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1. Introduction

1.1 Coloring
Let X be a set of elements and C a set of colors. A coloring is any map ψ : X → C.
The set X is typically a set of elements of a combinatorial structure S. Using the
structure of S, we may then impose requirements on the values of ψ to consider
ψ a valid coloring. In some cases, the color set C has its own structure, which
also plays role in the constraints on ψ.

A typical setting, and the one we work with, is vertex graph coloring. For
a graph G with vertex set V (G) and edge set E(G), a vertex coloring is an as-
signment of colors to vertices, formally a map ψ : V (G) → C. a vertex coloring is
proper if ψ(u) ̸= ψ(v) for every edge uv. It is clear that for the purposes of proper
vertex coloring we may assume our graphs have no parallel edges or loops.

Let us define the chromatic number of a graph G, denoted as χ(G), as the
smallest integer k such that G has a proper vertex coloring using k colors. The
graph G is k-colorable if χ(G) ≤ k.

A k-coloring of a graph G is a vertex coloring ψ : V (G) → [k]. Note that G
has a k-coloring whenever G is k-colorable, i.e. the choice of the set of colors
is inconsequential. We choose the color set {1, . . . , k} for convenience, to easily
refer to colors and to obtain a natural (arbitrary) ordering on the colors. We may
assume that every vertex coloring is a k-coloring for a suitable integer k.

For a graph G and a k-coloring ψ of G, we define the color classes of G as the
sets of vertices assigned the same color by ψ, that is, for every color i ∈ [k] we get
its color class ψ−1(i). Observe that an equivalent interpretation of k-colorability
is the lowest integer k such that G can be decomposed into at most k independent
sets (color classes), or the complement of G can be decomposed into at most k
induced cliques.

1.2 Structural Aspects
A graph G is k-critical if χ(G) = k and every proper subgraph H ⊊ G is (k− 1)-
colorable. The following structural characterization of coloring holds.

Observation. a graph G has chromatic number at least k if and only if G con-
tains a k-critical graph H as a subgraph.

This is easily see as either G itself is critical, or by definition there is G′ ⊊ G
(obtained by deleting an edge or an isolated vertex) such that χ(G′) ≥ k. The
claim then holds by induction (or rather iteration). An important observation is
the following.

Observation. If a graph is k-critical, then its minimum degree is at least k− 1.

Proof. Suppose G is a counterexample of a k-critical graph with a vertex v of de-
gree at most k−2. Then by the criticality of G, G−v has a (k−1)-coloring and it
can be extended to G, as at most k−2 distinct colors appear in the neighborhood
of v.
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A more detailed analysis shows that if G is (k + 1)-critical, then its vertices
of degree k induce a Gallai forest[1]; a graph is a Gallai forest if every component
of vertex 2-connectivity is a clique or an odd cycle (a connected Gallai forest is
a Gallai tree). This claim can actually be proven for list-coloring where each
vertex is also given a list of colors it may be assigned (the classical coloring is
a special case of list coloring).

Using the characterization via Gallai forests, it is relatively easy to show that,
for any k ≥ 3, the average degree of (k + 1)-critical graphs is strictly greater
than k, at least k + k−2

k2+2k−2 ≈ k + 1/k, unless G = Kk+1, in which case it is
exactly k.

Fact (Gallai [2]). If a graph is (k + 1)-critical and different from Kk+1, then
its average degree is strictly higher than k. In particular, the average degree is
at least k + 1

3k if k ≥ 3.

On a different note, let us consider a greedy coloring algorithm coloring ver-
tices one by one using the lowest free color on each vertex. It is easy to see that if
a k-coloring ψ exists, then an appropriate order of vertices also produces a k-
coloring in this greedy manner. First we may assume that each vertex of color
c in ψ has neighbors of all colors lower than c, as otherwise we can decrease its
color. Iteration of this argument eventually produces a k-coloring that satisfies
the assumption. Applying the greedy approach to vertices ordered by their color
in ψ produces exactly ψ. Consider a vertex v of (highest) color k. The greedy
choice of the color of v must be supported by neighbors of v of all lower colors,
who are in turn supported by other neighbors. One might suspect that such
a high-color vertex v must be surrounded by a rather complex dense structure,
possibly even clique-like. While there might be some truth to this intuition, no
obvious classes of such dense or enforcing structures exist in general, as we will
now explore.

For a graph G we define its Mycielski graph M(G) as follows. Let V (G) =
{v1, . . . , vn}, then V (M(G)) = V ∪ U ∪ {w} = {v1, . . . , vn} ∪ {u1, . . . , un} ∪
{w}. Edges of M(G) are of three types, vertices V induce G in M(G), the edge
{vi, uj} ∈ E(M(G)) if and only if {vi, vj} ∈ E(G) and {ui, w} ∈ E(M(G)) for
all ui. One can consider the vertices V to form a copy of G, and the vertices U
to be shadows of vertices V , mimicking their neighborhoods in V .

Fact. For every k there exists a k-critical triangle-free graph.

Proof. This fact can be demonstrated using Mycielski’s construction. Suppose
we have a graph G, such that χ(G) = k. Clearly, χ(M(G)) ≥ k as G ⊂ M(G).
First we show that χ(M(G)) ≥ k+ 1. If not, we may obtain a k-coloring ϕ where
ϕ(w) = k (w here denotes the special vertex as above) and therefore color k does
not appear on U . We construct a proper (k− 1)-coloring of M(G)[V ]. Whenever
ϕ(vi) = k, we recolor it using color ϕ(ui). Since N(vi)∩V ⊂ N(ui), this recoloring
avoids monochromatic edges on V (though may be improper coloring of M(G)).
This contradicts the definition of k as χ(G). Conversely, using the same coloring
on U as on V and a new color on w, we have that χ(M(G)) = χ(G) + 1. A final
key observation is that if G is triangle-free, then M(G) is also triangle-free.

Starting with M2 = K2 of chromatic number 2, we may define an infinite
sequence of Mycielski graphs as Mi+1 = M(Mi) for all i ≥ 2. All graphs in this

4



sequence are triangle free and as a consequence, there exists an infinite number
of graphs of chromatic number at least k with no clique of size at least 3. Each
graph of chromatic number at least k of course contains a k-critical subgraph,
which is also triangle free.

The graph M3 is C5, M4 is called Grötzsch graph and is the smallest triangle-
free graph of chromatic number 4. Results similar to the Mycielski construc-
tion can be obtained for arbitrary girth. By a probabilistic construction due to
Erdös, the following holds.

Fact (Erdös [3]). For every choice of integers l, k there exists a graph G of girth
at least l and chromatic number at least k.

Graphs of arbitrary girth and chromatic number can also be explicitely con-
structed, though the constructions are rather involved [4].

Another way of stating this result is that for every choice of integers r, k there
exists a graph G such that for every vertex v of G, the vertices at distance at most
r induces a tree in G, but the chromatic number of G is at least k. This also
shows that in general one cannot hope to deduce the chromatic number of a graph
based on properties of its subgraphs of limited diameter.

An interesting observation is that while a graph of high chromatic number
does not necessarily contain a large clique (or any fixed graph with a cycle)
as a subgraph, it typically contains a large clique as a minor. The Hadwiger
conjecture states the following.

Conjecture. If χ(G) ≥ k then G contains a clique of size k as a minor.

In other words, a large chromatic number is (perhaps) always accompanied
by a clique minor of the corresponding size. While this conjecture is known to
hold for all values of k up to 6 [5], the general statement remains as one of the
most prominent open problem in vertex graph coloring. In particular the famous
4-color theorem would be a simple consequence of this conjecture. On the other
hand, the current proofs of the cases for k ≤ 6 largely rely on reducing the
conjecture to the 4-color theorem. Due to a lack of a transparent proof of a 4-
color theorem, this line of reasoning is rather lacking the potential for significant
progress without deeper insights into coloring of graphs embedded in surfaces.

The converse of Hadwiger conjecture fails by an arbitrarily big gap. As an ex-
ample, consider a clique of arbitrary size k and subdivide all of its edges once. The
resulting graph contains Kk as a minor, but is bipartite and therefore 2-colorable.
Consequently while absence of a fixed clique minor might serve as an easy up-
per bound on the chromatic number, its presence has no direct implications.
Curiously this is contrary to a presence of a clique subgraph implying an easy
lower bound on the chromatic number, but its absence does not upper-bound the
chromatic number in any way.

If true, in this form or some variation, this conjecture would provide a con-
crete link between structural properties of a graph and its chromatic number.
While such connections are know to exist for various graph classes, such as the
classes of graph embeddable into various surfaces, a generally applicable struc-
tural characterization of chromatic number remain largely elusive. Various non-
aproximability suggest that either there is no such structure to be found, or it is
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very convoluted and not practically useful. For the reasons above, the conjecture
itself seems extremely challenging. Nevertheless, weaker variations are known to
hold.

Fact (Kostochka [6]). Every graph with no Kt minor is O(t
√

log t)-colorable.

This result is obtained from an argument showing that every graph with no Kt

minor is in fact O(t
√

log t)-degenerate, where the omitted constant is reasonably
small. And this degeneracy result is tight. However, a recent breakthrough
beating this degeneracy barrier, shows the following.

Fact (Norin et al. [7]). For every β > 0, every graph with no Kt minor is
O(t log tβ)-colorable.

And yet another substantial progress was obtained by Postle.

Fact (Postle [8]). Every graph with no Kt minor is O(t(log log(t)))-colorable.

It remains as a very interesting open question whether the chromatic number
of graphs with no Kt minor can even be bounded by a linear function in t.

1.3 Coloring on Surfaces
In theory, and especially in this thesis, we often think of graphs as embedded
in a surface, such as the plane.

Formally, a surface is a 2-dimensional manifold without boundary. By the
surface classification theorem, each surface can be assigned a value of genus, and
can be constructed from a sphere by attaching a certain number of ears and/or
crosscaps, where the number depends on genus of the surface. An embedding
of a graph G in surface Σ is a map assigning vertices of G to points of Σ and
edges of G to simple curves such that the endpoints of the curves correspond
to the mapping of vertices in the natural way, and the curves do not share any
points except the endpoints. Other formulations are possible, but the technical
details are not of particular importance from the combinatorial point of view.

A more theoretically useful notion is to understand embedding as a combi-
natorial object rather than continuous map, that is, as a collection of orderings
specifying the order of edges around each vertex. We choose to work with this
interpretation of embedding.

We say that an embedding is a 2-cell embedding, when every face is homeomor-
phic to an open disc (in other words, each face is a 2-cell). Whenever embedding
of a graph does not satisfy this assumption, an equivalent embedding into a sim-
pler surface exists. Suppose we are given a 2-cell embedding and interpret it
as a combinatorial embedding. It is clearly possible to reconstruct a facial walk
of each face. An embedding in the geometric sense can then be reconstructed
by composing individually represented faces. While the obtained embedding is
clearly not unique, relevant topological properties of the embedding are often pre-
served. In particular, a connected planar graph with combinatorial embedding is
uniquely embedded into the sphere up to continuous deformations of the sphere.
We assume that all embedded graph we work with are connected.
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The most prominent class of graphs embeddable in a surface are the planar
graphs. We say that a graph is planar when it is embeddable in the plane, that is,
an embedding into the plane exists. When we say that a graph is a plane graph,
we mean that it is given together with its embedding. Note that a graph is
embeddable in the plane if and only if it is embeddable in the sphere.

A face of an embedded graph is formally an arc-wise connected component
of the surface minus the drawing of the graph. For a graph G embedded in a sur-
face, let denote F (G) the set of faces of G. We use the notations v(G), e(G) and
f(G) to denote the sizes of the vertex set V (G), of the edge set E(G), and of the
face set of G respectively. Depending on the context, by the length of a face or
a degree of a face we mean the length of its facial walk in the number of edges
(including repetitions). We use deg(x) to denote degree of a vertex x or a face x,
and d̄(G) to denote the average degree of G.

For a class of graphs G, we define the chromatic number of G, denoted χ(G),
as the lowest integer k such that every graph in G is properly vertex k-colorable.

The historically most famous problem surrounding coloring and surfaces is
the four-color problem. Let P be the class of planar graphs. The problem
can be stated as a question what is the value of χ(P) and in particular, whether
χ(P) = 4. The original statement of the problem, also known as the map col-
oring problem, is stated as a problem of coloring maps, formalized in current
terminology as face-coloring of planar (bridgeless) graphs. This formulation cor-
responds exactly to a vertex coloring of duals of bridgeless planar graphs, which
are themselves planar graphs.

While obtaining the proof of the fact that indeed χ(P) = 4 was famously
difficult [9, 10, 11], it is not difficult to get close to this result.

To show that χ(P) ≤ k for some small k, let us fix a specific graph G from
the class P . We may use the Euler’s formula e(G) = v(G) + f(G) − 2 and the
relation of faces and edges 2e(G) ≥ 3f(G) obtained from the fact that each face
is incident with at least three edges (not necessarily distinct), nless v(G) ≥ 3 and
only one edge exists. By combination of these two relations, we get that e(G) ≤
3v(G) − 6. We can now bound the average degree of G as d̄(G) ≤ 2e(G)/v(G) =
6 − 12

v(G) < 6 and conclude that G has a vertex of degree at most 5. Since this
holds for any planar graph, and any subgraph of a planar graph is itself planar,
we see that planar graphs are 5-degenerate. In general, a graph is d-degenerate
if any subgraph of G contains a vertex of degree at most k.

