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December 4, 2020

1 The method

Throughout this text, we use the abbreviations (for flags F1,F2 and a graph
F ) that we introduced in the last lesson.

F1 ≡ p(F1;G, θ)

F1 ◦ F2 ≡ p(F1,F2;G, θ)

F ≡ p(F ;G)

Suppose we are trying to obtain an upper bound on the density of a
certain induced subgraph D (usually K2, corresponding to the density of
edges) in an n-vertex graph G avoiding subgraphs F1, . . . , Fk (we will write
~F 6⊆ G to indicate this). To do so, we are willing to inspect all graphs with
at most m vertices. As the first step, we can use Lemma 1 from the last
lecture:

D =
∑

A∈Hm, ~F 6⊆A

p(D;A) · A. (1)

Since
∑

A∈Hm, ~F 6⊆AA = 1, this gives

D ≤ max
A∈Hm, ~F 6⊆A

p(D;A). (2)

This bound usually is not very good; let us try to improve it.
Let σ be a type and let Z1, . . . , Zm be some flags of type σ with at most

(m + |σ|)/2 vertices (often, one just takes all such flags avoiding ~F ). Let B
be a symmetric positive semidefinite n×n matrix, and let Z̃ = (Z1, . . . ,Zm).
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Then, using Lemmas 5, 4, and 3 from the last lecture, we have

0 ≤ Eθ[Z̃BZ̃T ]

=
∑
i,j

Bi,jEθ[ZiZj]

=
∑
i,j

Bi,jEθ[Zi ◦ Zj] +O(1/n)

=
∑
i,j

Bi,jEθ

[ ∑
H∈Hσ,m

p(Zi,Zj;H) ·H
]

+O(1/n)

=
∑
i,j

Bi,j

∑
H∈Hσ,m

p(Zi,Zj;H)Eθ[H] +O(1/n)

=
∑
i,j

Bi,j

∑
H∈Hσ,m

p(Zi,Zj;H)Eθ[p(H;H, θ)] ·H +O(1/n)

=
∑

A∈Hm, ~F 6⊆A

(∑
i,j

ci,j,ABi,j

)
· A+O(1/n),

where
ci,j,A =

∑
H∈Hσ,m,H∼=A

p(Zi,Zj;H)Eθ[p(H;H, θ)] (3)

are constants independent of G and B.
We can now combine this with (1), obtaining

D ≤
∑

A∈Hm, ~F 6⊆A

(
p(D;A) +

∑
i,j

ci,j,ABi,j

)
· A+O(1/n), (4)

and thus

D ≤ max
A∈Hm, ~F 6⊆A

(
p(D;A) +

∑
i,j

ci,j,ABi,j

)
· A+O(1/n). (5)

For suitably chosen B, this may be a better bound than the one obtained
from (2). Moreover, the best possible bound can be obtained by semidefinite
programming, minimizing M such that

p(D;A) +
∑
i,j

ci,j,ABi,j ≤M

holds for every A.
Some further remarks:

• We may also obtain inequalities as above for several different types and
combine them together.
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• The resulting bound is for the density ofD inG as an induced subgraph.
In case we want the density as a subgraph, we can bound the sum∑

D′ p(D′;G) over all supergraphs D′ of D with V (D′) = V (D) in the
same way.

• Let M be the maximum from (5), and let cA be the coefficient at A in
4. The inequality (5) is obtained as follows: We have that

∑
AA = 1,

and thus∑
A

cA·A =
(∑

A

M ·A
)
−
(∑

A

(M−cA)·A
)

= M−
(∑

A

(M−cA)·A
)
≤M.

If for some A we had cA < M and A 6= 0, then we would actually get
a better bound M − (M − cA)A < M ; hence, if the bound is (almost)
tight for the graph G, we must have p(A;G) very close to 0, and thus A
(almost) does not appear in G. Sometimes, this enables us to determine
the structure of the extremal graphs.

2 5-cycles in triangle-free graphs

Let us now see an application based on [1]: What is the maximum number of
5-cycles in a triangle-free graph G? Note that every 5-cycle in a triangle-free
graph is induced. Hence, we want to find an upper bound on p(C5;G) under
the assumption that p(K3;G) = 0.

