is a tame near-obstruction, contradicting (86).
Thus, p0 has degree three in H. Furthermore, (86) implies that q5 6∈ V (C),
and thus q5 is adjacent to z1 and q3 is adjacent to z2. If |L(q1)| = 2, then
by (85) applied to (a subpath of) v4z2q3q2q1, v5 is adjacent to q2 (possibly
v5 = z1). However, by (79) and (83) G does not contain any other vertices,
and such a graph is L-colorable. Thus, |L(q1)| = 3 and q1 is adjacent to v4.
By (85) for p0q0q1v4, we conclude that v5 is adjacent to p0, contradicting
(82).

• H is OBSTb1 or OBSTb1a: If p0 ∈ V (H), then by (85) for the path
v4z2u2p0, we have that v5 is adjacent to p0. However, then G contains no
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other vertices and is L-colorable. Thus, p0 6∈ V (H) and H is OBSTb1. In
this case, we similarly conclude that the path p0p1u2z2v4 splits off a face,
OBSTb1 or OBSTb2. In all these cases, G is L-colorable.

• H is OBSTb3: This is excluded by (84).

• H is OBSTb5: Suppose that u2 = q0. Then u1 = q2 and q4 = v1, and by
(85) applied to v4z2q0p0, we conclude that v5 is adjacent to p0. However,
such a graph is L-colorable. So, u2 = q2 and u1 = q4. If |L(q0)| = 3, then q0
would be adjacent to v4, contradicting (92). Thus, |L(q0)| = 2. Consider the
path q0q1q2z2v4. By (85), v5 is adjacent to q1 (possibly v5 = q0). However,
then G is L-colorable.

• H is OBSTb6: Let us note that only one two-element subset of vertices
of H with list of size two does not have lists determined by the rest of
H—the one consisting of the two rightmost square vertices in the depiction
of OBSTb6 in Figure 10.2). So, we may assume that p3 has degree 4 in
H, u2 = q4 and u1 = q6, and |L(q0)| = 2. If v4 is adjacent to q2, then
considering the subgraph split off by the path q0q1q2v4, we conclude that
v5 = q2 and |L(q2)| = 2. If v4 is not adjacent to q2, then |L(q2)| = 2 as well.
By (85) applied to q2q3q4z2v4, we have that v5 is adjacent to q3. And again,
we conclude that G is L-colorable.

Let us now consider the case that z1 or z2 is adjacent to a vertex of P . By
(92), this vertex must be an internal vertex of P . If exactly one of z1 and z2
has a neighbor in P , then by (84) at least one of L1 and L2, say L1, satisfies
(S3). It follows that G′′ with the list assignment L1 must violate (OBSTa) or
(OBSTb), and contains a near-obstruction H. However, since one of z1 and z2
has an internal vertex p ∈ P as a neighbor, p is a cut-vertex in G′′, thus this
is only possible if p ∈ {p1, pm−1} and either `(P ) = 2 and H is OBSTx1, or
`(P ) = 5 and H is OBSTb1 or OBSTb2. Suppose that there exists a vertex
v ∈ V (H) adjacent to p such that |L1(v)| = 2. By (81), v is adjacent to v2, v4,
z1 or z2. Since z1 or z2 is adjacent to p and neither z1 nor z2 is incident with a
(≤ 4)-cycle, (79) implies that z1 or z2 has degree two. This is a contradiction.
It follows that no vertex with list of size two is adjacent to p, hence `(P ) = 2.
By (86), the two vertices of H with list of size two are adjacent to z2 and v4,
respectively. However, then p0 and v4 are joined by a 2-chord contradicting (92).

Finally, suppose that both z1 and z2 have a neighbor in P . Since neither
(B1) nor (B2) holds, the neighbors of z1 and z2 are internal vertices of P by
(92), and `(P ) ≥ 4. Let pi be the neighbor of z1 and pj the neighbor of z2.
Suppose that i < m− 1 or j < m− 3. By (79), P contains two adjacent vertices
of degree two that are not contained in any (≤ 5)-cycle. In that case, contract
these two vertices into one (and change its color so that it is consistent with
the colors of its neighbors). The resulting graph is a smaller counterexample to
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Theorem 102, which is a contradiction. Therefore, i = m − 1 and j = m − 3.
Let Q = p0p1 . . . pm−3z2v4, and let ϕ be an L-coloring of the subgraph of G
induced by V (P ) ∪ X ∪ {v1, z1, z2} that exists by the minimality of G. Let
G3 = G − (V (P ) \ V (Q)) − {v1, v2, v3, z1}. Let L3 be the list coloring such that
L3(x) = ϕ(x) for x ∈ V (Q) and L3(x) = L(x) otherwise. The graph G3 is
not L3-colorable, thus it violates (Q) or contains OBSTb1 or OBSTb2. If G3

violates (Q), then (92) implies that v5 is adjacent to p0 and G contains OBSTb2
or OBSTb2a. If G3 contains OBSTb1, then G contains OBSTb6. Otherwise, G
is L-colorable.

Let T be the 4-cycle in distance at most one or a triangle in distance at most
two from X, which exists by (93) and (95). Since d(P, T ) ≤ 4, we have `(P ) = 2.

Suppose that (A3) happens, i.e., T is a 4-cycle sharing an edge with the path
p2v1 . . . vk. Let vivi+1 be such an edge with i minimal and let ϕ be an L-coloring
of the path p2v1 . . . vi. Let G′ be the graph obtained from G − vivi+1 by adding
a vertex v adjacent to vi and vi+1. Let c be a color that does not appear in the
lists of vi and vi+1. Let L′ be a list assignment such that L′(x) = {ϕ(x)} for x ∈
{v1, . . . , vi}, L′(v) = {c} if |L(vi+1)| = 2 and L′(v) = {ϕ(vi), c} if |L(vi+1)| = 3,
L′(vi+1) = (L(vi+1)\{ϕ(vi)})∪{c} and L′(x) = L(x) for other vertices x ∈ V (G′).
Note that G′ is not L′-colorable. Furthermore, by the choice of X, if k = 4 then
|L(vk)| = 4, hence a path R of length at most 5 is precolored in P . Furthermore,
since T contains the edge vivi+1, we have d(R) ≥ B − 5 ≥ r(R). By (81) and
(92), R is an induced path and no vertex with list of size two other than vs,
vi+1 and v is adjacent to it, and since `(C) ≥ 9, it follows that (S3) and (Q)
are satisfied. Since T is a 4-cycle, v cannot be in distance at most one from a
triangle in G′, thus (T) holds as well. By the minimality of G, we conclude that
G′ violates (OBSTb); let H be the minimal non-L′-colorable subgraph of G′. We
have `(R) ≥ 4, and consequently, i ≥ 1. If i = 1, then we also have |L′(v)| = 1,
|L(v2)| = 2 and |L(v1)| = 3; let w = v1. If i ≥ 2, then choose w ∈ {v1, v2} such
that |L(w)| = 3. Such a vertex w has degree at least three in G, and thus it has
degree at least three in H (even if w is an endvertex of the precolored path of
H, since then w has a neighbor x with list of size two in H, and the edge wx
belongs to C by (92)). There exist L-colorings ϕ1 and ϕ2 of the path p2v1 . . . vi
such that ϕ1(w) 6= ϕ2(w); let L′1 and L′2 be the corresponding list assignments
to G′. Since G′ is neither L′1-colorable nor L′2-colorable, the inspection of the
graphs in Figure 10.2 shows that H is OBSTb1, OBSTb1a, OBSTb1b, OBSTb3
or OBSTb5. Since the edge vi−1vi is not incident with T , the vertex vi has degree
at least three in G, and hence also in H; therefore, H is OBSTb3 and |L′(v)| = 1.
However, (79) and (83) imply that V (G) = V (H) \ {v}, contradicting (82). We
conclude that (A3) is false.