By a simple observation, if a graph is 5-degenerate, its chromatic number
is at most 6. We proceed by induction on the number of vertices of G. Pick
a v of degree at most 5 and use the induction hypothesis to color G − v. The
coloring easily extends to a 6-coloring of G, as at most 5 colors appear on the
neighborhood of v, and it therefore has a free color. Consequently, we have
that χ(P) ≤ 6. A slightly different way of obtaining the same result is to observe
that if χ(P) > k then there exists a (k + 1)-critical planar graph G. From
criticality, the average degree of G can be lower-bounded in terms of k. We
conclude that k < d̄(G) < 6, and consequently k ≤ 5.

To improve upon the previous result, the standard tool of choice are Kempe
chains, used to recolor the vertices in the inductive argument in G − v to avoid
the necessity of using sixth color. This approach shows that χ(P) ≤ 5, however
does not generalize for other surfaces, so we omit the details here.
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For a general surface Γ, let g(Γ) denote its genus. We define the Euler char-
acteristic of Γ as follows. For orientable surfaces, γ(Γ) = 2 − 2g(Γ) and for
non-orientable surfaces γ(Γ) = 2 − g(Γ). In particular for the sphere (plane) and
the projective plane we have positive values, 2 and 1 respectively, for the torus
and the Klein bottle we get value 0 and other surfaces have increasingly negative
characteristics.

Heawood proved[12] that any graph G drawn on surface Σ is t-colorable for
any t satisfying t ≥ H(Σ) := ⌊(7 +

√︂
49 − 24γ(Σ)/2⌋ unless Σ is the sphere.

Incidentally, the assertion holds for the sphere as well, as stated by the Four-
Color Theorem. The bound given by Heawood’s formula is tight. As proven by
[13], the bound is best possible for all surfaces except the Klein bottle, for which
the correct bound is 6.

While Heawood’s formula gives a tight bound on the possible values of chro-
matic number of graphs on almost all surfaces, values close to the bound are
achieved by only relatively few graphs. An improvement of Heawoods’s for-
mula in this sense [14][15] shows that the graphs with chromatic number exactly
H(Σ) are exactly those containing a subgraph isomorphic to the complete graph
on H(Σ) vertices.

From now on, assume that every embedded graph we consider is connected
and the embedding is a 2-cell embedding. Whenever embedding of a graph does
not satisfy this assumption, an equivalent embedding into a simpler surface exists
an we switch to such a surface instead.

Using the Euler’s characteristic, for a graph G (2-cell-)embedded in a surface
Γ, the general Euler formula states that e(G) = v(G) + f(G) − γ(Γ). Applying
the same arguments as for the plane, we obtain that for G embedded in a surface
Γ, d̄(G) ≤ 6 − 6γ(Γ)

v(G) .
Suppose a graph G embedded in a general surface Γ is k-critical for k ≥ 7

(and G ̸= Kk). As mentioned earlier, the average degree of G must be strictly
greater than 6 + ϵ, (where say ϵ = 1

11 can be chosen). This is only possible if
γ(Γ) < 0 and v(G) is upper-bounded by a function linear in −γ(Γ), and therefore
there are only finitely many k-critical graphs for k ≥ 7 on any fixed surface Γ.

By a much more complicated analysis, it is possible to show that the same
conclusion is true for 6-critical graphs [16]. As a consequence, given a fixed surface
Γ, k-colorability for k ≥ 5 of any G embeddadle in Γ can be decided by testing
the presence of finitely many (k + 1)-critical subgraphs. This can be achieved
in linear time with respect to size of G (for more details, see the Section 2.3).
Naturally, practical implementation of such algorithm would need access to a list
of corresponding critical graphs, which seems to grow exponentially with −γ(Γ),
or spend an immense amount of time searching for them. These lists have however
been constructed for only a handful of cases. The lists of 6-critical graphs are
explicitly known for the projective plane [17], the torus [18] and the Klein bottle
[19, 20].

Similar approach is not possible for testing 4-colorability, as shown by an el-
egant construction of Fisk[21], who shows that if a triangulation of an orientable
surface with exactly two vertices of odd degree is 4-colored, the two odd-degree
vertices must receive the same color. In any surface other than the sphere, it is
possible to construct infinitely many such triangulations so that the odd vertices
are adjacent and thus the triangulations are not 4-colorable.
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1.4 Coloring of Graphs with High Girth on Sur-
faces

The problem of deciding whether a graph is k-colorable or not is somewhat more
approachable when only graphs of high girth are considered. Assuming a graph
G has girth at least 5, by the same reasoning as before we obtain that d̄(G) ≤
10
3 − 6γ(Γ)

v(G) ; implying that there are only finitely many k-critical graphs on a fixed
surface Γ for any k ≥ 5.

Furthermore, the chromatic number 3 of embedded graphs of girth at least
five has been characterized by a deep theorem of Thomassen [22] who showed
that there are only finitely many 4-critical graphs of girth at least 5 on any fixed
surface. As a consequence, for any surface Γ, it is in principle possible to decide
k-colorability of embedded graph of girth at least five efficiently, as long as k and
Γ are fixed. There actually turn out to be no 4-critical graphs of girth at least
five on the projective plane and the torus [23] and similarly on the Klein bottle
[24].

From now on, let us consider the graphs of girth at least 4, in other words
triangle-free graphs. By the same reasoning as before, we can show that for any
graph G embedded in surface Γ the average degree is bounded as d̄(G) ≤ 4− 2γ(Γ)

v(G) .
Since a k-critical graph must have average degree significantly higher than k− 1,
unless it is a clique, it follows that there are only finitely many k-critical triangle-
free graphs on a fixed surface Γ for any k ≥ 5.

Unlike in the case of girth at least five, triangle-free 4-critical graphs offer
a more substative theoretical challenge. By a well known theorem of Grötzsch,
every planar triangle-free graph is 3-colorable.

Fact (Grötzsch’s Theorem [23]). Every triangle-free planar graph is 3-colorable.

Unfortunately, Grötzsch’s theorem cannot be extended to any surface other
than the sphere. For instance, the graphs obtained from odd cycles of length
five or more by Micielski’s construction [25] provide an infinite class of 4-critical
graphs embeddable in any surface other than the sphere. This of course means
that 3-colorability of triangle-free graphs on a fixed surface Γ cannot be in prin-
ciple decided by testing the presence of specific set of subgraph obstructions.

The only non-planar surface for which the 3-colorability problem for triangle-
free graphs is fully characterized in a compact way is the projective plane. Build-
ing on earlier work of Youngs[26], Gimbel and Thomassen[27] obtained an elegant
characterization stating that a triangle-free graph drawn in the projective plane
is 3-colorable if and only if it has no subgraph isomorphic to a non-bipartite
quadrangulation of the projective plane.

Less is known regarding surfaces of higher genus, although it is known that al-
gorithmically exploitable structure of triangle-free 4-critical graphs must exist
on any fixed surface. Let us give a rough sketch of the idea.

For a graph G embedded on a surface, let S(G) denote the multiset of lengths
of (≥5)-faces of G. We refer to S(G) as the census of G. Thus, the characteriza-
tion of triangle-free 4-critical graphs embeddable in the projective plane implies
that S(G) = ∅ for every such graph. The theorem following describes the general
case.
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Fact (Dvořák, Král’, Thomas [28]). For any surface Γ, there exists a constant
cΣ such that every 4-critical triangle-free graph G embedded in Γ without non-
contractible 4-cycles satisfies ∑︁S(G) ≤ cΣ.

In other words, G has only a bounded number of faces of length greater than
four and these faces have bounded size. Such a bound does not hold in general
if non-contractible 4-cycles are allowed (but it does hold for graphs embedded
in the torus).

A detailed treatment of triangle-free 4-critical graphs with non-contractible
4-cycles was given by [29]. In was proved in [30] that for any surface Γ, a triangle-
free graph embedded in Γ with large edgewidth is 3-colorable unless Γ is non-
orientable and the graph contains a quadrangulation with an odd orienting cy-
cle. Dvořák, Král’ and Thomas also designed a linear-time algorithm to test
3-colorability of triangle-free graphs embedded in a fixed surface[31].

For the case of torus, there exists a set of template graphs, graphs embed-
dable in the torus with several special faces, with the property that any 4-critical
triangle-free graph embaddable in the torus can be obtained from one of the tem-
plate graphs by quadrangulating its special faces arbitrarily, and conversely, no
graph obtained in this way is 3-colorable. We obtained this set through a so-
phisticated computer search [32], based on a previous work studying a hierarchy
of the critical graph under a reducing operation [33]. We present the theory be-
hind the set of templates in Section 2.3. Similar investigations may be performed
for other surfaces, although the lack of non-contractible cycles of length 4 seems
necessary without further tools.

Although these templates do not constitute a specific list of obstructions, nor
a particularly elegant structural characterization of 4-critical graphs, a reasonable
polynomial algorithm can be obtained based on the list of templates. Other
consequences follow, such as an upper bound on edge-width and much better
constraints on possible values of S(G) whenever G is 4-critical.

Inspired by the properties observed from the knowledge of this set of tem-
plates, we eventually designed a practical coloring algorithm which does not rely
on the knowledge of the templates, but rather on limited values of parameters
of 4-critical graphs which can be proven theoretically, in contrast to a computer
search. The construction of this algorithm is described in Sections 2.1 and 2.2.

We collect our brief overview of coloring on surfaces into Table 1.1, show-
ing what type of algorithmic situation occurs while testing k-coloring of graphs
with given girth. On the right are cases where there are only finitely many ob-
struction on any surface. Since testing 2-colorability is trivial, only three cases
remain wedged between the trivial cases and the cases of finitely many obstruc-
tions. The case of 3-colorability of triangle-free graphs is the only one currently
known to be polynomial but not characterized by a finite set of obstructions.
Out of all surfaces in this case, the torus is the simplest surface with no known
exact characterization prior to our investigation. The other remaining case, 4-
colorability with no additional restrictions, is a major open issue. This case is
widely open and has not been characterized even for very special cases (such as
planar graphs with one additional edge).
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k-coloring 2 3 4 5 ≥ 6
General triv ∞;NP-c ∞;? finitely many obstructions
∆-free triv ∞;P finitely many obstructions
Girth ≥ 5 triv finitely many obstructions

Table 1.1: An overview of the type of class of k-colorability obstructions and the
algorithmic complexity of coloring

1.5 Duals on Surfaces and Flows
For a graph G embedded in a surface Γ, let G⋆ denote the dual of G. The vertices
of G⋆ correspond exactly to faces of G; for f ∈ F (G) we denote the dual vertex
of G⋆ as f ⋆. Conversely, the faces of G⋆ correspond exactly to vertices of G,
we use the analogous ’⋆’ notation to denote these relations. The edges of G⋆

correspond exactly to edges of G in the following way, let e ∈ E(G) be an edge
and f1, f2 the two faces (not necessarily distinct) on the opposite sides of (the
embedding of) e, then its dual edge e⋆ ∈ E(G⋆) is exactly {f ⋆1 , f ⋆2 }.

From the embedding of G we obtain a natural embedding of G⋆; we embed
every vertex f ⋆ of G⋆ into its primal face f and draw every edge e⋆ in such a way
that it only crosses the embedding of G somewhere along the embedding of e.

As a technicality, we need to introduce edge orientation into the embedded
graphs in order to define flows. One possible approach is to replace each edge
with two edges of opposite orientations. Such pair of edges would always exhibit
mutually opposite flow, but together represent the same amount of flow from
different perspectives. Another approach is to simply fix any arbitrary orien-
tation of edges. In this approach we understand the flow along an edge with
mismatched orientation (in respect to the fixed one) as a notational shortcut
referring to the negations of the flow along the correct orientation of the edge.
In this view flow on each edge represents a unique transfer between vertices.

Both of these approaches are of course equivalent in terms of theoretical
strength. We use the latter notation, since it provides a simpler representa-
tion of our theory, at least in orientable surfaces. We usually understand all paths
and cycles as oriented, by which we do not mean that they need to respect the
fixed orientation. However when considering flows on edges of a path or a cycle,
those edges that are used by a path or a cycle in the opposite direction than the
fixed orientation have the signs of their flow values flipped.

Let A be a finite Abelian group; that is a set of elements with addition-like
operation which is associative, commutative and every element of A has an inverse
element in A. An edge function assigning elements of A to (directed) edges is
nowhere-zero if its range is a subset of a \ {0}, where 0 denotes the neutral
element of A (if it exists).

An A-flow in a graph G is an edge function f assigning elements of A to
(directed) edges of G such that for every v ∈ V (G) we have ∑︁uv∈ E(G) f(uv) −∑︁
vu∈ E(G) f(uv) = 0 (Kirchhoff’s law).

An A-tension in a graph G is an edge function t assigning elements of A to
(directed) edges of G such that for every directed cycle C in G, ∑︁uv∈ E(C) t(uv) =
0. Recall that t(uv) = −t(vu) if uv does not match the fixed orientation of G.
As a consequence, the sum over values of edges of a closed directed walk W is
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also zero (respecting multiplicities of edges in W ). We now show the following
equivalence between colorings and tensions.

Observation. A graph G has proper coloring using elements of A if and only if
G admits a nowhere-zero A-tension.

Proof. Let t be a nowhere-zero A-tension, v a vertex of G and α an element of A,
then there exists a proper coloring ϕt of G such that ϕt(v) = α. The coloring ϕt
may be defined as ψ(u) = ϕ(v)+∑︁e∈ W t(e) where W is any (directed) walk from
v to u. By definition of tension, ϕt is independent of the specific choice of W .

Let ψ be a vertex coloring of G by the elements of A. Let tψ be an edge
function on G defined as tψ(uv) = ψ(v) − ψ(u) for each edge uv ∈ E(G). The
function tψ is easily observed to be a nowhere-zero A-tension.

The next step toward the theory of nowhere-zero flows developed by Tutte [34]
is to observe a connection between tensions and flows in the dual.