We will use m = 5; there are 14 triangle-free graphs with 5 vertices, which
is certainly small enough that (using computer) we can perform the necessary
calculations. We will also use all triangle-free flags with 3 roots and 4 ver-
tices, depicted in the following picture; note there are (up to isomorphism)
3 possible types of these flags.
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Let P,Q,R � 0 be the symmetric matrices indexed by these flags (their
dimensions are 8 × 8, 6 × 6, and 5 × 5, respectively). Let us for example
compute the contribution of A = C5 to 4.

• To find the coefficient at Qi,j, we need to go over all flags H whose
underlying graph is A (the 5-cycle) and whose type contains the edge
only between labels 1 and 2, and add p(σi, σj;H)Eθ[p(H;H, θ)]. There
is only one such flag, and Eθ[p(H;H, θ)] (the probability that if we
add the three distinct roots to the 5-cycle, we will obtain this flag) is
1/6. There are then two ways how to divide the unlabelled vertices
of H in order to obtain two induced subflags with the same roots and
four vertices, giving p(σ5, σ6;H) = p(σ6, σ5;H) = 1/2. Therefore, the
contribution of this type of flags is 1

12
(Q5,6 + Q6,5) = 1

6
Q5,6 since Q is

symmetric.
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• Similarly, let us compute the coefficient at Ri,j. There is again only
one flag H whose underlying graph is the 5-cycle and the vertices with
labels 1, 2, and 3 in order form a path; and Eθ[p(H;H, θ)] = 1/6. The
partition of the unlabelled vertices gives p(ρ2, ρ4;H) = p(ρ4, ρ2;H) =
1/2. The total contribution is 1

6
R2,4

• The coefficient at Pi,j is 0, since there is no flag whose underlying graph
is the 5-cycle and the three roots form an independent set.

• Finally, we have p(C5;A) = 1.

Together, this gives the coefficient 1 + 1
6
Q5,6 + 1

6
R2,4 at A = C5.

Let us also do the calculation for A = P5.

• There are three ways how to add labels 1, 2, and 3 to P5 so that they
form an independent set, depending on which label ends up on the
middle vertex of the path; let Hi denote the one where the middle vertex
has label i. For each i, we have Eθ[p(Hi;Hi, θ)] = 1/30. Partitioning
the remaining vertices, we obtain

– p(π4, π6;H1) = p(π6, π4;H1) = 1/2

– p(π4, π7;H2) = p(π7, π4;H2) = 1/2

– p(π6, π7;H3) = p(π7, π6;H3) = 1/2
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Together, this gives 1
30

(P4,6 + P4,7 + P6,7).

• There are six ways how to add the labels to P5 so that vertex labelled
1 is adjacent to the one labelled 2 and both are non-adjacent to the
vertex labelled 3, depicted in the following picture.

The contributions are as follows; for each i, we have Eθ[p(Hi;Hi, θ)] =
1/30, and by listing Qa,b, we mean p(σa, σb;Hi) = p(σb, σa;Hi) = 1/2:

– H1: Q4,6

– H2: Q3,4

– H3: Q4,5

– H4: Q2,4

– H5: Q2,6

– H6: Q3,5

Together, this gives 1
30

(Q2,4 +Q2,6 +Q3,4 +Q3,5 +Q4,5 +Q4,6).

• There are three ways how to add the labels to P5 so that vertices
labelled 1, 2, and 3 in order induce a path, depicted in the following
picture.

The contributions are as follows; for each i, we have Eθ[p(Hi;Hi, θ)] =
1/30, and by listing Ra,b, we mean p(ρa, ρb;Hi) = p(ρb, ρa;Hi) = 1/2:

– H1: R1,4
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– H2: R2,4

– H3: R1,2

Together, this gives 1
30

(R1,2 +R1,4 +R2,4).

• Finally, we have p(C5;P5) = 0.

Together, this gives the coefficient 1
30

(P4,6 +P4,7 +P6,7 +Q2,4 +Q2,6 +Q3,4 +
Q3,5 +Q4,5 +Q4,6 +R1,2 +R1,4 +R2,4) at A = P5.