Now, suppose that (B2) happens. If v4 ∈ V (T ), then let Y = {v3, v4}. If v4 6∈
V (T ) and z2 ∈ V (T ), then let Y = {v3, v4, z2}; otherwise let Y = {v3, v4, z2, z1}.
Note that if z1 ∈ Y , then z2 is not incident with a 4-cycle, and since (A3) is
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false, at most one of z1 and z2 has a neighbor in P . Thus, there exists an L-
coloring ψ of the subgraph G0 of G induced by Y ∪ V (P )∪ {z1, v1, v2} such that
ψ(v4) 6∈ L(v5). Let G′ = G − Y and let L′ be the list assignment such that
L′(x) = {ψ(x)} for x ∈ {v1, v2}, L′(x) = L(x) \ {ψ(y)} if x ∈ V (G′) \ {v1, v2} has
a neighbor y ∈ Y , and L′(x) = L(x) otherwise. The graph G′ is not L′-colorable.
Since z2 has degree at least three, (79) and (92) together with the choice of Y
imply that G′ satisfies (I) and (S2). Obviously, (T) is satisfied as well. Suppose
that a vertex v with |L′(v)| = 2 has two neighbors in p0p1p2v1v2. By (81), we
have |L(v)| = 3, hence v is adjacent to a vertex in Y . Suppose that v 6= z1.
Since (A3) is false, v is not adjacent to z1; but then (79) implies that z1 has
degree two, which is a contradiction. Therefore, v = z1, and since ψ assigns a
color to z1, G

′ satisfies (Q). Hence, G′ violates (OBSTb); let H be the subgraph
of G′ isomorphic to OBSTb1 or OBSTb2. Note that v2 is adjacent to a vertex
x such that |L′(x)| = 2. Since z1 has degree at least three, (79) implies that
x = z1, and thus Y = {v3, v4, z2}. Furthermore, note that neither z1 nor z2 has a
neighbor in P , thus there exists an L-coloring ψ′ of the subgraph of G0 such that
ψ′(y) = ψ(y) for y ∈ {v1, v2, v3, v4} and ψ′(z2) 6= ψ(z2). Since both OBSTb1 and
OBSTb2 are 1-determined, z2 has a neighbor in H different from z1. Furthermore,
H is not OBSTb2, since OBSTb2 is 2-determined and z2 cannot have more than
two neighbors in H whose list according to L′ has size two. However, if H is
OBSTb1, then p0 and v4 are joined by a 3-chord, and by (85), v5 is a common
neighbor of p0 and v4. This contradicts (82).

Therefore, neither (A3) nor (B2) holds and T is a triangle. Let us consider
the case that (B4) is true.

• Suppose first that v2w1, z1w3, z2w5 ∈ E(G). Note that v1 may be equal to
w1. Let S = L(v2) \ (L(v1) \ L(p2)). If S 6⊆ L(z1), then let L′ be the
list assignment such that L′(v1) = L(v1) \ L(p2), L

′(v2) = S \ L(z1) and
L′(x) = L(x) otherwise. Observe that the graph G − {z1, w3} is not L′-
colorable and that it satisfies the assumptions of Theorem 102 (it satisfies
(OBSTb), since v3 is the only neighbor of v2 with list of size two and v1v2v3
cannot be a subpath of a 5-cycle), contradicting the minimality of G. Thus,
S ⊆ L(z1). If S 6= L(v3), then choose a color c ∈ S \ L(v3); let L′ be the
list assignment obtained from L by removing c from the lists of neighbors
of v2 other than v1. Note that G− v2 is not L′-colorable, and as in (93), we
conclude that G−v2 is a smaller counterexample to Theorem 102, which is a
contradiction. Similarly, we exclude the case that a color c′ ∈ L(v4) \L(v5)
does not belong either to S or to L(z2). Therefore, there exists a color
c′ ∈ S ∩ L(z2). By (79) and (92), z2 is not adjacent to a vertex of P .

Suppose that w1 and w5 do not have a common neighbor. Let G′ be the
graph obtained from G − {w3, z1, v3} by identifying v2 with z2 to a new
vertex v. Let L′ be the list assignment such that L′(v1) = L(v1) \ L(p2),
L′(v) = {c′}, L′(v4) = {c′′} for a color c′′ ∈ L(v4) \ {c′} such that L(v3) 6=
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v1 = w1

(a)

v2 v3 v4

w2 w3

w4 w5

v1

(b)

v2 v3 v4

w1

w2

w3

w4

v5 = w5

Figure 10.7: Configuration in case that (B4) holds.

{c′, c′′} and L′(x) = L(x) otherwise. Note that t(G′) ≥ B, since both v2
and z2 are in distance at least B − 2 in G from any (≤ 4)-cycle different
from T . Since w1 and w5 do not have a common neighbor, (79) implies that
v is not contained in any (≤4)-cycle in G′. Since G′ is not L′-colorable, we
conclude that it violates (OBSTb). Let H be the subgraph of G′ isomorphic
to one of the graphs in Figure 10.2. By (81), p1 is not adjacent to a vertex
with list of size two, hence v4 belongs to H. Note that v has degree at least
three in H, as otherwise G contains a cycle K of length at most 7 such
that v1v2v3v4 ⊂ K and the open disk bounded by K contains z1, z2 and w3,
contradicting (79). The inspection of the graphs in Figure 10.2 shows that
v has degree exactly three and that both internal faces incident with v in
H have length five. Similarly, (79) implies that vw5 ∈ E(H) and w1 = v1.
But then v1vw5w4w2 is the only 5-cycle in G′ containing the edge v1v, thus
v1w2 ∈ E(H) and v1 has degree at least three in H. This is only possible
if H is OBSTb4. However, then H is the graph in Figure 10.7(a), which is
L-colorable.