For and edge function f on G embedded in an orientable surface, let us define
dual edge function f ⋆ on G⋆ as following. Let uv ∈ E(G) and let gh ∈ E(G⋆) be
the corresponding edge crossing uv from left to right, as viewed in the direction uv.
Then we set f ⋆(gh) = f(uv).

Note that this definition is consistent only when the embedding surface is
orientable, it is not possible to consistently define left-to-right direction for all
edges (or more general entities) simultaneously on a non-orientable surface. For
our purposes, we consider only orientable surfaces, where consistent orientations
for graphs and their duals can be defined. Later we also show some interesting
consequences of non-orientability.

in the plane, the relation between flows, tensions and duals is the following. If
t is an edge function assigning elements of A to (directed) edges in an embedded
graph G, then t is A-tension on G if and only if t⋆ is an A-flow in G⋆. For any
v⋆ ∈ V (G⋆), the set of out-edges incident with v⋆ correspond exactly to the facial
walk of v in G. The conditions on flow t and tension t⋆ are satisfied (in the plane)
if and only if the values over each such set of edges sum to zero.

Observation. The existence of proper coloring of planar graph G by elements
of A is equivalent to the existence of a nowhere-zero A-flow in G⋆.

Similar equivalence holds for other surfaces. In orientable surfaces a dual
of an A-flow is an A-tension if it additionally satisfies that it sums to zero over each
(oriented) non-contractible cycle (it actually suffices if this holds for generators
of the homology group).

Curiously, the structure of A is irrelevant for the coloring, yet seems conse-
quential for flows. It is a simple consequence of the theory of Tutte’s polynomials
[35] that the structure of A in fact plays no role. The argument can be stated as
follows. Let χ⋆(G,A) denote the number of possible nowhere-zero A-flows on G.
Let e be an edge of G. If e is not a loop, then χ⋆(G,A) = χ⋆(G/e,A)−χ⋆(G−e, A)
and if e is a loop, then χ⋆(G,A) = (|A| − 1)χ⋆(G − e, A). In the former case,
consider an A-flow in G/e and consider decontraction of e. Based on the excesses
on the end-vertices of e, there is only one possible flow value for e to extend the
A-flow into G. Furthermore, if this values is 0, and it is the only zero element
in the extended A-flow, then the obtained A-flow is equivalent to a nowhere-zero
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flow in G − e. In the latter case, any A-flow in G − e can be extended to G by
setting the flow on e arbitrarily. In here we view a loop as a short (contracted)
cycle, that is, both ends of a loop contribute to the excess of a vertex and their
contribution sums to zero. Excluding the element 0, we are left with (|A| − 1)
possible extensions over the loop maintaining the nowhere-zero property. Clearly,
by expanding these relations, the value χ⋆(G,A) can be expressed in terms of |A|
by reducing the number of edges until only independent set of vertices remains.

We obtain the following corollary.
Fact. A coloring of a plane graph G using k colors exists if and only if a nowhere-
zero A-flow on G⋆ exists, where A is any Abelian group of size k.

Interestingly, any A-flow can be expressed using the standard integers. a k-
flow on G is a nowhere-zero flow over integers where flow on each edge is an in-
teger of absolute value smaller than k (analogously to the requirement that the
Abelian group contains only k elements). Naturally we require that the excess
of every vertex is 0 in the standard integer addition. Clearly, every k-flow is
a nowhere-zero Zk-flow up to the natural projection of negative integers into Zk.
The converse is also true, interpreting the values of a nowhere-zero k-flow as
values of a k-flow, the excess of some vertices may be non-zero, but it is always
possible to find a path with positive flow on each edge connecting a vertex of pos-
itive excess to a vertex of negative excess. If we then lower the flow along such
path by k, the overall deviation of excesses is reduced, and through iteration, all
deviations are eventually removed.

For any graph G we may define the flow number of G as the lowest integer
k for which there exists a k-flow on G, or ∞ if no such k exists. Alternatively,
the flow number of G is lowest integer k, such that for any k′ ≥ k and any
Abelian group A of order k′, a nowhere-zero A-flow exists on G.

Let us explore a few specific useful cases of the equivalence between the ex-
istence of k-coloring of plane graph G and k-flows in G⋆. Let G be a (loopless)
plane graph and let us consider 4-colorability of G. We may choose a group
Z2

2. Note that each element in Z2
2 sums with itself to 0, and the sum of all

non-zero elements is also 0. Since all operations are based on Z2, addition and
subtraction coincide. This makes the orientation of edges irrelevant and we may
understand Z2

2-flow as a simple assignment of elements of Z2
2 to undirected edges.

Let us further suppose G is a triangulation and therefore G⋆ is cubic (3-regular).
Let f be a nowhere-zero Z2

2-flow in G⋆. We observe that every vertex of G⋆ is
incident with three edges, each of a distinct flow value and conclude that f is
a proper edge coloring of G using three colors.

The same equivalence can be observed by coloring the edges of G based on the
pair of colors on their end-vertices; each edge with the pair of colors (1, 2) or (3, 4)
obtains color α1, edge with pair (1, 3) or (2, 4) gets color α2, and the remaining
edges get color α3. It is easy to see that every triangle in G contains exactly all
three edge-colors and therefore its dual vertex is incident with exactly one edge
of each color.

Clearly, it is not possible to color edges of G⋆ using less then ∆(G⋆) colors so
that no two edges of the same color share a vertex. By a classical result of Vizing
[36], the number of colors needed (chromatic index) for any graph H is either
∆(H) or ∆(H) + 1. The graphs of the first kind form a Vizing’s class one, and
the rest form Vizing’s class two.

13



A consequence of the relation of nowhere-zero flows and edge-coloring is
that every planar graph is 4-colorable if and only if dual of every planar tri-
angulation (which is itself planar) belongs to the Vizing’s class one. While many
natural classes of graphs are known to be subclasses of the Vizing class one, for ex-
ample all bipartite graphs, deciding the exact value of chromatic index of a graph
(and its Vizing class) in general is an NP-complete problem.

Let G be a (loopless) graph embedded in an orientable surface and let us
consider 3-coloring of G. We use the group Z3 with the notation of elements
Z3 = {0, 1,−1}. a nowhere-zero Z3-flow in G⋆ is then equivalent to an orienta-
tion of edges, with the property that for every vertex f ⋆ ∈ V (G⋆), the difference
in(f ⋆) − out(f ⋆) is divisible by 3.

Suppose all faces of G are of even length, then G⋆ allows a perfectly balanced
orientation (every vertex is incident with the same amount of in-edges as the
amount of out-edges), which can be obtained by orienting all edges along a closed
Euleriean walk in G⋆. Such orientation is a special case of nowhere-zero Z3-flow
and therefore G is 3-colorable. This is actually a rather trivial observation in the
plane, where the condition of even lengths of all faces actually implies that G
is bipartite. However the same argument involving nowhere-zero flows can be
applied in higher surfaces as well.

On the other hand, suppose a plane graph G has only two faces of odd length.
Then the coloring of G reduces to construction of a set of paths connecting these
two faces in G⋆, as those are the only dual vertices with unbalanced edge orienta-
tions. If sufficient (odd) number of paths can be found, we may delete these (their
edges) from G⋆, rendering all degrees in G⋆ even. It is then straight-forward to
finish the nowhere-zero flow and obtain a 3-coloring of G. Note that reducing the
dual into even-degree graph is not itself sufficient, by the divisibility by 3 condi-
tion of the nowehere-zero flow, we need to orient 3 paths from one odd face into
the other before the rest of the task reduces to the Eulerian walk. Consequently
G is 3-colorable unless there is a small cut separating its odd faces, prevent-
ing the existence of these paths in the dual. Similar flavor of characterizations
of 3-colorability turns out to be crucial in the study of 4-critical graphs.

Earlier we mentioned a result that a triangle-free graph embedded in the pro-
jective plane is 4-critical if and only if it is a non-bipartite quadrangulation of the
projective plane. Let us explore why quadrangulations of the projective plane
are never 3-colorable, emphasizing the bizzare behavior of nowhere-zero flows
in non-orientable surfaces.

Let Γ be a non-orientable surface and σ a non-contractible curve in Γ cross-
ing through exactly one crosscap. Consider a graph G constructed as follows,
an odd cycle C is embedded into Γ in place of σ and the rest of Γ is quadran-
gulated arbitrarily so that every crosscap is contained in a face. The graph G is
embeddable into the projective plane, as its embedding uses only one crosscap.
Consider such embedding and cut the projective plane along the odd cycle C
crossing through crosscap. We obtain a plane drawing (in a disc) with boundary
B formed by a cycle of length 2|C|, formed by concatenation of both sides of C
(one of which is reflected because of the non-orientability). Let uv be an edge
of C. If we walk along B in clockwise direction, we meet two instances of uv.
Because of the non-orientability either we see its end vertices in the order u, v for
both instances or we see the order v, u for both instances. Consider a precoloring
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of C and the nowhere-zero flow on edges of B given by the precoloring. The flow
on both instances of uv in B is oriented either into the disk or out from the disk.
This is contra-intuitive, as one would expect that upon gluing B back into C,
the directions of flow across C should match. We get that the sum of flow across
the disk boundary into the interior of the disk is twice some odd value, as there
is odd number of edges in C, each contributing +2 or −2 units. Therefore, the
outer face bound by B has non-zero excess, acting as a source or a sink. The
interior of B is quadrangulated, each 4-face has excess of exactly 0, and therefore
there are no sources or sinks of flow other than the outer face. This is clearly not
possible. We conclude that the precoloring does not extend to a 3-coloring of G.

By the same argument it is possible to construct infinitely many triangle-
free 4-critical graphs embeddable in the projective plane. By a much more
sophisticated analysis of this idea, the before-mentioned result of Gimbel and
Thomassen[27] shows that this is an exact characterization of all triangle-free
4-critical graphs embedded in the projective plane.

In a similar way one can inspect graphs in the torus and in the Klein bottle.
In both surfaces we may (appropriately) embed a non-contractible odd cycle
and quadrangulate the rest of the surface. If we then cut the surface along the
embedded odd cycle, we obtain a cylindrical surface in both cases. In the case
of torus the edges on the boundary of the cylinder behave as expected, any flow
(on dual edges) leaving the surface over one boundary return over the other
boundary. In the case of the cylinder obtained from the Klein bottle, we get the
same behavior as in the projective plane case above.

The existence of k-flows is in itself a studied area with some prominent ques-
tions remaining open. On the other hand, several interesting results are known
to hold. We give the following examples.

Fact. The following claims hold:

• A graph has a 2-flow if and only if its degrees are even.

• A cubic graph has a 3-flow if and only if it is bipartite.

• Every 4-edge-connected graph has a 4-flow.

• Every bridgeless graph has a 6-flow [37].

Each of these results can be translated into a sufficient (and in the first two
cases necessary) conditions for the dual of a plane graph G implying colorability
of G using an appropriate number of colors.

a few prominent conjectures of Tutte remain open. It is conjectured, that ev-
ery bridgeless multigraph admits a 5-flow and further admits a 4-flow unless it
contains the Petersen graph as a minor. It is also conjectured that every multi-
graph without a cut consisting of exactly one or three edges admits a 3-flow.

1.6 Perfectness and χ-boundedness
For a graph G, let ω(G) denote the size of the largest clique present in G as
a subgraph, the clique number, and α(G) the size of the largest independent set
in G, the independence number. Clearly, the inequality χ(G) ≥ ω(G) always
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holds for any graph G, and as witnessed by graphs of arbitrarily high girth and
arbitrarily high chromatic number, there is no limit on the gap. A graph G is
said to be perfect if χ(H) = ω(H) for every subgraph of H of G.

The property of perfectness holds for several graph classes, prominent exam-
ples of which are chordal graphs, cographs, comparability graphs, interval graphs
and various related classes. On the other hand, examples of non-perfect graphs
are all odd cycles of length at least 5 and their complements; induced subgraphs
isomorphic to these are usually referred to as holes and antiholes respectively.
The perfectness is famously characterized by the Strong Perfect Graph Theorem
as follows.

Fact ([38]). A graph G is perfect if and only if it contains no odd holes and no
odd antiholes.

While perfectness can be exploited in the quest to determine chromatic num-
ber of a graph[39], it is a much more generally useful property. In all perfect
graphs, the exact values of χ(G), ω(G), α(G) can be computed in polynomial time
[40] even though all three problems are NP-complete in general, even NP-hard to
approximate with any fixed precision [41]. As a consequence, numerous otherwise
hard problems can be solved or solutions to them approximated in polynomial
time on perfect graphs. Additionally, perfectness itself can be decided in polyno-
mial time[42].

A very useful generalization of perfectness is χ-boundedness. a graph class G
is χ-bounded if there exists a function f such that χ(G) ≤ f(ω(G)) for every
graph G ∈ G. In other words, the chromatic number is related to the clique
number and can be bounded without dependence on the number of vertices.

While the gap between clique number and chromatic number can be arbitrary,
it was conjectured by Esperet[43] that if G is a hereditary graph class χ-bounded
by some function f , then f can be upper-bounded by a polynomial of a degree
depending only on G. This has recently been shown to be false [44].

Similarly to the relation of critical graphs and chromatic number, a large gap
between the clique number and the chromatic number can be, perhaps, refined
into specific structures witnessing this discrepancy. It is known, that if G satis-
fies that χ(G) ≫ ω(G), then there exists a triangle-free subgraph H of G with
a large chromatic number[45]. It is conjectured that the same is true when H is
considered to be of arbitrarily large girth. It is know on the other hand, that the
same does not hold when H required to be induced [46].

1.7 Precoloring Extensions and List Coloring
Suppose we are given a graph with a partial coloring; that is, some vertices have
colors already assigned while others do not. It is a natural question whether such
precoloring can be extended to a full coloring of all vertices of G by a fixed num-
ber of colors. If we understand the precoloring as additional constraints on the
coloring, it should come as no surprise that such question can be substantially
harder to solve than classical coloring.