We conclude that

C5 ≤ 1
6
(6 +Q5,6 +R2,4)C5 (6)

+ 1
30

(P4,6 + P4,7 + P6,7 +Q2,4 +Q2,6 +Q3,4 +Q3,5 +Q4,5 +Q4,6 +R1,2 +R1,4 +R2,4)P5

+ . . .+O(1/n),

where the other terms are computed similarly. Hence,

C5 ≤ max
(
1
6
(6 +Q5,6 +R2,4), (7)
1
30

(P4,6 + P4,7 + P6,7 +Q2,4 +Q2,6 +Q3,4 +Q3,5 +Q4,5 +Q4,6 +R1,2 +R1,4 +R2,4),

. . .
)

+O(1/n).

We can now use semidefinite programming to obtain the best possible choice
of the matrices P , Q, and R. If we want to just obtain some bound, we can
directly use the matrices returned by an SDP solver (making sure that they
are indeed positive semidefinite, and not slightly off due to rounding errors).
In order to obtain an exact result, these matrices need to be rounded to exact
rational numbers (again, making sure they still stay positive semidefinite),
which may be tricky. The resulting matrices for our problem can be found
in [1]. After substituting them to (7), we obtain

C5 ≤ max
(

24
625
,− 126

6250
, . . .

)
+O(1/n),

with all other terms smaller or equal to 24
625

. Therefore, an n-vertex triangle-
free graph contains at most 24

625

(
n
5

)
+O(n4) 5-cycles.

Moreover, in the extremal graphs, we must have p(P5;G) = o(1), as
otherwise (6) would give us a better bound. Similarly, the evaluation of
the other terms shows that we have coefficients smaller than 24/625 at the
following graphs,
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implying these induced subgraphs (almost) do not appear in the extremal
graphs. This enables us to get a stability result. You can argue (e.g., using
the flag algebra method again) that if p(K3;G) = 0 and p(P4;G) = o(1),
then p(C5;G)� 24/625; hence, the density of P4’s in any extremal graph is
positive, and since p(Z2;G) = o(1) and p(P5;G) = o(1), most of these P4’s
do not extend to Z2 or P5. Hence, for such an induced path P = v1v2v3v4,
all but o(n) vertices x of G have N(x) ∩ V (P ) 6= ∅, {v1}, {v4}. Since G is
triangle-free, we can divide such vertices into those adjacent to v2 (denoted
by A1), to v1 and v3 (denoted by A2), to v2 and v4 (denoted by A3), to v3
(denoted by A4), and to v1 and v4 (denoted by A5). Since G is triangle-free,
A1 ∪ A3, A2 ∪ A4, A2 ∪ A5 and A3 ∪ A5 are independent sets. Moreover, a
similar density argument (using the fact that p(Z2;G) = o(1)) implies that
there can be Ω(n2) edges between A1 and A4 only for o(n4) choices of the
path P , and thus there exists a choice for P with o(n2) edges between A1

and A4. Therefore, we conclude that every near-extremal graph is close to
a blowup of a 5-cycle, in the following sense: There exists a partition A1,
. . . , A5 of its vertex set such that ‖G[Ai ∪ Ai+2]‖ = o(n2) for i ∈ {1, . . . , 5},
where A6 = A1 and A7 = A2.

Finally, let us remark that we can obtain the exact bound (achieved by
blowing up each vertex of C5 to an independent set of size n/5, giving a graph
with (n/5)5 5-cycles): Suppose G is a triangle-free graph with n vertices
and cn5 5-cycles. Let G′ be the graph obtained from G by blowing up each
vertex into an independent set of k vertices (turning edges of G into complete
bipartite subgraphs in G′). Clearly, G′ is also triangle-free. Moreover, G′ has
nk vertices and cn5k5 5-cycles, and thus cn5k5 ≤ (24/625 + o(1))

(
nk
5

)
=

(1/55 + o(1))n5k5. Hence, c ≤ 1/55 + o(1) as k →∞, and thus c ≤ 1/55.
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