So, suppose that w1 and w5 have a common neighbor w, and thus by (79),
w2 and w4 have degree three. By (92), |L(w)| = 3. Let ψ be an L-coloring of
p2v1v2v3v4z2 such that ψ(v4) = c′. Let d be a color in L(z1)\{ψ(v2), ψ(z2)}.
Note that z2 has no neighbor in P by (79). If w1 6= v1, then let d′ be a
color in L(w1) \ {ψ(v2)} such that L(w2) \ {d′} = L(w3) \ {d}, if such a
color exists, and an arbitrary color in L(w1) otherwise. Among the possible
choices of ψ, d and d′, we choose them so that the following additional
conditions hold:

– If w1 is adjacent to p1, then L(w1) 6= L(p2) ∪ {ψ(v2), d
′}.

– If w1 = v1, then either ψ(v1) 6∈ L(w2) or L(w2)\{ψ(v1)} 6= L(w3)\{d}.
– If w1 6= v1, w1 is not adjacent to p1 and p1 has a neighbor z 6∈ V (C),

then L(z) \ L(p1) 6= L(w5) \ {ψ(z2)}.
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Let G′ = G − {w2, w3, w4, z1, z2, v3, v4}, with the list assignment L′ such
that L′(x) = {ψ(x)} for x ∈ {v1, v2}, L′(w1) = L(w1) \ {d′} if w1 6= v1,
L′(x) = L(x) \ {ψ(y)} for every vertex x with a neighbor y ∈ {v4, z2} and
L′(x) = L(x) otherwise. The graph G′ is not L′-colorable. If w1 had a
common neighbor with v4 or z2, then (79) would imply that w has degree
two; hence (92) implies that G′ satisfies (I). If G′ violated (Q), then (79) and
(92) would imply that w1 is adjacent to p1. But, in that case the choice of ψ,
d and d′ ensures that (Q) holds. Hence, G′ violates (OBSTb) and contains
a subgraph H isomorphic to OBSTb1 or OBSTb2. Then v2 is adjacent to
a vertex with list of size two, and by (79), this vertex is w1; hence, we have
w1 6= v1. Note that there exists a path w1xy in H such that y has list of
size two. By (92), we have |L(y)| = 3, hence y is adjacent to z2 or v4. Since
w has degree at least three, (79) implies x = w and y = w5. If H were
OBSTb1, then w5 would be adjacent to p0, and by (85) applied to v4z2w5p0,
we would have that v5 is adjacent to p0, contradicting (82). It follows that
H is OBSTb2. Note that w1 is not adjacent to p1, thus the unique neighbor
z of p1 in V (H) \ V (C) satisfies L′(z) \ L(p1) 6= L′(w5). However, then H
is L′-colorable, contradicting the assumption that (OBSTb) does not hold.

• Next, consider the case that z1w1, z2w3, v4w5 ∈ E(G). Note that w5 may be
equal to v5. Similarly to the previous case, we conclude that L(v2)\(L(v1)\
L(p2)) = L(v3) ⊆ L(v4), that each color c′ ∈ L(v4) \ L(v5) belongs to both
L(v3) and L(z2) and that L(z1) = L(z2)—otherwise, we can color a subset
Y of X ∪ {z2}, remove the colors of the vertices of Y from the lists of their
neighbors, and obtain a smaller counterexample to Theorem 102.

If L(z2) 6= L(v4), then let ψ be an L-coloring of p2v1v2v3v4 such that ψ(v4) 6∈
L(z2). Let G′ be the graph obtained from G−{v3, z2, w3} by adding the edge
v2v4. Let c be a color that does not appear in any of the lists and L′ the list
assignment such that L′(x) = {ψ(x)} for x ∈ {v1, v2}, L′(v4) = {c}, L′(x) =
(L(x)\{ψ(v4)})∪{c} for all other vertices x adjacent to v4, and L′(x) = L(x)
otherwise. Note that G′ is not L′-colorable. Also, by (79), the edge v2v4
is not incident with a (≤ 4)-cycle, and thus t(G′) ≥ B. Furthermore, the
distance from v2 to T in G is three, thus r(p0p1p2v1v2v4) ≥ B − 7 ≥ r(5).
Since v2 is not incident with a vertex with list of size two and every cycle
containing the edge v2v4 has length at least seven, G′ satisfies (OBSTb)
and contradicts the minimality of G.

Therefore, L(z2) = L(v4). If p1 is adjacent to z1, then let G′ = G −
{p2, v1, v2, v3, v4, z2, w3}. Let ψ be an L-coloring of the subgraph of G in-
duced by {p1, p2, v1, v2, v3, v4, z1, z2, w1, w2} such that ψ(v4) 6∈ L(v5) and
ψ(w2) 6∈ L(w3) \ {ψ(z2)}. Let L′ be the list assignment such that L′(x) =
{ψ(x)} for x ∈ {z1, w1, w2}, L′(x) = L(x) \ {ψ(v4)} if x is a neighbor of
v4 and L′(x) = L(x) otherwise. By (79), neither w1 nor w2 has a com-
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mon neighbor with v4 (since if w5 6= v5, then w5 has degree at least three).
By (92), w1 has no neighbor with list of size two in G′, and since w1 has
degree at least three, (79) implies that G′ satisfies (Q). Since G′ is not L-
colorable, by the minimality of G we conclude that G′ violates (OBSTb).
Because w1 has degree at least three, (79) implies that G′ contains OB-
STb2. Let y be the neighbor of w2 with list of size two and consider the
path Q = v4w5w4w2y. If Q is not a subpath of C, then v4 and w2 have
a common neighbor by (85), implying that w2 has degree two, which is a
contradiction. Therefore, w5 = v5 and Q ⊂ C. However, then there exists
an L-coloring ψ′ of the subgraph of G split off by the 3-chord p1z1w1w2 that
differs from ψ exactly in the colors of w1 and w2, and at least one of ψ and
ψ′ extends to an L-coloring of G. This is a contradiction.