As an example of the hardness gap, consider the coloring of interval graphs
which is solvable in polynomial time (even linear time, given representation with
ordered vertices). On the other hand, we may consider coloring of circular arc
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graphs; intersection graphs of arcs on a circle. It is know that it is NP-complete
[47] to decide the exact value of chromatic number of circular arc graphs. Such
coloring of a circular arc graph can be modeled using extension of precoloring
on an interval graph. Given representation by arcs, we may cut the circle at any
point and unravel the representation onto a line. Any arc incident with the
cutting point is now represented by two intervals on either end of the interval
representation. Clearly, the task of coloring the circular arc graph is equivalent
to coloring the obtained interval graph in such a way that some of the intervals
receive the same color. Consequently, precoloring extension in interval graphs is
NP-complete, even when restricted to the case that the precolored vertices are
contained in two cliques, and thus each color appears at most twice.

When dealing with surfaces and the structure of the precolored vertices is
somewhat reasonable, we may turn our attention to the dual and nowhere-zero
flows therein. If the precolored vertices are not isolated, some edges of the dual
have predetermined flow values and the coloring extension translates to the ex-
tension of this preflow. Note that if the precolored vertices induce multiple com-
ponents, a valid extension of preflow may give a proper vertex coloring, but colors
may be permuted differently on each precolored component. In such case, ad-
ditional properties of the flow are required to extend the coloring properly. For
more details refer to Section 2.2. This idea has proven very useful especially
in the study of planar graph with precolored outer face.

In the specific case of 3-coloring and triangle-free graphs, let us consider the
class of all planar graphs with outer face bound by a cycle of length at most 6, such
that some (proper) precoloring of the outer face does not extend into a proper
3-coloring of the whole graph. Gimbel and Thomassen [27] showed that a graph
is inclusion-wise minimal in this class if and only if the outer face is of length
exactly 6, all other faces are of length 4, there are no separating (≤ 5)-cycles
and the only precolorings that do not extend assign colors in order 123123 (up
to permutation of colors) as viewed along the face.

Using the theory of nowhere-zero flows it is easy to see why the specific case
of the result is not colorable; if we view the flow values as integers, the excess
of the outer face is either 6 or −6 while the excess of all other faces is necessarily 0
in any nowhere-zero flow obtained from any complete coloring extending the given
precoloring, which is not possible. On the other hand, removing any internal edge
would produce a new 6-face which may attain the appropriate excess, making the
existence of the flow at least feasible, pointing towards their minimality. Similarly,
if the outer face is of length 5 or 3, its excess is 3 or −3, and by parity there
has to exist an internal odd face, which may attain the appropriate excess to
compensate.

Analysis similar to the thought process above is a common method involved
in the study of critical graph on surfaces. a graph embedded into a surface
can often be cut into patches interacting only through (ideally short) boundaries.
If the colorability of a patch is strongly dependent on the boundary precoloring,
then the patch may be reduced or its specific structure may be abstracted away.
For example, by the result above (considering triangle-free graphs and 3-coloring),
the inside of a separating (≤ 5)-cycle, that is, a cycle bounding a planar graph
with at least one vertex inside, can simply be ignored when investigating 3-
colorability of the whole graph. Similarly, all contractible separating 6-cycles
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containing a quadrangulation are in a sense equivalent, so their interior may be
replaced with a simple quadrangulation with a single vertex of degree 3, forbidding
the only two (up to color permutation) boundary precolorings that do not extend
inside. In this way, the planar graphs with precolored boundary form a subset
of coloring problems that is an essential building block for study of colorability
on all surfaces.

In dealing with colorings, we will also briefly touch an important generaliza-
tion of the precoloring extension, list coloring. Suppose we have a list assignment
L, which assigns to every vertex v a list L(v) of allowed colors. The list coloring
problem asks whether it is possible to properly color graph so that color of each
vertex is chosen from its list of allowed colors; if so, we say that the graph is
L-colorable.

We say that L is assigment of size s if each list is of size at least s. a graph
is said to be s-choosable if it is L-colorable for every list assignment L of size
at least s. Clearly, if all of the lists are the same (and of size k), the list coloring
is equivalent to simple k-coloring.

Varying of the sizes of the lists or colors may offer additional freedom. For
instance, an odd cycle is L-colorable by any assignemnt L of lists of sizes at least
2 unless all lists of L are of size exactly 2 and identical. On the other hand,
while it may seem that the most restrictive list assignment (of given size) is the
one that assigns the same list to every vertex, that is not the case. There exist
bipartite graphs with arbitrarily high choosability [48], while readily colorable
from the list assignment assigning the same list of size 2 to every vertex. Since
precoloring extension problem can naturally be modeled as a list-coloring, and
also the other way around to some degree, we once again see that precoloring
extension can be substantially more complex than ordinary coloring.

List coloring is a rich and complex area in itself and is studied heavily. The
most interesting results however come from study of special cases. A compelling
case of list coloring is when L is degree assignment. For a fixed graph G we
say that list assignment L is a degree assignment if for every vertex v we have
|L(v)| ≥ deg(v). By a greedy approach, it is easy to show that if a graph G
is not L-colorable, where L is a degree assignment, then for every vertex v we
have |L(v)| = deg(v). Brooks [1], showed that a connected graph G of maximum
degree ∆ is not ∆-colorable if and only if G is a clique or an odd cycle. The same
conclusion can be simply lifted to degree assignment coloring, assuming the graph
in question is 2-connected. If not, then by study of the cut vertices, we may argue
that a connected graph is not list colorable by a degree assignment if and only if
it is a Gallai tree, and additionally the color lists follows certain regularities.

Consider now classical coloring of a graph using k colors. Suppose it is possible
to precolor all vertices of degree at least k+1. We may consider extension of this
precoloring to the rest of the vertices, modeled as a list coloring, which falls into
the case of degree assignment list coloring. Suppose G is (k + 1)-critical, with
vertex v of degree at most k. Removing v from G allows G to be k-colored, there-
fore vertices of degree at least k + 1 are k-colorable, and the vertices of degree
at most k must form a subgraph not colorable by a degree assignment and there-
fore form a Gallai forest. As stated in Section 1.2, this insight is a key idea in the
study of critical graphs, and ties the much more abstract list-coloring back to the
classical coloring in a rather surprising way.
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1.8 Outline and Results
In Section 2.1 we focus on developing a theory which will allow us to study color-
ings, or rather nowhere-zero flows, in the cylinder. We derive a decision algorithm
for the problem of 3-colorability which is efficient for near-quadrangulations of the
cylinder with precolored boundary cycles. In the case of a negative answer, we
also obtain a certificate, using the ideas of duality. Finally we derive sufficient
conditions for the existence of 3-coloring based on structural impossibility of the
presence of these certifying structures, almost identical with the necessary con-
ditions.

We begin the Section 2.2 by introduction of several key results characteriz-
ing pieces of 4-critical graphs. Then, we analyze the algorithm from Section 2.1
when applied to graphs embedded in the torus, formulate a set of obstructions to
obtaining a 3-coloring and devise a strategy to avoid these obstructions in a sys-
tematic manner. Finally, we show that if a near-quadrangulation of the torus has
high enough edge-width, we can avoid all obstructions and obtain a 3-coloring,
showing that triangle-free 4-critical graphs embedded in the torus (which are nec-
essarily near-quadrangulations) have bounded edge-width. Both Sections 2.1 and
2.2 are based on the paper

Dvořák, Pekárek: Coloring near-quadrangulations of the cylinder and the
torus [49]

In Section 2.3 we introduce the concept of reducing 4-faces of 4-critical graphs.
In a short detour from our main line of thought, we then show analysis of the
process in more detail, leading to alternative computer-assisted enumerative ap-
proach of obtaining characterization of 4-critical graphs. The result is a relatively
simple, although not particularly concise, characterization of the class of triangle-
free 4-critical graphs embedded in the torus via a set of templates. At the end
of the section we discuss algorithmic applications of the characterization. Sec-
tion 2.3 is based on the paper

Dvořák, Pekárek: Characterization of 4-critical triangle-free toroidal graphs [32]

Finally, we show that the problem of 3-colorability of triangle-free graphs em-
bedded in a surface can in essence be boiled down to the same problem considering
only near-quadrangulations. We apply the results from Section 2.1 and Section 2.2
and obtain an efficient practical algorithm that can decide 3-colorability. Through
additional effort, we then bypass non-constructive portions of this construction to
design an efficient algorithm which can obtain a specific coloring.

In the remainder of the work we change focus to graphs with limited odd cycle
packing number parameter, which is a property found in complements of graph
embedded in the plane or represented by shapes embedded in the plane.

In Section 3.1 we discuss the connection between the structural odd cycle
packing number parameter and topological properties of representation in the
plane, in particular investigating what flavors of graphs obtained from various
representations may be expected to have the mentioned parameter limited.

In Section 3.2 we make use of the odd cycle packing number. We begin by
introduction into the necessary theory and the concept of χ-boundedness. We
derive algorithms (approximately) solving the largest independent set problem
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and derive several χ-boundedness results including a lower-bound. Section 3.2 is
based on the paper

Dvořák, Pekárek: Induced odd cycle packing number, independent sets, and
chromatic number [50]
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2. Coloring in the Torus

2.1 Cylinder
In this section we investigate the existence of colorings of graphs embedded in the
cylinder, with precolored boundaries. The method we employ is interpretation
of coloring as a nowhere-zero flow in the dual, and instead of extending precoloring
we extend a preflow. The goal is to develop tools to decide 3-colorability in the
torus.

Let G be a plane graph and C a cycle in G. We view G as drawn in the
sphere. By splitting G along C we mean the following operation. Let λ be the
closed curve representing the embedding of C into the sphere Σ and let Λ1,Λ2 be
the closures of the two parts into which Σ decomposes. We define graphs G1, G2
as the subgraphs of G induced by the embedding in Λ1 and Λ2 respectively. That
is, the cycle C is part of both parts G splits into, and G can be obtained back
from G1, G2 by unifying their respective copies of C.

Note that both surfaces Λ1,Λ2 can be viewed either as closed disks or as
spheres with holes, which are topologically equivalent. We consider both G1, G2
as having planar embedding with one face (bounded by the copy of C) being
exactly the hole. We call such face a ring. Additionally there is a natural mapping
between the facial walks of rings in G1 and G2 specifying which verticies are copies
of the same original vertex.

For a more general surface Σ and G embedded in Σ, a split along a contractible
cycle C is defined analogously, except that one of the parts is embedded in the
sphere with a hole, and the other in Σ with a hole.

Of particular interest to us is the torus. Let G be a graph embedded in the
torus and let R be a non-contractible cycle in G. By splitting along R we mean the
following operation. Let λ be the closed curve representing the embedding of R.
We consider the surface obtained by deleting λ from the torus, which is an open
cylinder. We close both boundaries, and consider the graph G′ induced by the
embedding. By this we mean that the cycle R now exists in two copies in G′,
each embedded along one of the surface boundaries, with natural correspondence
between the two copies. Understanding the new cylindrical surface as the sphere
with two holes, we call the faces corresponding to the holes rings.

The graph G′ is equivalent to a plane graph, however we keep awareness of its
rings, since their presence is useful for working with several concepts that are not
well defined for plane graphs with no rings and help us study properties of G
while inspecting properties of G′.

Similarly, a graph embedded into the Klein bottle can be split along a non-
contractible orienting cycle into a plane graph with two rings. The difference
between a plane graph obtained by splitting from the torus and from the Klein
bottle is that the natural isomorphism of rings is oriented along the faces in the
same direction if the graph was obtained from the Klein bottle, and in the opposite
direction if it was obtained from the torus.

Clearly, any plane graph can be embedded into a sphere with two holes so
that two of its faces become rings. These faces can be chosen arbitrarily and
given the faces are of the same lengths, we may then un-split, obtaining either
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Figure 2.1: Flows, linkages and circulations.

a graph embedded in the torus or in the Klein bottle, possibly with multiedges
or loops.

2.1.1 Flows, Circulations, Vorticity
For the purposes of this section, let us assume that all edges in given graphs have
a fixed orientation, otherwise we fix an arbitrary orientation. The only purpose
of this assumption is as a reference so that we can define directed values on edges
(such as flows) using signed values.

Paths and walks in this section are always understood as ordered lists of edges,
such that the consecutive edges share a vertex in the natural way. To give a full
formal definition, each edge in the list is aligned to have a fixed order of vertices
(independent of its orientation) so that the first vertex is only shared with the
preceding edge, and the second vertex is shared with the following edge. A path
or a walk is not required to respect the fixed orientations of edges, but through
the order has a defined beginning- and end-vertex, and therefore a direction.
Similarly, a cycle or a closed walk is understood as cyclically ordered list of edges
(satisfying the usual requirements), hence there is always an associated direction.

Recall that under edge function and vertex function we understand functions
assigning values from some set of values to (oriented) edges or vertices respec-
tively. The sets of values we consider are always taken as (subsets of) Abelian
groups, allowing commutative summation and subtraction.

For an edge function f , let excess δf (v) of vertex v be defined as δf (v) =∑︁
uv∈E(G) f(uv) −∑︁

vu∈E(G) f(vu).
Demand function is a vertex function assigning whole numbers to vertices with

zero sum, that is d(V (G)) = ∑︁
v∈V (G) d(v) = 0. We say that a demand function

is even if for every vertex the demand value has the same parity as the degree
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of the vertex. We denote as ∅ the demand function that is zero everywhere.
For a demand function d, we define a d-flow as an edge function assigning

elements from set {−1, 0, 1} such that for every vertex v, d(v) = δd(v).
For a demand function d, we define a d-linkage as a set P of edge-disjoint

paths satisfying that paths only begin in vertices with positive demand, end only
in vertices with negative demand, and every vertex u is the beginning- or end-
vertex of exactly |d(u)| paths in P .