It follows that p1z1 6∈ E(G). Suppose now that w1 and w5 do not have a
common neighbor. Then, let G′ be the graph obtained from G−{v3, z2, w3}
by identifying z1 with v4 to a new vertex v, with the list assignment L′ such
that L′(v) = L(v4)\L(v3), L

′(v1) = L(v1)\L(p2), L
′(v2) ⊆ L(v2)\L′(v1) has

size one and L′(x) = L(x) otherwise. Observe that G′ satisfies t(G′) ≥ B
and that it is not L′-colorable. Also, since p1 is not adjacent to z1, (92)
implies that G′ satisfies (S3). No vertex with list of size two is adjacent
to p1 or v2 and the only vertex with list of size two adjacent to v is v5,
thus G′ satisfies (Q). We conclude that G′ violates (OBSTb); let H be the
subgraph of G′ isomorphic to one of the graphs drawn in Figure 10.2. By
(92), v2 has degree two in H. If v had degree two, then v1v2v3v4 would be a
subpath of a cycle K of length at most seven in G, such that the open disk
bounded by K contains z1, z2 and w3. This contradicts (79), hence v has
degree three in H and H is OBSTb4. Let x be the common neighbor of p2
and v in H. By (92), x is adjacent to z1 in G. In H, there exists a path
xyzv5, and by (79) we have x = w1, y = w2, z = w4 and v5 = w5. Then G
is the graph depicted in Figure 10.7(b), which is L-colorable.

Therefore, w1 and w5 have a common neighbor w. By (92), |L(w)| = 3,
and by (79), w2 and w4 have degree three. Suppose now that w1 has no
neighbor in P . Then there exists an L-coloring ψ of the subgraph G0

of G induced by V (P ) ∪ {v1, v2, v3, v4, z1, z2, w1} such that ψ(v4) 6∈ L(v5)
and either ψ(w1) 6∈ L(w2) or L(w2) \ {ψ(w1)} 6= L(w3) \ {ψ(z2)}. Let
G′ = G−{v3, v4, z2, w2, w3, w4} with the list assignment L′ such that L′(x) =
{ψ(x)} for x ∈ {v1, v2, z1}, L′(w1) = {ψ(z1), ψ(w1)}, L′(x) = L(x)\{ψ(v4)}
if x is a neighbor of v4 and L′(x) = L(x) otherwise. Note that G′ is
not L′-colorable. By (79) and (92), G′ satisfies (I), and since p1 is not
adjacent to z1, G

′ satisfies (S3). Since w1 has no neighbor in P and v2
has no neighbor with list of size two, G′ also satisfies (Q). We conclude
that (OBSTb) is violated and that G′ contains one of the graphs depicted
in Figure 10.2; let H be such a subgraph. The inspection of such graphs
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shows that if v2 has degree three in H, then it is incident with a path
v2xyz with |L′(z)| = 2, where z 6= w1. By (79), z is not a neighbor of v4,
hence |L(z)| = 2. However, that contradicts (92). Therefore, v2 has degree
two in H. Similarly, we conclude that v1 has degree two in H, thus H is
OBSTb1a, OBSTb1b or OBSTb4. Note that there exists an L-coloring ψ′

of G0 such that ψ′ matches ψ on v1, v2, v3 and v4, either ψ′(w1) 6∈ L(w2) or
L(w2) \ {ψ′(w1)} 6= L(w3) \ {ψ′(z2)}, and ψ′(z1) 6= ψ(z2) (ψ′ may or may
not differ from ψ on w1). Note that ψ′ does not extend to a coloring of H;
that is only possible if H is OBSTb1a and ψ(w1) = ψ′(w1). But then there
exists a path v2z1xyp0 with |L′(y)| = 2. By (92), we have |L(y)| = 3, thus
y is adjacent to v4. However, then v4yp0 is a 2-chord contradicting (92).

Finally, consider the case that w1 has a neighbor pi ∈ V (P ). By (79), z1
has degree three. Observe that there exist colors c1 ∈ L(w1) \ L(pi) and
c2 ∈ L(v2) \ (L(v1) \ L(p2)) such that c1 = c2 or c1 6∈ L(z1) or c2 6∈ L(z1).
Let G′ be the graph obtained from G−{pi+1, . . . , p2, v1, z1, z2, w2, w3, w4} by
identifying w1 with v2 to a new vertex v. By (79), v is not incident with a
(≤4)-cycle, thus t(G′) ≥ B and d(p0 . . . piv) ≥ B−4 > r(3). Let c be a new
color that does not appear in any of the lists and L′ the list assignment such
that L′(v) = {c}, L′(v3) = (L(v3) \ {c2}) ∪ {c}, L′(x) = (L(x) \ {c1}) ∪ {c}
if x is a neighbor of w1 and L′(x) = L(x) otherwise. Observe that G′ is a
counterexample to Theorem 102 smaller than G, which is a contradiction.

Therefore, (B4) is false.
Suppose that (A4) holds. Note that w1 6= v1 and w5 6= v5, since v2 and v4 have

list of size three. Suppose first that there exists an L-coloring ψ of the subgraph
induced by V (P ) ∪ {v1, v2, v3, v4, w1, w2} such that ψ(v4) 6∈ L(v5) and |L(w3) \
{ψ(v3), ψ(w2)}| ≥ 2. Then, let G′ = G − {v3, v4, w3} with the list assignment
L′ such that L′(x) = {ψ(x)} for x ∈ {v1, v2, w1}, L′(w2) = {ψ(w1), ψ(w2)},
L′(x) = L(x) \ {ψ(v4)} if x is a neighbor of v4 and L′(x) = L(x) otherwise. Note
that G′ is not L-colorable, and the choice of ψ ensures that (S3) holds. By (79),
no neighbor of w2 is adjacent to v4, as otherwise w5 would have degree two; thus,
(92) implies that (I) holds. As w1 has degree at least three, (79) implies that w2

is not adjacent to a vertex of P and (Q) holds. Therefore, G′ violates (OBSTb)
and contains a subgraph H isomorphic to one of the graphs drawn in Figure 10.2.
No neighbor of v2 has list of size two, thus w1 belongs to H. If v1 or v2 had degree
greater than two in H, then G would contain a (≤ 3)-chord contradicting (83)
or (92); hence, H is OBSTb1a, OBSTb1b or OBSTb4. Since w1 has degree at
least three, H is not OBSTb1a. If H were OBSTb1b, then G would contain a
(≤ 3)-chord starting in v2 contradicting (92). Finally, if H is OBSTb4, then let
w2yz be the path in the boundary of the outer face of H with |L′(z)| = 2. If z is
a neighbor of v4, then by (79) we have y = w4 and z = w5; however, then there
exists a path v4w5y

′z′ in the boundary of the outer face of H with |L(z′)| = 2,
contradicting (92). Otherwise, we have |L(z)| = 2. Consider the subgraph split
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off by v3w3w4w2yz. Since both v3 and z have list of size two and w3 and y have
no common neighbor, this subgraph satisfies the assumptions of Theorem 102,
contradicting the minimality of G.

Suppose now that such a coloring ψ does not exist. (79) and (92) show that
can only happen if w1 is adjacent to p1. Since w5 has degree at least three, (85)
implies that w4 has no neighbor in P . Let ψ′ be an L-coloring of the subgraph
induced by V (P ) ∪ {v1, v2, v3, v4, w1, w2, w3, w4} such that ψ′(v4) 6∈ L(v5), G

′ =
G − {p2, v1, v2, v3, w3}, L′(x) = {ψ′(x)} for x ∈ {w1, w2, w4}, L′(x) = L(x) \
{ψ′(v4)} if x is a neighbor of v4 and L′(x) = L(x) otherwise. By (79) and (92),
w2 is not adjacent to any vertex with list of size two and w5 is the only neighbor
of w4 with list of size two. Furthermore, w5 is not adjacent to p0 by (92), and it is
not adjacent to p1, since (similarly to (85)) we would have that the path p0p1w5v4
splits off a 5-face, implying that v5 is adjacent to p0 and contradicting (82). It
follows that G′ satisfies (Q). Furthermore, G′ satisfies (OBSTb), since by (92) it
does not contain a path v4w5xy with |L(y)| = 2. Therefore, G′ a counterexample
to Theorem 102 smaller than G, which is a contradiction. Therefore, (A4) is
false.

Suppose now that (B3) holds. Let ψ be an L-coloring of the subgraph G0

of G induced by V (P ) ∪ {v1, v2, . . . , v6, w2} such that ψ(v6) 6∈ L(v7) (w2 has no
neighbor in P by (79), thus such a coloring exists). Let L′ be the list assignment
such that L′(x) = {ψ(x)} for x ∈ {v1, v2, v3}, L′(v4) = {ψ(v3), ψ(v4)}, L′(x) =
L(x) \ {ψ(y)} if x has a neighbor y ∈ {w2, v6} and L′(x) = L(x) otherwise. The
graph G′ = G− {v5, v6, w2} is not L′-colorable, and by (79) and (83), it satisfies
(I) and (Q). Furthermore, note that there exists another L-coloring ψ′ of G0 such
that ψ′(v6) = ψ(v6), ψ

′(w2) = ψ(w2), ψ
′(v4) 6= ψ(v4) and ψ′(v2) 6= ψ(v2), thus

we can choose ψ so that (OBSTb) holds, unless G′ contains OBSTb3. By (79)
and (92), we then have that z1 is adjacent to p1 and w1 is adjacent to p0, and
by (85) applied to v6w2w1p0, v7 is adjacent to p0. Nevertheless, such a graph is
L-colorable. Therefore, G′ contradicts the minimality of G. It follows that (B3)
is false as well, hence

(96) G satisfies (A2), (A5) or (B1).

Suppose that there exists a vertex t ∈ V (T ) ∩ (V (P ) ∪ {v1}). Let G′ be the
graph obtained from G by splitting t to two vertices t′ and t′′ and adding a new
vertex v adjacent to t′ and t′′, so that T becomes a 5-face. Let ψ be an L-coloring
of the subgraph of G induced by V (P )∪{t}, c a color that does not appear in any
of the lists, and let L′ be the list assignment such that L′(t′) = L′(t′′) = {ψ(t)},
L(v) = {c} and L′(x) = L(x) otherwise. Note that G′ is not L′-colorable, thus
it must violate (OBSTb); let H be the subgraph of G′ isomorphic to one of the
graphs in Figure 10.2. In H, v has degree two and is incident with a 5-face.
If t ∈ V (P ), then H is OBSTb1 or OBSTb2; but then G contains OBSTx1c
or OBSTa6. Therefore, t = v1. If H is OBSTb1, then G contains OBSTx1; if
H is OBSTb1a, then G contains OBSTx1a; if H is OBSTb1b, then G contains

264



OBSTx1b; if H is OBSTb2b, then G contains OBSTx4; and if H is OBSTb5,
then G contains OBSTx2b. It follows that H is OBSTb4 or OBSTb6. By (79)
and (83), we conclude that G is equal to the graph obtained from H by removing
v and identifying t′ with t′′. However, then G is L-colorable. Therefore,

(97) V (T ) ∩ (V (P ) ∪ {v1}) = ∅.
Let X ′ be the subset of {vs, vs−1, vs−2, vs−3} defined symmetrically to X on the

other side of P . By symmetry and the assumption that t(G) ≥ B, we conclude
that T is also incident with a vertex of X ′ (the case (A2)) or one of the vertices
z′1 or z′2 incident with the 5-face vs−1vs−2vs−3z′2z

′
1 (the cases (B1) and (A5)). Let

b be the first vertex in the sequence v2, v3, z1, z2 and v4 that is incident with T ,
and let b′ be the first such vertex among vs−1, vs−2, z′1, z

′
2 and vs−3. Note that

either b = b′ or b and b′ are adjacent.
Suppose now that V (T ) ⊆ V (C). In this case (A5) does not hold. By (89),

we have b ∈ {v3, v4} and b′ ∈ {vs−2, vs−3}. If b′ = vs−3, then vs−3 ∈ X ′ and by
the choice of X ′, we have |L(vs−2)| = 2. This contradicts (89). Thus b′ = vs−2
and symmetrically, b = v3. By (89), we have |L(v2)| = |L(vs−1)| = 3, and by
(90), |L(v1)| = 2. However, then X = {v1} and b 6∈ X, which is a contradiction.
It follows that

(98) T shares at most two vertices with C.

Suppose that vs−3 ∈ X ′ ∩ V (T ) and vs−2 6∈ V (T ). The choice of X ′ implies
that |L(vs−3)| = 3 and |L(vs−2)| = |L(vs−4)| = 2. If {v2, v3, v4} ∩ V (T ) = ∅, then
b ∈ {z1, z2}; let v ∈ {v2, v4} be the neighbor of b. By (92) applied to vbvs−3, we
conclude that T = vbvs−3, contrary to the assumption that v 6∈ V (T ). It follows
that a vertex of {v2, v3, v4} ∩ V (T ) is equal to either vs−3 or vs−4. By (82), we
have 6 ≤ s ≤ 8. If s = 8, then v4 = vs−4, which is only possible if both X and
X ′ satisfy (A5). Let z1z2z3 be the path such that T = z2v4v5, z1 is adjacent
to v2 and z3 is adjacent to v7. Let ψ be an L-coloring of the subgraph of G
induced by V (P )∪{v1, v2, v3, v6, v7, v8} such that ψ(v3) 6∈ L(v4) or ψ(v6) 6∈ L(v5)
or L(v4) \ {ψ(v3)} 6= L(v5) \ {ψ(v6)}. Let G′ = G − {v3, v4, v5, v6} with the list
assignment L′ such that L′(x) = {ψ(x)} for x ∈ {v1, v8}, L′(v2) = {ψ(v1), ψ(v2)},
L′(v7) = {ψ(v7), ψ(v8)} and L′(x) = L(x) otherwise. Note that G′ is not L′-
colorable, and since v2 and v7 are the only vertices with list of size two, it is
easy to see that it satisfies the assumptions of Theorem 102. This contradicts the
minimality of G.