A support set supp(f) of a d-flow is the set of all edges with non-zero flow
value in f . Similarly, a support set of a d-linkage P is the set of edges in ∪P .

Observation 1. Let G be a graph and d a demand function on G. If there exists
a d-flow f on G, then there exists a d-linkage P such that supp(P) ⊆ supp(f). If
there exists a d-linkage P, then there exists a d-flow such that supp(f) = supp(P).

Let us define circulation c on G as an ∅-flow, a cycle-set Q as a set of edge-
disjoint cycles in G and supp(c) and supp(Q) analogously as before.

Clearly, a similar relation to that between d-flows and d-linkages exists be-
tween circulations and cycle-sets. Furthermore, the following relation ties all
definitions together. Notice that the supports in the following observation form
a disjoint union.

Observation 2. Let G be a graph and d a demand function on G. A d-flow
on G exists, if and only if there exists a d-linkage P and a cycle-set Q such that
supp(f) = supp(P)∪̇supp(Q) (possibly Q = ∅).

Let σ denote crossing function defined as follows. For a walk Q in G and
an (oriented) edge e of G, σ(Q, e) is the number of times Q traverses e in the
direction of e minus the number of times Q traverses e in the opposite direction.
Note that if Q is a path or a cycle, then σ(Q, e) ∈ {−1, 0, 1} and σ(Q, e) ̸= 0 if
and only if e is in Q.

For an edge function p and a walk Q, we define the gatherer
∫︁
Q p of p over

Q as
∫︁
Q p = ∑︁

e∈E(G) σ(Q, e)p(e). In essence, gatherer is the sum of values of p
on Q, but in a directed (and weighted) sense.

We say that an edge function p is a tension of a vertex function w if for every
edge e = uv we have w(v) = w(u) + p(e). By extension, for any two vertices
u and v we get w(v) = w(u) +

∫︁
Q p for any walk Q from u to v. In particular,

a gatherer
∫︁
Q p over a closed walk Q is always zero for any tension function p.

For a plane graph G, let us consider the dual H of G. Recall that the fixed
orientation of edges in G induces an orientation of edges in H such that each edge
e of G is crossed (in the plane embedding) by its dual edge e⋆ of H from left to
right.

Confusingly, a dual of H has the opposite orientations to G. In the notations
used here it therefore matters whether G is a dual of H or H is a dual of G.
We will avoid repeated dualization by ”undualizing” instead, that is, defining G
from given H as the graph with dual H, whenever needed. However the change
in directions appears a few times as a sign change. We will point out every
occurrence of this.

For a walk Q in G, let us exploit the notation and define σ(Q, e⋆) = σ(Q, e),
that is, the number of times Q (or rather its embedding) crosses e⋆ from right
to left minus the number of times it crosses in the opposite direction. A slightly
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more useful view to understand the value σ(Q, e) is that it receives a positive
contribution whenever e goes along Q and similarly σ(Q, e⋆) receives positive
contribution whenever e crosses Q from left to right. That is, the value is pre-
served by dualization of e, which effectively rotates e clockwise into e⋆.

Let f be a face of G and R a closed walk in G. Let ωR(f) denote the winding
number of R around f . Informally, the winding number ωR(f) denotes the num-
ber of times R circles around f in the clockwise direction. A formal definition
of ωR(f) can be formulated as follows: For any half-line p beginning inside f and
intersecting G only in edges, ωR(f) is the number of times R crosses p from left
to right minus the number of times it crosses p from right to left. Let us remark
that the value of ωR(f) is independent of the choice of the half-line p.

Observation 3. Let G be a plane graph, H its dual (with the natural embedding)
and R any closed walk in G. Then ωR has the following properties:

• Let f be the outer face of G, then ωR(f) = 0,

• Let e⋆ = (g⋆, h⋆) ∈ E(H), then ωR(h⋆) = ωR(g⋆) + σ(R, e⋆),

Furthermore, a face function on H is equal to the winding number (for fixed R)
if and only if it satisfies both of these properties.

The second property can be formulated as a tension. For a fixed R we may
consider the dual vertex function ω⋆R on H. Clearly, by fixing the parameter R
in σ(R, e⋆) we obtain a tension σR(e⋆) of ω⋆R.

In the following key notation, we use the crossing function in the following
way. Suppose Q⋆ is a walk in G⋆ and e is edge of G, then by definition σ(Q⋆, e) =
−σ(Q⋆, e⋆). Note that the minus sign comes from considering a dual of e⋆, since
σ(Q⋆, e⋆) is well defined and σ(Q⋆, (e⋆)⋆) has the same value by definition, but
the edge (e⋆)⋆ has the opposite direction to e. The value of σ(Q⋆, e) expresses
how many times (the embedding of) e crosses (the embedding of) Q⋆ from right
to left.

Let d be a demand function on G, and let d⋆ denote its dual face-function
on G⋆. Consider a closed walk R⋆ in G⋆. Let us define pressure ∇(R⋆, d) of d
on R⋆ as ∇(R⋆, d) = ∑︁

f∈F (G) ωR⋆(f)d(f). Note that if R is a cycle, then ∇(R⋆, d)
is a simple sum of d⋆ over faces in the interior of R (up to sign depending on the
orientation of R).

The motivation behind pressure comes from the properties of flows. There
exists a (multi-)set of edges R in G such that (up to ordering) R⋆ is the dual
of R. The set R acts as a cut in G separating the interior and exterior of R.
The pressure on R describes exactly how many units of d-flow necessarily cross
R from inside out, as shown in the following lemma.

Lemma 4. Let G be a plane graph, d a demand function on G and h a d-flow.
For any closed walk R⋆ in G⋆

∇(R⋆, d) =
∫︂
R⋆
h

Let s⋆, t⋆ ∈ V (G⋆), and let P1, P2 be two (s⋆, t⋆)-walks in G⋆. If R⋆ is a closed
walk obtained by the concatenation of P1 and reverse of P2, then∫︂

P1
h =

∫︂
P2
h+ ∇(R⋆, d)
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Proof. We explain the computation, and express it formally below. Recall the
definition of pressure ∇(R⋆, d). It can be expressed as a sum over demands d
of all vertices of G weighted by winding number of R⋆. Such sum is equal to
a weighted sum over excesses, given a valid d-flow h in G.

Expressing the excess as sum over edges and using Observation 3, we may
reorder the sum as a sum over edges. Value of each edge is weighted by the
difference of winding numbers of its endpoints, which is the crossing function.
Clearly, crossing function is zero if edge is not from the walk R⋆. We obtain the
expression of (negation of) h-gatherer over R⋆.

∇(R⋆, d) =
∑︂

f∈F (G⋆)
ωR⋆(f)d(f) =

∑︂
v∈V (G)

ωR⋆(v)δh(v)

=
∑︂

v∈V (G)
ωR⋆(v)

(︃ ∑︂
uv∈E(G)

h(uv) −
∑︂

vu∈E(G)
h(vu)

)︃

=
∑︂

uv∈E(G)

(︃
ωR⋆(v) − ωR⋆(u)

)︃
h(uv) =

∑︂
uv∈E(G)

−σ(R⋆, uv)h(uv)

=
∫︂
R⋆
h

If R⋆ is the concatenation of P1 and the reverse of P2, we can split the final
expression as −

∫︁
R⋆ h =

∫︁
P2
h −

∫︁
P1
h. By rearranging, we obtain the desired

equality.

2.1.2 Existence of d-flows in the cylinder
In this section we explore the necessary and sufficient conditions for the exis-
tence of a particular kind of d-flows. Recall that any coloring of a plane graph
induces a nowhere-zero flow on the dual. If the graph has a precolored connected
subgraph, the precoloring can be interpreted as a preflow in the dual and the
coloring can be obtained by completing the nowhere-zero flow (if possible). If the
precoloring induces a disconnected subgraph, however, it is not enough to com-
plete the preflow. Recall that in a nowhere-zero flow obtained from a k-coloring,
every walk between two vertices of the same color is crossed by the same amount
of flow from left to right as the amount of flow from right to left, up to modulo
k. Analogous relation holds for all other pairs of vertices as well. In order for
the completed nowhere-zero flow to give a consistent coloring across all connected
components of the precoloring, such property of the flow must be enforced.

Our goal is to extend precoloring of a cylindrical graph, where the precoloring
is given on the facial walks of its rings. We assume that the structure of the graph
is such that the demand function d we are trying to satisfy has a small number
of non-zero entries. A potential nowhere-zero flow can then be decomposed into
two edge-disjoint parts, a linkage satisfying the demand function and a circulation
which covers the rest of the edges. To characterize the existence of a linkage,
we use a standard max-flow min-cut argument. However, to ensure that the
nowhere-zero d-flow provides a coloring consistent with the precoloring, we need
to control the amount of flow circling around the cylinder. To this end we lay
down some basic tools to quantify such property and ensure that we can obtain
appropriately behaved circulations. We give constructive proofs characterizing
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when a nowhere-zero combination of a disjoint linkage and a sufficiently varied
circulation exists.

Let G be a graph embedded in the sphere and let r1, r2 be the rings of G
(given with order). For a cycle C in G, let us consider the two parts into which C
cuts the sphere. We say that C is contractible if both rings are contained in one
part and otherwise, that is, if both sides of C contain a ring, we say that C is
non-contractible. The contractibility notion is consistent with understanding G
as embedded in the sphere with rings realized as topological holes, or in an infinite
cylinder.

In order to utilize tools from Section 2.1.1, we need to define the winding
number in the sphere. Recall that the winding number extends the notion of in-
terior and exterior of a closed curve, however interior is not well defined in the
sphere. We use the Observation 3 which shows that given an embedding, it is
enough to fix the outer face (with winding number 0) for the winding number to
be well defined. We fix the second ring of G (r2) as the outer face. Equivalently,
in a less formal approach, we may understand G as embedded in the plane so
that r2 is the outer face.

Let C be a cycle in G and as before let us consider the two parts into which
C cuts the sphere embedding G. We call the part containing r2 the exterior
of C, denoted ext(C), and the other part the interior of C. Observe that this is
consistent with the above definition of the winding number.

Let G be a plane graph with rings r1, r2. Let c be a circulation in G and Q
a path from r1 to r2 in G⋆. We say that Q is ring-connecting. We define vorticity
of c as the value

∫︁
Q c. Note that the sign of the vorticity depends on the order

of the rings, which is given.
Observation 5. Vorticity of a circulation (in respect to ordered rings r1, r2) is
well defined, that is, it does not depend in the choice of Q.

If there exists a circulation of vorticity k > 0 then there exist circulations
on the same support set of all vorticities from the range [k,−k] with the same
parity as k.
Proof. Let G be a plane graph with rings r1, r2 and c a circulation on G. Let
Q1, Q2 be two ring-connecting paths in G⋆. Let R⋆ be the closed walk obtained as
the concatenation of Q1 and reverse of Q2. By the properties of pressure shown
in Lemma 4,

∫︁
Q1
c =

∫︁
Q2
c + ∇(R⋆,∅), where ∇(R⋆,∅) = 0. We conclude that

the value of vorticity of c is independent of the choice of Q.
Given a circulation c of vorticity k, reversing flow on every edge clearly pro-

duces a circulation with the opposite vorticity and the same support. Without
loss of generality, suppose k > 0. We show that we can obtain circulation of vor-
ticity k − 2, the claim then holds by induction.

By Observation 2 we may express c as a collection of (oriented) edge-disjoint
cycles, each carrying a flow of magnitude 1. By inspection of the definition
of vorticity we may express the vorticity of c as the sum of vorticities of the
individual cycles. Since vorticity of a single cycle of unit flow is equivalent to the
number of times it crosses Q in one direction minus the times it crosses in the
other direction, it is equivalent to the winding number of the cycle, in respect to
r1.

If there is a cycle C with vorticity of magnitude greater than 1, it then wraps
around r1 multiple times and by planarity must intersect itself, contradicting the
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choice of the circulation decomposition into cycles rather than closed walks. We
conclude that there are at least k cycles of vorticity 1.

We define a new cycle set by reversing one of the cycles of vorticity 1 (in c).
Clearly the support of the cycle set remains unchanged, however the vorticity
of the associated flow has decreased by exactly 2.

For a graph G with fixed rings r1, r2 and a demand function d on G, we say
that a d-flow f is of maximal vorticity or minimal vorticity, if the value

∫︁
Q f is

the maximal, respectively minimal value possible among all d-flows, given a fixed
ring-connecting path Q.

While it is not true that the value
∫︁
Q f is independent of the choice of Q,

we observe that maximum- and minimum-attaining flows are independent of the
choice of Q.

Observation 6. Let f1, f2 be flows in H and Q1, Q2 ring connecting paths in H⋆,
then

∫︁
Q1
f1 −

∫︁
Q1
f2 =

∫︁
Q2
f1 −

∫︁
Q2
f2.

Proof. By Lemma 4 we have that
∫︁
Q1
f =

∫︁
Q2
f + ∇(R⋆, d) where R⋆ is a closed

walk obtained as the concatenation of Q1 and the reverse of Q2. Since ∇(R⋆, d) is
constant not depending on f we observe that measurements of vorticities on Q1
and Q2 only differ by this constant for all d-flows.

We show that flows of maximal and minimal vorticities can be constructed
and certified.

Lemma 7. Let H be a graph and d an admissible demand function. Let h1, h2 be
d-flows of maximal and minimal vorticity respectively, with inclusion-wise max-
imal support sets. Then there exist ring-connecting paths Q1 and Q2 such that∫︁
Q1
h1 = |E(Q1)| and

∫︁
Q2
h2 = −|E(Q2)|. Furthermore, E(H) \ supp(h1) and

E(H) \ supp(h2) are forests, and in particular if d is even, then supp(h1) =
supp(h2) = E(H).