Therefore, s ≤ 7. By (81) and (98), C has no chords. If t ∈ V (T ) \ V (C)
has a neighbor v ∈ V (C), then vt is an edge of T , as otherwise (79) would imply
that vs−1 or vs−5 (which have lists of size three) has degree two. Note that there
exists at most one vertex with two neighbors in the path p0p1p2v1v2 and another
neighbor in T . If such a vertex v exists, then vs−4 has degree two by (79), hence
V (T ) ∩ V (C) = {vs−3}. Therefore, there exists an L-coloring ψ of the subgraph
of G induced by V (P )∪ V (T )∪ {v1, v2, . . . , vs−4, v} such that ψ(vs−3) 6∈ L(vs−2).
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Let G′ = G − V (T ) and let L′ be the list assignment given by L′(x) = {ψ(x)}
for x ∈ {v1, v2, . . . , vs−5}, L′(vs−4) = {ψ(vs−5), ψ(vs−4)}, L′(x) = L(x) \ {ψ(y)}
if x has a neighbor y ∈ V (T ), and L′(x) = L(x) otherwise. Note that G′ is not
L′-colorable, and by (79) and (92), it satisfies (I). The choice of ψ ensures that
(Q) holds as well. Thus, G′ must violate (OBSTb), and in particular s = 7 and
v3 6∈ V (T ). Let H be the subgraph of G′ isomorphic to OBSTb1 or OBSTb2. By
(79), vs is the only vertex with list of size two adjacent to p0, thus vs ∈ V (H).
Let vsxy be the path in the outer face of H such that |L′(y)| = 2. By (79),
we have x = vs−1 and y = vs−2. hence H is OBSTb2. But then there exists a
path of length three joining v2 with vs−2 and contradicting (92). Therefore, if
vs−3 ∈ X ′∩V (T ), then vs−2 ∈ V (T ), and in particular, b′ 6= vs−3. Symmetrically,

(99) if v4 ∈ X ∩ V (T ), then v3 ∈ V (T ),

and b 6= v4.
If b 6∈ {z1, z2} and b′ 6∈ {z′1, z′2}, then since `(C) > 8, we have b = v3 and

b′ = vs−2 = v4. By symmetry, we may assume that |L(v4)| = 3, and since
v4 ∈ X ′, the choice of X ′ implies that |L(v5)| = 2, |L(v6)| = 3 and |L(v3)| = 2.
Consequently, |L(v2)| = 3 and |L(v1)| = 2. Let ψ be a coloring of the subgraph
of G induced by V (P ) ∪ V (T ) ∪ {v1, v2} such that ψ(v4) 6∈ L(v5); note that (79)
implies that the vertex of V (T ) \ V (C) is not adjacent to a vertex of P , ensuring
that such a coloring exists. Let G′ = G− V (T ) and let L′ be the list assignment
such that L′(v1) = {ψ(v1)}, L′(v2) = {ψ(v1), ψ(v2)}, L′(x) = L(x) \ {ψ(y)} if
x has a neighbor y ∈ V (T ), and L′(x) = L(x) otherwise. The graph G′ is not
L′-colorable, and by (79) and (92), it satisfies (I) and (Q). This contradicts the
minimality of G. Thus, we may assume that say b ∈ {z1, z2}.

If b = z1, then (92) implies that b 6= b′ and b′ ∈ {z′1, z′2}. Let V (T ) = {b, b′, t},
let v′ ∈ {vs−1, vs−3} be the neighbor of b′ and let G2 be the subgraph split
off by v2z1b

′v′. If T 6⊂ G2, then (85) implies that v2 and v′ have a common
neighbor with list of size two, hence v′ = v4 = vs−3 and b′ = z′2. By (79), we
have z′2 = z2. Note that t 6= z′1, since b′ 6= z′1. If t has a neighbor in P , then
since z′1 has degree at least three, (79) implies that tp0, z

′
1p1 ∈ E(G). However,

such a graph is L-colorable. It follows that t has no neighbor in P . Similarly,
z1 and z2 have no neighbors in C other than v2 and v4 and no neighbor of v7
is adjacent to a vertex of T . There exists an L-coloring of the subgraph of G
induced by V (P )∪ V (T )∪ {v1, v2, v3} such that |L(v4) \ {ψ(v3), ψ(z2)}| ≥ 2. Let
G′ = G − (V (T ) ∪ {v3, v4, v5}) with the list assignment L′ such that L′(v1) =
{ψ(v1)}, L′(v2) = {ψ(v1), ψ(v2)}, L′(x) = L(x) \ {ψ(y)} if x has a neighbor
y ∈ V (T ), and L′(x) = L(x) otherwise. Observe that G′ satisfies the assumptions
of Theorem 102 and is not L′-colorable, contradicting the minimality of G.

Let us now consider the case that T ⊆ G2. Since t has degree at least three,
we conclude that the subgraph of G split off by the path v2z1tb

′v′ is OBSTb1,
t = z2 and either z′2 = z2, b

′ = z′1 and s = 7, or b′ = z′2 and s = 9. Suppose that b
or b′ has a neighbor in P . If s = 7, then the resulting graph would be L-colorable.
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If s = 9, then (79) implies that z′1 has degree two. This is a contradiction, hence
neither b nor b′ has a neighbor in P . Let ψ be an L-coloring of the subgraph of
G induced by V (P ) ∪ V (T ) ∪ {v1, v2, v3} such that |L(v4) \ {ψ(v3), ψ(t)}| ≥ 2.
Let G′ = G − {v3, v4, v5, t} if s = 7 and G′ = G − {v3, v4, v5, v6, v7, t} if s = 7,
with the list assignment L′ such that L′(x) = {ψ(x)} if x ∈ {v1, v2, z1}, L′(b′) =
{ψ(b′), ψ(z1)} and L′(x) = L(x) otherwise. Note that G′ is not L′-colorable, thus
it violates (OBSTb). Since b′ and vs are the only vertices with list of size two,
G′ contains OBSTb1a, OBSTb1b or OBSTb3 as a subgraph; and if s = 9, (79)
implies that z′1 belongs to this subgraph. However, in all the cases the resulting
graph is L-colorable, which is a contradiction.