Proof. We prove both claims for h1, the claims then follow for h2 analogously.
Let E0 = E(H) \ supp(h1). For contradiction with the second point, let

E0 contain a cycle. Clearly, there exists a non-empty circulation c such that
supp(c) ⊆ E0. Let Q be any ring-connecting path in H. We may choose c so that∫︁
Q c ≥ 0. By the choice of c, h1 + c is a d-flow with support set supp(h1)∪̇supp(c)

and
∫︁
Q(h1 + c) =

∫︁
Q h1 +

∫︁
Q c ≥

∫︁
Q h1, a contradiction with the definition of h1.

We conclude that E(H) \ supp(h1) is a forest.
Suppose d is even, then every vertex v of H is incident with number of edges

in supp(h1) of the same parity as deg(v). In other words, v is incident with even
number of edges from E(H) \ supp(h1). Since any forest on H must have a leaf,
we conclude that E(H) \ supp(h1) = ∅.

It remains to find a ring-connecting path Q1 such that
∫︁
Q1
h1 = |E(Q1)|. Let

us consider H⋆ and define W as the set of vertices of H⋆ reachable from r⋆1 along
edges e such that the flow h1 crosses e from left to right (that is, the crossing
function is positive). Clearly, if r2 is reachable via some path Q, then

∫︁
Q h1 = |Q|.

Suppose for contradiction that r2 /∈ W . The set W represents a connected
subset of faces in G. Let G′ be obtained by deleting from G all edges separating
pairs of faces in W and let r be the face of G′ containing r1. By definition, the
facial walks of r contain only edges with either no flow, or a unit of flow from

27



right to left (as viewed from r). Let c be the circulation in G obtained by sending
a unit flow from left to right along the edges of r (clockwise as viewed from r).
By definition, h1 + c is a d-flow. Additionally, c has vorticity 1, and so vorticity
of h1 + c is higher than vorticity of h1, a contradiction.

It is easy to see that for any d-flow h, the existence of a ring-connecting path
Q such that |

∫︁
Q h| = |Q| implies that h is either of maximal or minimal vorticity.

Formally, suppose
∫︁
Q h = |Q| and for some other d-flow h0 and some other Q′,∫︁

Q′ h0 >
∫︁
Q′ h. Then by Observation 6,

∫︁
Q h0 >

∫︁
Q h = |Q| which is not possible.

Our goal is to construct a linkage together with a disjoint circulation (or
equivalently a cycle set) of high vorticity (in absolute value). Note that if we
consider decomposition of a flow into a linkage and a cycle set, then a flow
of maximal vorticity does not necessarily maximize the vorticity of its cycle set.

As an example, let us have G such that there exist two ring-connecting paths
Q1, Q2 in the dual, where Q1 has length 1 and Q2 has length 2. Suppose there is
a single pair of vertices with non-zero demands +1 and −1, and they are separated
by the cycle Q1∪̇Q2. Let a flow h of maximal vorticity satisfy

∫︁
Q1
h = 1 and∫︁

Q2
h = 0, where Q1 clearly certifies the maximality. The flow h can either be

composed of a linkage with a single path passing through Q1 and an empty cycle
set, or of a linkage with a single path passing through Q2 and a cycle passing
through both Q1 and Q2 of vorticity 1.

We say that a flow f on graph G is nowhere-zero if there is no edge e in G for
which f(e) = 0. For a graph H, let ∥H∥ denote the number of edges of H. Let d
be a vertex function on G, then we define size of d as the |d| = 1+∑︁v∈V (G) |d(v)|.
We add the 1 so that |d| is always positive.

Lemma 8. Let H be a connected plane graph, r1, r2 rings of H, and d an even
demand function on H. There exists an algorithm with time complexity

O(|d| · ∥H∥)

which finds nowhere-zero d-flows h1, h2 of maximal and minimal vorticity respec-
tively, or decides that H contains no d-flow.

Proof. It suffices to find a d-flow h1 of maximum vorticity, h2 of minimum vor-
ticity is obtained as the d-flow of maximum vorticity. We may assume that H is
embedded in the plane with outer face r2.

We find a d-flow h0 in H or decide that no d-flow exists. This can be achieved
in time O(|d| · ∥H∥) using Ford-Fulkerson algorithm. Since d is even, H \ supp(h)
is Eulerian and can be partitioned into a cycle set in linear time, which can be
lifted into a circulation c. Together h0 + c form a nowhere-zero d-flow h.

Let H⃗ be the graph obtained from H by reorienting every edge along the flow
h. Let G⃗ be a dual of H⃗, that is, every edge e⋆ in G⃗ now crosses its corresponding
edge e in H⃗ from right to left. We begin by initializing s′ = r1 and B⃗ as the
subgraph of H⃗ drawn in the boundary of r1.

We will delete parts of H⃗ (maintaining G⃗), extending the face s′ and main-
taining the boundary B⃗ of face s′. During the process we possibly update h,
increasing its vorticity. We continue until s′ merges with r2 at which point there
exists a ring-connecting path certifying that the current flow h is of maximum
vorticity by Lemma 7.

We iterate the following steps:
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(i) While there exists an out-edge e⋆ from s′ to f

(i-a) If e is bridge in H⃗, that is f = s′, delete e. Update the boundary B⃗
by deleting e.

(i-b) Otherwise, let W be the facial walk of f , delete e. Update B⃗ by
replacing e with W \ e.

(ii) If s′ became the outer face of H⃗, then stop.

(iii) Boundary B⃗ of s′ is now a collection of cycles. Update h by adding 2 units
of flow against the direction of (edges in) B⃗. Update directions of all edges
in B⃗ by reversing their direction in H⃗ (and G⃗).

Note that B⃗ becomes disconnected when H⃗ is disconnected in (i-a). While
it would be more intuitive to immediately delete the component C of H⃗ not
incident with r2, we let this removal play out in a lazy fashion to avoid the cost
of identifying the correct component. Both components are deleted step by step
in the same way by steps (i) and (iii).

The step (i) can be implemented efficiently by maintaining queue of edges
satisfying the criteria, updated whenever s′ is updated or in step (iii). Note that
edges in queue are a subset of edges in B⃗. Each edge added into queue for (i) can
only leave the queue by being processed by (i) and consequently deleted. An edge
can only be added into queue if it is part of W in (i-b) or when it is reversed
in (iii). Overall the total cost of maintaining the queue is O(∥H∥).

The step (i-a) has constant complexity. The step (i-b) is easily implemented
with complexity proportional to |W |. No edge is assigned to e more than once
in (i), and no edge takes part in W (in (i-b)) more than twice (each time an edge
takes part in W , its incident face f ̸= s′ is merged with s′). The complexity
of the step (iii) is proportional to |B⃗|. The overall complexity of the algorithm is
O(∥H∥).

For a closed walk R⋆ in G⋆ and a demand function d on G we define the
slack of R⋆ as slack(R) = |R| − |∇(R⋆, d)|, where |R| denotes the length of R
in the number of edges. Recall that ∇(R⋆, d) essentially quantifies the minimum
amount of flow that must cross R⋆ from the inside out in any d-flow. Note that
if R⋆ is a cycle, then ∇(R⋆, d) is equal to the sum over demand values of vertices
of G in the interior of R⋆, up to a sign which depends on the direction of R.

The well known max-flow min-cut theorem implies the following.

Observation 9. Let H be a plane graph and d a demand function on H. Then
H allows a d-flow if and only if slack(R⋆) ≥ 0 for every cycle R⋆ of H⋆.

We say that a demand function on graph H is feasible if slack(R⋆) ≥ 0 for
every cycle of R⋆ in H⋆.

Let H be a connected plane graph, and r1, r2 rings of H, where r2 is the outer
face ofH. In the context of graph (rather than its embedding) we use the following
notational shortcuts. For a cycle C⋆ in H⋆ we denote as int(C⋆) the set of vertices
of H embedded in the interior of C⋆, and we denote int⋆(C⋆) as the set of faces
of H⋆ embedded in the interior of C⋆, in other words, the faces dual to int(C⋆).
Analogously, let ext(C⋆) = V (H) \ int(C⋆) and ext(C⋆)⋆ = F (H⋆) \ int⋆(C⋆).

29



For a demand function d, let us abuse the notation slightly and define d(C⋆)
as d(C⋆) = ∑︁

v∈int(C⋆) d(v). Note that if d is even, then |C⋆| ≡ d(C⋆) (mod 2) for
every C⋆.

Recall the definition of slack of a closed walk R⋆, slack(R⋆) = |R⋆|−|∇(R⋆, d)|
(given a demand function d). For a cycle x we can simplify this as slack(x) =
|x| − |d(x)|. We use this prescription to also extend the definition of slack to the
case when x is an edge of H⋆. We interpret e as a 2-cycle with no actual interior
face, extending the definitions above so that, int⋆(e⋆) = int(e⋆) = ∅, d(e⋆) = 0
and |e| = 2, and therefore slack(e) = 2 for any e. Though seemingly artificial,
inclusion of single edges in this way is a natural consequence of duality between
maximal flows and ring-connecting paths as we will now show.

Let X be a set of cycles and edges of H⋆, we call such a set a chain.
For a chain X, we let slack(X) = ∑︁

x∈X slack(x). For e⋆ ∈ E(H⋆) such that
e⋆ is contained in a cycles of X and b edges of X, we define the multiplicity of e⋆
in X as m(X, e⋆) = a+ 2b, consistently with the idea that individually included
edges are 2-cycles.

Let H be a graph with given pair of rings r1, r2. We say that a chain X is
ring-connecting if X (viewed as union of all its edges) contains a path from r⋆1 to
r⋆2.

We say that a chain X is laminar if for any pair of cycles C⋆
1 , C

⋆
2 of the chain,

the open disks in the plane bounded by these cycles are either disjoint or one is
a subset of the other. In other words, no two cycles cross.

For d feasible, let circ(H, r1, r2, d) denote the maximum integer k such that
there exists a d-linkage P and a set of k non-contractible (in respect to rings r1
and r2) cycles C such that supp(P) and supp(C) are disjoint. Equivalently, there
exist a d-flow and a disjoint circulation of vorticity k.

We are now ready to prove the main result of this section, the min-max
theorem for circ(H, d). The argument used to prove the part (a) is based on the
idea of Seymour [51] for 2-commodity flows.

Theorem 10. Let H be a connected plane graph with rings r1, r2 and d a feasible
demand function on H. Let h1, h2 be d-flows of maximum and minimum vorticity
respectively, with supp(h1) = supp(h2) = E(H). Then the following claims hold:

(a) For every ring-connecting path Q in H⋆,
circ(H, r1, r2, d) = 1

2

(︂ ∫︁
Q h1 −

∫︁
Q h2

)︂
.

(b) slack(X) ≥ 2circ(H, r1, r2, d) for every ring-connecting chain X in H⋆.

(c) There exists a laminar ring-connecting chain X in H⋆ such that
slack(X) = 2circ(H, r1, r2, d).

Furthermore there exists an algorithm with time complexity O(|d| ·∥H∥) which
given H, r1, r2 and d returns both

(i) a d-linkage and a non-contractible cycle-set of size circ(H, r1, r2, d) with
disjoint supports, and

(ii) a laminar ring-connecting chain X in H⋆ such that
slack(X) = 2circ(H, r1, r2, d)
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Proof. Let P be a d-linkage and C a set of non-contractible cycles such that
supp(P) ∩ supp(C) = ∅ and the vorticity of C is maximal, that is, equal to
circ(H, r1, r2, d). For any cycle K⋆ in H⋆, the set K = {e : e⋆ ∈ K⋆} forms
an edge-cut in H separating int(K⋆) from ext(K⋆). By definition, P contains
at least d(K⋆) paths with one end in int(K⋆) and the other end in ext(K⋆).
Clearly, all but at most slackd(K⋆) edges of K are crossed by paths in P .

Let us consider a ring-connecting chain X in H⋆. Let F be the multigraph
obtained from ∪X by giving each edge e multiplicity m(X, e). The reasoning
here is that, by increasing multiplicities, we make the cycles in X edge-disjoint
and turn single edges into 2-cycles. According to the previous paragraph, all but
at most ∑︁x∈X slack(x) = slack(X) edges of F are are intersected (crossed) by
paths in P . All vertices of F have even degree, and so each component of F is
2-edge-connected, in particular, there exist two edge-disjoint (r⋆1, r⋆2)-paths in F .
Each non-contractible cycle in H intersects (crosses) at least one edge of each
of these paths. Since the supports of P and C are disjoint, we conclude that
slack(X) ≥ 2|C| = 2circ(H, r1, r2, d). Therefore, (b) holds.

Let Q be any ring-connecting path in H⋆. Using Observation 2, let hd be
a d-flow interpretation of P and hc a circulation obtained from C by orienting
all cycles so that

∫︁
Q hc = |C|. The supports of hd and hc are disjoint, and thus

ha = hd + hc and hb = hd − hc are d-flows in H. Since h1 and h2 have maximum
and minimum possible vorticities, respectively, we have

∫︁
Q ha ≤

∫︁
Q h1 and

∫︁
Q hb ≥∫︁

Q h2. Consequently,

circ(H, r1, r2, d) = |C| =
∫︂
Q
hc =

∫︂
Q

1
2(ha − hb)

= 1
2

⎛⎝∫︂
Q
ha −

∫︂
Q
hb

⎞⎠ ≤ 1
2

⎛⎝∫︂
Q
h1 −

∫︂
Q
h2

⎞⎠.
On the other hand, by Lemma 7, since d is even we can assume that supp(h1) =

supp(h2) = E(H). Let h+ = (h1 + h2)/2 and h− = (h1 − h2)/2.
Since supp(h1) = supp(h2) = E(H), all values of h1 and h2 are odd, and

thus all values of h+ and h− are integers. Consequently, h+ is a d-flow and h−
is a circulation in H. Furthermore, observe that supp(h+) ∩ supp(h−) = ∅. By
Observation 2, we conclude that H contains a d-linkage P ′ and a circulation C ′

with disjoint supports such that |C ′| =
∫︁
Q h− = 1

2

(︃∫︁
Q h1 −

∫︁
Q h2

)︃
. Therefore,

circ(H, r1, r2, d) ≥ 1
2

(︃∫︁
Q h1 −

∫︁
Q h2

)︃
.