Therefore, we have b = z2. Suppose that b′ ∈ V (C). If b′ = v4, then (99)
implies that v4 6∈ X, thus (A5) holds and v5 ∈ V (T ). This is a contradiction, as
we would choose b = v5. Therefore, b′ 6= v4, and (92) implies that the 2-chord
v4bb

′ splits off T , thus b′ = v5. Since v3 6∈ V (T ), we have v4 6∈ X and (A5) holds
by (99). However, since |L(v4)| = |L(v5)| = 3, we have v5 6∈ X ′, and since b′ ∈ X ′,
this is a contradiction.

Finally, consider the case that b′ 6∈ V (C). Note that b′ 6= z′1, since we already
excluded the symmetric case b = z1, hence b′ = z′2. Suppose first that b = b′.
By (92), we have vs−3 ∈ {v4, v5}. If vs−3 = v4, then let V (T ) = {b, t, t′}, and
note that {t, t′} ∩ {z1, z′1} = ∅, by the choice of b and b′. Since z1 and z′1 have
degree at least three, (79) implies that the vertices of T have no neighbors in P ,
and that the distance between T and {v1, v7} is at least three. There exists an
L-coloring ψ of the subgraph of G induced by V (P ) ∪ V (T ) ∪ {v1, v2, v3} such
that |L(v4) \ {ψ(v3), ψ(b)}| ≥ 2. Let G′ = G − {v3, v4, v5, b, t, t′} and L′ the list
assignment such that L′(v1) = {ψ(v1)}, L′(v2) = {ψ(v2)}, L′(x) = L(x) \ {ψ(y)}
if x has a neighbor y ∈ V (T ) and L′(x) = L(x) otherwise. Observe that G′ is not
L′-colorable and satisfies (I). Since z1 has degree at least three, (79) implies that
G′ satisfies (Q). It follows that G′ contains a subgraph H isomorphic to OBSTb1
or OBSTb2. By (79), we have z1, v7 ∈ V (H). If H is OBSTb1, then C has a
3-chord v2z1xv7 contradicting (92). If H is OBSTb2, then G contains a path
v2z1xyzv7, where y has a neighbor in T . However, then t or t′ has degree two by
(79), which is a contradiction.

If vs−3 = v5, then both X and X ′ satisfy (A5). By (92), we have z1 6= z′1. Since
both z1 and z′1 have degree at least three, (79) implies that b has no neighbor in
P and is in distance at least three from {v1, v7}. Let ψ be an L-coloring of the
subgraph of G induced by V (P )∪V (T )∪{v1, v2, v3} such that ψ(v5) 6∈ L(v6). Let
G′ = G−{v3, v4, v5, v6, b} and L′ the list assignment such that L′(v1) = {ψ(v1)},
L′(v2) = {ψ(v2)}, L′(x) = L(x) \ {ψ(y)} if x has a neighbor y ∈ V (T ) and
L′(x) = L(x) otherwise. Observe that G′ is not L′-colorable and satisfies (I) and
(Q). By the minimality of G, G′ contains a subgraph H isomorphic to OBSTb1
or OBSTb2. The distance between the neighbors of b is at least three, thus at
most one of them belongs to H and has list of size two. It follows that H is
OBSTb1 and v7 ∈ V (H). However, then z1 or z′1 has degree two by (79), which
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is a contradiction.

We conclude that b 6= b′. Since T has two vertices that do not belong to C,
neither X nor X ′ satisfies (A5). Since v3 6∈ V (T ), by (99) we have v4 6∈ V (T ), and
symmetrically, vs−3 6∈ V (T ); thus, vs−3 6= v4. Let {t} = V (T ) \ {b, b′}. Consider
the 3-chord Q = v4bb

′vs−3 and the subgraph G2 split off by it. If T 6⊂ G2, then
(85) implies that v4 and vs−3 have a common neighbor, and thus s = 9. If T ⊂ G2,
then we similarly conclude that v4btb

′vs−3 splits off OBSTb1, i.e., s = 11 and t is
adjacent to v6.

Let S1 = L(v2) \ (L(v1) \ L(p2)) and S2 = L(vs−1) \ (L(vs) \ L(p0)). By the
minimality of G, we have |S1| = |S2| = 2, as otherwise we can remove the edge
v1v2 or vs−1vs. Suppose now that there exists an L-coloring ψ of T such that
for every c1 ∈ S1 and c2 ∈ S2, there exists an L-coloring ϕ of the subgraph of
G induced by V (T ) ∪ {v2, v3, . . . , vs−1} such that ϕ(v2) = c1, ϕ(vs−1) = c2 and
ϕ(x) = ψ(x) for x ∈ V (T ). Let G′ = G− (V (T )∪{v3, v4, . . . , vs−2}) and let L′ be
the list assignment such that L′(x) = L(x)\{ψ(y)} if x has a neighbor y in V (T )
and L′(x) = L(x) otherwise. The choice of ψ implies that every L′-coloring of G′

corresponds to an L-coloring of G, thus G′ is not L′-colorable. Note that no vertex
of T is adjacent to a vertex of P and that the distance between T and {v1, vs}
is at least three, since otherwise (79) would imply that z1 or z′1 has degree two.
Thus, G′ satisfies (S3) and (I). Furthermore, it satisfies (OBSTa), since otherwise
a triangle of G′ would be in distance at most 7 from T , contradicting t(G) ≥ B.
Therefore, G′ would be a smaller counterexample to Theorem 102, which is a
contradiction.