Combining the inequalities, we conclude that (a) holds. Note that d-flows
of maximum and minimum vorticities with maximal supports can be found in time
O(|d| · ∥H∥) using the algorithm of Lemma 8, and they can be converted into
a d-linkage and an circulation of size circ(H, r1, r2, d) in H with disjoint supports
in time O(∥H∥) as described above.

Finally, let us prove the part (c). By Lemma 7, there exist ring-connecting
paths Q1 and Q2 in H⋆ such that

∫︁
Q1
h1 = |E(Q1)| and

∫︁
Q2
h2 = −|E(Q2)|. Let

R⋆ be the closed walk obtained as the concatenation of Q1 with the reversal of Q2.
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By Lemma 4, we have
∫︁
Q1
h2 =

∫︁
Q2
h2 + ∇(R⋆, d), and thus

2 · circ(H, r1, r2, d) =
∫︂
Q1
h1 −

∫︂
Q1
h2 (2.1)

=
∫︂
Q1
h1 −

∫︂
Q2
h2 − ∇(R⋆, d) (2.2)

= |E(Q1)| + |E(Q2)| −
∑︂

f∈F (H⋆)
ωR⋆(f)d(f). (2.3)

For an integer i, let Li (layers) be the set consisting of edges e of H⋆ such that
e is incident with faces f1 and f2 satisfying ωR⋆(f1) ≥ i and ωR⋆(f2) < i. The
motivation is the following. The winding function ωR⋆ is assigning various degrees
of ”insideness” of vertices of H in respect to R⋆. One can view these as assigning
heights to faces of H⋆, and Li then corresponds to the contour lines between areas
(faces) where the height sharply crosses from below i to at least i.

Let A be the set of edges a of H⋆ such that both Q1 and Q2 pass through a
in the same direction. We claim that the ring-connecting chain X can be chosen
to consist of the edges of A and of the cycles into which the sets Li naturally
decompose. Let us describe the construction precisely.

By Observation 3, for an edge e⋆ of H⋆ incident with faces f1 and f2 and
letting n = max(ωR⋆(f1), ωR⋆(f2)),

• if e⋆ ∈ (E(Q1) \ E(Q2)) ∪ (E(Q2) \ E(Q1)), then e⋆ belongs to exactly one
of the sets Li, namely to Ln,

• if e⋆ ∈ E(Q1)∩E(Q2)\A, then e⋆ belongs exactly to two of the sets, namely
to Ln and Ln−1, and

• if e⋆ ∈ A or e⋆ ̸∈ E(Q1)∪E(Q2), then e⋆ does not belong to any of the sets.
It follows that

|E(Q1)| + |E(Q2)| = 2|A| +
∑︂
i

|Li|. (2.4)

Let Li denote the subgraph of H⋆ with the edge set Li and the vertex set
consisting of the vertices incident with the edges of Li. Observe that if f is a face
of Li and faces f1 and f2 of H⋆ satisfy f1, f2 ⊆ f , then either both ωR⋆(f1) ≥ i
and ωR⋆(f2) ≥ i, or both ωR⋆(f1) < i and ωR⋆(f2) < i. Let F+

i and F−
i denote

the sets of faces of Li for that the former or the latter, respectively, holds. For
f ∈ F+

i , let Wf denote the subgraph of Li drawn in the boundary of f . Note
that faces in F+

i only share edges with faces in F−
i and vice-versa. Consequently,

Li = ⋃︁
f∈F+

i
Wf , and the graphs Wf for f ∈ F+

i are pairwise edge-disjoint and
2-edge-connected. For f ∈ F+

i , let Kf denote the set of 2-connected blocks of Wf ;
since Wf is 2-edge-connected and all its edges are incident with f , Kf is a set
of cycles. For C ∈ Kf , let outf (C) = ext⋆(C) if f is contained in the open
disk of the plane bounded by C, and let outf (C) = int⋆(C) otherwise. Since
d(V (H)) = 0, for each face f ∈ F+

i we have

∑︂
f ′∈F (H⋆),f ′⊆f

d⋆(f ′) = −
∑︂

f ′∈F (H⋆),f ′ ̸⊆f
d⋆(f ′) =

= −
∑︂
C∈Kf

∑︂
f ′′∈outf (C)

d⋆(f ′′) ≤
∑︂
C∈Kf

d(C). (2.5)
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Let Ki = ⋃︁
f∈F+

i
Kf and X = A ∪ ⋃︁

iKi. Clearly, X is ring-connecting, since⋃︁
X = Q1 ∪ Q2. Observe that if f ∈ F+

i and i > j, then there exists a face
f ′ ∈ F+

j such that f ⊆ f ′, and thus the set X is laminar. It remains to argue
that slackd(X) = 2 · circ(H, r1, r2, d).

Let m be the minimum of {ωR⋆(f) : f ∈ F (H⋆)}. Note that for any f ′ ∈
F (H⋆),

ωR⋆(f ′) = m+ |{i > m : f ′ ⊆ f for some f ∈ F+
i }|. (2.6)

By (2.6) and (2.5), and using the fact that d(V (H)) = 0, we have∑︂
f ′∈F (H⋆)

ωR⋆(f ′)d⋆(f ′) = m · d⋆(F (H⋆)) +
∑︂
i>m

∑︂
f∈F+

i

∑︂
f ′∈F (H⋆),f ′⊆f

d(f ′)

≤
∑︂
i>m

∑︂
C∈Ki

d(C)

and thus by (2.3),

2 · circ(H, r1, r2, d) ≥ |E(Q1)| + |E(Q2)| −
∑︂
i>m

∑︂
C∈Ki

d(C). (2.7)

By (2.4), we have∑︂
x∈X

|x| = 2|A| +
∑︂
i

|Li| = |E(Q1)| + |E(Q2)|,

and the definition of X gives∑︂
x∈X

d(x) =
∑︂
i>m

∑︂
C∈Ki

d(C).

By (2.7), we conclude that

2 · circ(H, r1, r2, d) ≥ |E(Q1)| + |E(Q2)| −
∑︂
i>m

∑︂
C∈Ki

d(C) =
∑︂
x∈X

|x| −
∑︂
x∈X

d(x) =

= slackd(X)

By (b), we conclude that slackd(X) = 2 · circ(H, r1, r2, d), and thus (c) holds.
Furthermore, observe that this construction of the set X from the d-flows h1 and
h2 can be performed in time O(∥H∥).

Corollary 11. There exists an algorithm with time complexity O(|d| ·∥H∥) which
given a connected plane graph H, with rings r1, r2, a path Q from r⋆1 to r⋆2 in H⋆,
an even demand function d, and an integer m returns one of the following:

• A d-flow h in H such that supp(h) = E(H) and
∫︁
Q h ≡ m (mod 3), or

• a cycle C in H⋆ such that slack(C) < 0, or

• a laminar ring-connecting chain X in H⋆ with slack(X) ≤ 2, and d-flows
h1 and h2 in H such that

∫︁
Q h2 =

∫︁
Q h1 + slack(X) and

∫︁
Q h1 ̸≡ m ̸≡

∫︁
Q h2

(mod 3).
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Proof. If d is not feasible, then a straightforward modification of any max-flow
algorithm, in particular the Ford-Fulkerson algorithm, returns a cycle C in H⋆

such that slack(C) < 0. We can return such a cycle and stop.
Hence, suppose that d is feasible. We use the algorithms from Lemma 8

and Theorem 10. Let P be a d-linkage and let C be an circulation of vorticity
circ(H, r1, r2, d) in H with supp(P) ∩ supp(C) = ∅, and let X be a laminar ring-
connecting chain in H⋆ such that slack(X) = 2 · circ(H, r1, r2, d). Let h0 be
a d-flow interpretation of the linkage P . Let H ′ be the subgraph of H with
vertex set V (H) and edge set E(H) \ (supp(P) ∪ supp(C)).

Since d is even, all vertices have even degree in H ′, and by the maximality of C,
the graph H ′ does not contain any non-contractible cycle. Hence, we can express
H ′ as an edge-disjoint union of contractible cycles, and by sending one unit of flow
along each of them, we obtain a circulation h′ in H such that supp(h0)∪supp(h′)∪
supp(C) = E(H), the supports are pairwise disjoint, and

∫︁
Q h

′⋆ = 0.
Let n = min(circ(H, s, t, d)+1, 3), and for i ∈ {1, . . . , n}, let ci be a circulation

with supp(ci) = supp(C) and
∫︁
Q c

⋆
i = −|C| + 2i − 2, obtained by Observation 5.

Let hi = h0 + h′ + ci, and note that hi is a d-flow with supp(hi) = E(H) and∫︁
Q h

⋆
i =

∫︁
Q h

⋆
1 +2i−2. If there exists i ∈ {1, . . . , n} such that

∫︁
Q h

⋆
i ≡ m (mod 3),

we return h = hi and stop.
Otherwise, we clearly have n ≤ 2 and thus circ(H, r1, r2, d) ≤ 1 and slack(X) ∈

{0, 2}. If slack(X) = 2, then return X, h1, and h2. If slack(X) = 0, then return
X, h1, and h1.

Note that each of the last two outcomes of Corollary 11 certifies that the first
outcome is impossible; the second one because no d-flow exists, the third one
because

∫︁
Q h ∈

{︃∫︁
Q h1,

∫︁
Q h2

}︃
for every d-flow h in H with supp(h) = E(H).

They way we typically use Corollary 11 is testing whether a nowhere-zero d-
flow exists for some particular value m. In some applications at the end of Section
2.4 however, we wish to test for which values of m from {0, 1, 2} an appropriate
d-flow exists. Note that just before the end, the algorithm constructs the flows
h1, . . . , hn of all possible n distinct “m-types”. Instead of running the algorithm
separately for each value, it is a simple modification to output all feasible flow
types.

2.1.3 Coloring Graphs in the Cylinder
In this section we explore the following 3-coloring problem. Let G be a plane
graph, r1, r2 its rings and let the boundaries of r1 and r2 be precolored. Is it
possible to extend the precoloring into a 3-coloring of G?

We utilize the connection between colorings and nowhere-zero flows. First we
design an algorithm such that it finds the desired coloring of G from the problem
above, if it exists. The algorithm is based on deciding existence of nowhere-zero
flows in G⋆ and its running time is dependent on some structural properties of G,
in particular its census (a multiset of sizes of faces other than 4). Then, we analyze
the inner workings of the algorithm to derive sufficient structural conditions for
the existence of the desired coloring. We use this characterization in Section 2.2
to then study necessary structural obstructions preventing a graph embedded
in the torus to be 3-colorable.
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Let G be a connected plane graph and let G⃗ be an orientation of G. A (proper)
3-coloring ψ : V (G) → {0, 1, 2} of G can be understood as a vertex function
ψ : V (G) → Z3 on G. Let δψ be the tension function of ψ on G⃗, specifically, with
the values taken from Z3: for every edge e = (u, v) of G⃗, δψ is defined so that
ψ(v) ≡ ψ(u) + δψ(e) (mod 3). We interpret the possible values of δψ as {−1,+1}
(note that δψ is nowhere-zero).

We say that a demand function d on H is a candidate demand function if it
is an even demand function, such that for every v ∈ V (H), |d(v)| ≤ deg(v), and
for every v ∈ V (H), d(v) is divisible by 3 (we denote the second property as 3|d).

Let ψ be a precoloring of two connected induced subgraphs C1, C2 of G. Let
h be an edge-function on G. We say that h tension-connects C1 and C2 in respect
to ψ if for (any) path Q in G from a vertex v1 ∈ V (C1) to a vertex v2 ∈ V (C2),
we have that ψ(v2) ≡ ψ(v1) +

∫︁
Q h (mod 3).

As discussed earlier, a tension of a coloring can be understood as a flow (in the
dual). When, we want to obtain a coloring from a tension of a coloring, we are
free to choose a color of any first vertex v and then all other vertices obtain a color
uniquely defined by the tension and the choice of the color for v. In the setting
of precolorings, this is an issue when the precolored subgraph is disconnected; that
is, one component of the precolored subgraph together with consistent tension h
produces a coloring which may or may not color the other components consistently
with the precoloring. The property of tension-connection captures the property
needed to avoid this problem, as we formalize in the following lemma.

We restate the connection between colorings of a plane graph and nowhere-
zero flows in its dual, first observed by Tutte [34], in a precoloring extension
settings as follows.

Lemma 12. Let G be an oriented connected plane graph, let H be an oriented
graph such that G = H⋆. Let C1 and C2 be connected induced subgraphs of G and
let C = C1 ∪ C2.

A proper 3-coloring ψ : V (C) → Z3 of C extends to a 3-coloring of G if and
only if there exists a feasible candidate demand function d on H and a nowhere-
zero d-flow h on H such that the restriction of h⋆ to E

(︂
C
)︂

is equal to the tension
δψ of ψ and h⋆ tension-connects C1 and C2 in respect to ψ.

Furthermore, given such a d-flow h, we can obtain a 3-coloring of G extending
ψ in time O(∥G∥).