We conclude that no such L-coloring ψ exists. In particular, for any color
c ∈ L(b), the list L(v4) \ {c} has size two and intersects L(v3). It follows that
L(v3) ⊆ L(v4) = L(b), and symmetrically, L(vs−2) ⊆ L(vs−3) = L(b′). Similarly,
we conclude that L(v3) = S1, L(vs−2) = S2, L(v5) ⊆ L(v4), L(vs−4) ⊆ L(vs−3),
and if s = 11, then L(v5), L(v7) ⊆ L(v6) = L(t). If L(v3) = L(v5) = S1, then
choose ψ(b) ∈ S1 arbitrarily. Now, regardless of the values of c1, c2 and the rest
of ψ, we can choose the color of v4 to be the unique color in L(v4) \ S1, and the
L-coloring ϕ will exist. Therefore, L(v5) 6= S1 and L(vs−4) 6= S2. Similarly, if
s = 11, then L(v5) 6= L(v7). Let {c3} = L(v5) ∩ S1. Let ψ(b) be the unique color
in S1 \ L(v5). Furthermore, if s = 11 then let ψ(t) = c3, and if s = 9 then let
ψ(b′) = c3. Observe that ψ (extended to the third vertex of T arbitrarily) has
the required property—if c1 6= ψ(b), then we can color v3 by ψ(b), so that two
neighbors of v4 have the same color. And if c1 = ψ(b), then we can color v3 by
c3, v4 by the color in L(v4) \S1 and v5 with c3, so that v6 has two neighbors with
the same color. This contradiction finishes the proof of Theorem 102.
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10.2 Concluding remarks

The proof of Theorem 102 follows the lines of the original Thomassen’s proof [69].
However, a basically unavoidable part of the proof—the need to handle 2-chords,
so that we can color and remove a 5-face in (95)—forces us to deal with a large
number of counterexamples to the claim “every precoloring of a path of length
two can be extended.” Especially painful is the obstruction OBSTx1, which even
applies to a path of length one. One could ask whether we could not avoid this by
forbidding vertices with list of size two in triangles completely. This cuts down
the number of obstructions significantly, and indeed, this was our original aim.
However, at the final stage of the proof, we would only end up knowing that
there is a triangle whose distance is at most two from a vertex on each side of
the precolored path P . This is a quite small amount of structure to work with,
making the arising case analysis extremely difficult. Additionally, one runs into
trouble if these two vertices are in fact identical, which would essentially force
extending Corollary 103 to precolored cycles of length at most 10. The number
of obstacles for such cycles then becomes rather large, and it is not quite clear
how such an extension of Corollary 103 could be proved.

Another point where one could hope to save on obstructions is by only con-
sidering the precoloring of a path of length at most 4 in case that (≤4)-cycles are
far enough from it. However, there are many places throughout the proof where
it is useful to extend the coloring of a path of length two to a coloring of a path
of length five, and it is unclear how to handle these situations using only paths
of length four.

Consequently, we end up with a nontrivial number of obstructions, and the
proof becomes rather technical. Despite the length of this paper, still a large
amount of work is hidden in the need to carefully verify all the claims; in par-
ticular, we in general do not give detailed proofs of colorability of the described
graphs. We feel that doubling the length of the paper by spelling out all these
technical details would not make the exposition any clearer or more believable.
Similar remarks apply to other results proved using this technique (even the orig-
inal paper of Thomassen [24], although written quite briefly, becomes rather long
when all details are worked out). Given the rather repetitive nature of the ar-
guments, one wonders whether it would not be possible to apply computer to
obtain such proofs. Let us however note that many of the reductions appearing
in our proof are quite tricky and it is not immediately obvious how they could
be obtained mechanically.

On the positive side, Theorem 102 is somewhat interesting even for graphs
of girth five, since it describes which precolorings of a path of length at most
five can be extended. This might be useful as a technical tool in further study
of 4-critical graphs of girth five. Similarly, Theorem 102 and Corollary 103 give
interesting information regarding graphs with exactly one cycle of length at most
four.
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Compared with the solution to Havel’s problem [24], our proof is rather ele-
mentary, not using any deeper results. Would it be possible to apply the tech-
niques of [24] instead? Possibly, but it would require developing a new proof
of 3-list-colorability of planar graphs of girth 5 based on reducible configurations
and discharging. While our initial inquiry in that direction was somewhat encour-
aging, it seems inevitable that the set of reducible configurations needed would
be rather large (possibly hundreds as opposed to about 10 needed in [24] for the
case of 3-coloring), so the proof would become of somewhat dubious value.

Finally, let us remark that we could require a much weaker assumption on the
distance between 4-cycles, since in most of the arguments only triangles cause
problems. However, for obvious reasons we did not want to complicate the proof
any more.
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[28] Dvořák, Z., Král’, D., and Thomas, R. Coloring triangle-free graphs
on surfaces. In Proceedings of the twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms (Philadelphia, PA, USA, 2009), SODA ’09, Society
for Industrial and Applied Mathematics, pp. 120–129.
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[68] Thomassen, C. Grötzsch’s 3-color theorem and its counterparts for the
torus and the projective plane. J. Combin. Theory Ser. B 62 (1994), 268–
279.

[69] Thomassen, C. 3-list-coloring planar graphs of girth 5. J. Combin. Theory
Ser. B 64 (1995), 101–107.

[70] Thomassen, C. Color-critical graphs on a fixed surface. J. Combin. Theory
Ser. B 70 (1997), 67–100.

[71] Thomassen, C. The chromatic number of a graph of girth 5 on a fixed
surface. J. Combin. Theory Ser. B 87 (2003), 38–71.

277



[72] Thomassen, C. A short list color proof of Grotzsch’s theorem. J. Combin.
Theory Ser. B 88 (2003), 189–192.

[73] Thomassen, C. Exponentially many 5-list-colorings of planar graphs. J.
Comb. Theory, Ser. B 97 (2007), 571–583.

[74] Vizing, V. G. Vertex colorings with given colors (in russian). Metody
Diskret. Analiz, Novosibirsk 29 (1976), 3–10.

[75] Voigt, M. List colourings of planar graphs. Discrete Math. 120 (1993),
215–219.

[76] Voigt, M. A not 3-choosable planar graph without 3-cycles. Discrete Math.
146 (1995), 325–328.

[77] Walls, B. Coloring girth restricted graphs on surfaces. PhD thesis, Georgia
Institute of Technology, 1999.

[78] Williamson, S. G. Depth-first search and kuratowski subgraphs. J. Assoc.
Comput. Mach. 31 (1984), 681–693.

[79] Zhang, H. On 3-choosability of plane graphs without 5-, 8- and 9-cycles.
J. Lanzhou Univ., Nat. Sci. 41 (2005), 93–97.

[80] Zhang, H., and Xu, B. On 3-choosability of plane graphs without 6-, 7-
and 9-cycles. Appl. Math. J. Chinese Univ., Ser. B (Engl. Ed.) 19 (2004),
109–115.

[81] Zhang, H., Xu, B., and Sun, Z. Every plane graph with girth at least 4
without 8- and 9-circuits is 3-choosable. Ars Comb. 80 (2006), 247–257.

[82] Zhu, X., Lianying, M., and Wang, C. On 3-choosability of plane graphs
without 3-, 8- and 9-cycles. Australas. J. Comb. 38 (2007), 249–254.

278