Note that in the statement of the Lemma 12, as well as other lemmas further
on, the oriented graph H is chosen so that G is the dual of H rather than the
other way around. Recall that edges in the dual of G would be oriented in the
opposite direction than in H. By choosing the relation between G and H as
in the statement of the Lemma 12, we match the results from previous section
dealing with existence of flows in H while considering its dual G.

Proof. Consider a 3-coloring φ : V (G) → Z3 of G extending ψ. Let h⋆ be the
tension of φ on G and h the edge-function on H to which h⋆ is dual, that is
h(e) = h⋆(e⋆) for every e ∈ E

(︂
H
)︂
. Clearly h⋆ restricted to E(C) is equal to δψ

as φ extends ψ.
Let us choose a demand function d on H such that for every v ∈ V (H), the

value d(v) is the excess of v for the edge function h. By choice, ∑︁v∈V (H) d(v) = 0.
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Since the values of h are only {1,−1}, the parity of d(v) is the same as the parity
of deg(v); in other words, d is even. By definition of a d-flow, h is a d-flow and
by existence of the d-flow h, d is clearly feasible.

Fix any v ∈ V (H) and let W be the facial walk of the face f of G such that
f ⋆ = v. Recall that by definition, for any tension t and a closed walk Q, it hold
that

∫︁
Q t = 0 in the group on which t is defined. In particular,

∫︁
W h⋆ ≡ 0 (mod 3).

It follows that the excess of v is divisible by 3, and therefore 3|d. The demand
function d is therefore candidate and feasible.

From the assumption that φ extends ψ, we have that tension of ψ on C is
equal to the restriction of h⋆ to E

(︂
C⃗
)︂
. Finally, necessarily by definition of h⋆, we

have φ(v2) ≡ φ(v1)+
∫︁
Q δG⃗,ϕ = φ(v1)+

∫︁
Q h

⋆ (mod 3). Hence, h⋆ tension-connects
C1 and C2 and the conclusions of the lemma hold.

Let us prove the converse implication. Let d be a feasible candidate demand
function. Let δψ denote the tension of ψ on C⃗, and let h be a nowhere-zero d-flow
in H such that restriction of h⋆ to E(C⃗) is equal to δψ and ψ(v2) ≡ ψ(v1) +

∫︁
Q h

(mod 3).
Since h is a d-flow, by Lemma 4 we have that for any closed walk R in G,∫︁

R h
⋆ = ∇(R, d⋆) ≡ 0 (mod 3) where the last congruence follows from 3|d.
Let us now define vertex function φ on G, obtained from viewing h⋆ as a ten-

sion of φ, and show that φ is a coloring as required. For each vertex x ∈ V (G),
let Qx be any walk from v1 to x. Let φ(x) be defined as φ(x) ≡ ψ(v1) +

∫︁
Qx
h⋆

(mod 3) for every x ∈ V (G).
We observe that the definition of φ(x) is independent of the choice of Qx.

Let Qx, Q
′
x be two distinct (v1, x)-walks, and let R be the concatenation of Qx

and the reverse of Q′
x. By Lemma 4,

∫︁
Qx
h⋆ −

∫︁
Q′
x
h⋆ =

∫︁
R h

⋆ ≡ 0 (mod 3). By
rearranging

∫︁
Qx
h⋆ ≡

∫︁
Qx
h⋆ (mod 3) and therefore the specific choice of Qx does

not matter.
By similar reasoning, let e = {x, y} ∈ E(G) and let R be the concatenation

of Qx, e and the reverse of Qy. We obtain that
∫︁
Qx
h⋆ + h⋆(e) −

∫︁
Qy
h⋆ ≡ 0

(mod 3) and therefore φ(y) ≡ φ(x) + h⋆(e). Since h⋆(e) ∈ {−1,+1}, we have
that φ(x) ̸= φ(y) and φ is a proper coloring.

Let v be a vertex in C. If v ∈ C1, we may assume that Qv is a walk in C1.
Clearly, ψ(v) = φ(v) as h⋆ matches the tension of ψ on C. If v ∈ C2, we may
assume that Qv is the concatenation of Q and a walk from v2 to v in C2. By the
assumption on Q and h⋆, we have that ψ(v2) = φ(v2), and as before, ψ(v) = φ(v).
We conclude that φ is extension of ψ.

Note that φ can be constructed from h in time O(∥G∥), using the fact that
φ(y) ≡ φ(x) + h⋆(e) for every edge e = (x, y) of G, via a search-like propagation.

By inspection of the proof, we may see that when h is a d-flow, the property
of tension-connecting C1 and C2 holds for every pair of vertices v1 ∈ V (C1) and
v2 ∈ V (C2) and any path Q whenever it holds for any pair and a path between
C1 and C2.

When applying Lemma 12, we usually try all candidate demand functions
one by one. Once the function d is fixed, we need to enforce the condition that
the restriction of h⋆ to E

(︂
C⃗
)︂

is equal to δC⃗,ψ. To this end, we use the following
construction.
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Let G be a connected plane graph, let H = G⋆, let H⃗ be an arbitrary orienta-
tion of H, and let G⃗ = H⃗⋆. Suppose we have a precoloring of two faces of G, z⋆1
and z⋆2 . Let C be the subgraph of G consisting of the vertices and edges drawn
in the boundaries of these faces. Let C⃗ be the orientation of C induced by G⃗. The
precoloring induces a preflow δ : E

(︂
C⃗
)︂

→ Z. Additionally, let us have a fixed
demand function d : V (H) → Z.

The idea is to express the preflow δ in H by adjusting the demand function.
We delete the vertices z1, z2, and consequently also all edges with defined preflow.
For all vertices incident with the deleted edges, we shift their demand by the
contribution of the deleted edges as follows.

Let (d/δ) : V (H − {z1, z2}) → Z be the function defined by setting

(d/δ)(v) = d(v) +
∑︂

i∈{1,2}

⎛⎝ ∑︂
e∈N+

H⃗
(zi)∩N−

H⃗
(v)

δ(e⋆) −
∑︂

e∈N−
H⃗

(zi)∩N+
H⃗

(v)

δ(e⋆)
⎞⎠

for every v ∈ V (H) \ {z1, z2}.
Clearly, any valid (d/δ)-flow on H − {z1, z2} together with δ forms a valid

d-flow on H. We formally restate this as the following observation.

Observation 13. Let G be a connected plane graph, let H = G⋆, let H⃗ be
an arbitrary orientation of H, and let G⃗ = H⃗⋆. Let z1 and z2 be vertices of H
and let C be the subgraph of G consisting of the vertices and edges drawn in the
boundaries of the faces z⋆1 and z⋆2. Let C⃗ be the orientation of C induced by G⃗.
Let d : V (H) → Z and δ : E

(︂
C⃗
)︂

→ Z be functions such that

d(zi) =
∑︂

e∈N+
H⃗

(zi)

δ(e⋆) −
∑︂

e∈N−
H⃗

(zi)

δ(e⋆)

for i ∈ {1, 2}.

• If h′ is a (d/δ)-flow in H − {z1, z2}, then the function h : E
(︂
H⃗
)︂

→ Z
defined by h(e) = h′(e) for e ∈ E

(︂
H⃗ − {z1, z2}

)︂
and h(e) = δ(e⋆) for each

edge e incident with z1 or z2 is a d-flow in H.

• If h is a d-flow in H such that h(e) = δ(e⋆) for each edge e incident with z1

or z2, then the restriction of h to E
(︂
H⃗ − {z1, z2}

)︂
is a (d/δ)-flow in H −

{z1, z2}.

Let us now introduce some notation used to express algorithmic complexity,
and a simpler result dealing with one precolored face in plane graph.

For an integer i, let r(i) denote the number of integers from −i to i with
the same parity as i and divisible by 3. For faces f1, . . . , fj of graph G, let
rf1,...,fj(G) = ∏︁

f r(|f |), where f iterates over all faces of G distinct from faces
in f1, . . . , fj. Note that the expression rf1,...,fj(G) upper-bounds the number
of candidate demand functions on G⋆, given that values for d(f1), . . . , f(fj) are
already fixed.

For any plane graph G, let q(G) be defined as q(G) = 1 +∑︁
f :|f |̸=4 |f |, that is,

a sum of lengths of all faces other than those of length four.
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Theorem 14 (Dvořák and Lidický [52, Lemma 4 and the discussion following
it]). There exists an algorithm which, given a simple connected plane graph G,
a cycle C1 bounding a face f1 of G, and a 3-coloring ψ of C1, finds in time
O
(︂
rf1(G)q(G)|G|

)︂
a 3-coloring of G extending ψ or correctly decides that no

such 3-coloring exists.

We are now ready to derive an algorithm for 3-coloring graphs drawn in the
cylinder with precolored boundary cycles.

Theorem 15. There exists an algorithm which, given a simple connected plane
graph G, cycles C1 and C2 bounding distinct faces f1 and f2 of G, and a 3-coloring
ψ of C1 ∪C2, finds in time O(rf1,f2(G)q(G)|G|) a 3-coloring of G extending ψ or
correctly decides that no such 3-coloring exists.

Proof. If the cycles C1 and C2 are not disjoint, it suffices to split G into subgraphs
drawn in the closure of faces of the (connected) graph C1 ∪C2, and check whether
ψ extends to a 3-coloring of each of them. This can be done using the algorithm
from Theorem 14. Note that the sum of lengths of the precolored faces is upper-
bounded by the sum of lengths of f1 and f2, similarly face sizes and the values
of r and q of the individual parts sum to a value upper-bounded by the respective
values for G, up to a factor of 2. The complexity bound therefore holds. Hence,
we can assume that the cycles C1 and C2 are vertex-disjoint.

Let G⃗ be an orientation of G and let H⃗ be so that H⃗⋆ = G⃗. Let C = C1 ∪C2
and let C⃗ be the orientation of C induced by G⃗. Let z1 and z2 be the vertices
of H such that z⋆i is the face of G bounded by Ci for i ∈ {1, 2}. We view the
cycles C1 and C2 as directed so that the face z⋆i is to the right from Ci.

Let Q be any path in G from a vertex v1 ∈ V (C1) to a vertex v2 ∈ V (C2)
intersecting C1 ∪ C2 only in its endvertices, and let m = (ψ(v2) − ψ(v1)) mod 3.

We iterate over all candidate demand functions d on H, with values d(vi) fixed
as
∫︁
Ci
δψ for i ∈ {1, 2}, that is, consistent with the precoloring. Clearly, rf1,f2(G)

upper-bounds the number of possible choices for d.
By Lemma 12, it suffices to check whether for any such function d, there exists

a nowhere-zero d-flow h in H such that the restriction of h⋆ to E
(︂
C⃗
)︂

is equal to
δψ and h⋆ tension-connects C1 and C2 in respect to ψ. If such a d-flow exists, we
can in time O(|G|) turn h into a 3-coloring extending ψ. Otherwise, Lemma 12
implies that no 3-coloring of G extends ψ.

Let g1 and g2 be the faces of H − {z1, z2} such that in H, the vertex zi is
drawn in gi for i ∈ {1, 2} (since the cycles C1 and C2 are vertex-disjoint, we have
g1 ̸= g2). Note that the graph G′ = (H − {z1, z2})⋆ contains a path Q′ from g⋆1
to g⋆2 with E(Q′) = E(Q). By Observation 13, existence of a nowhere-zero d-flow
h on H is equivalent to existence of a (d/δC⃗,ψ)-flow h′ in H − {z1, z2} such that
supp(h′) = E(H − {z1, z2}) and

∫︁
Q h

′⋆ ≡ m (mod 3). By Corollary 11, we can
test whether such flow exists in time O(|d| · |G|) = O(q(G)|G|).

Since the test needs to be performed for at most rf1,f2(G) possible choices of d,
we conclude the time complexity of the algorithm is O(rf1,f2(G)q(G)|G|).

Using the ideas from the proof of Theorem 10, let us now explicitly formulate
a sufficient condition for extendability of a 3-coloring of two cycles in a plane
graph.
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Figure 2.2: Constraints

We begin by defining a few structures to express some of the constraints that
need to be satisfied for the feasibility of the flow we need.

Let G be a connected simple plane graph and let C1 and C2 be vertex-disjoint
cycles bounding its rings r1 and r2, where r2 is the outer face of G; for i ∈ {1, 2},
we view the cycle Ci as directed so that the face ri is to the right from Ci. Let
C⃗ be any orientation of C1 ∪ C2.

Let ψ be a proper 3-coloring of C1 ∪C2 and let d⋆ : F (G) → Z be a candidate
demand function such that d⋆(fi) =

∫︁
Ci
δψ for i ∈ {1, 2}.

If a path R in G has both ends in Ci for some i ∈ {1, 2} and is otherwise
disjoint from Ci and edge-disjoint from C3−i, we say R is a generalized chord
of Ci, see the left part of Figure 2.2 for an example. Let KR be the unique
contractible cycle in Ci ∪ R, that is, not containing r1 in its interior. Let B be
the path KR ∩ Ci directed so that ri is to the right of B (we say B is the base
of R). We define int⋆(R) = int⋆(KR).

Let us remark that since r2 is the outer face of G, we have r1, r2 ̸∈ int⋆(R).
We define

slackd⋆,ψ(R) = |E(R)| −
⃓⃓⃓⃓
d⋆(int⋆(R)) +

∫︂
B
δC⃗,ψ

⃓⃓⃓⃓
In the language of flows, we see the generalized chord as a cut separating

its interior from the rest of the graph. The slack of a generalized chord is the
difference between the length of the cut, and the overall contributions from its
interior and the preflow crossing the base.

A (C1, C2)-connector Q is the union of two vertex-disjoint paths, both with
one end in C1, the other end in C2, and otherwise disjoint from C1 ∪ C2, see the
right part of Figure 2.2 for an example. Let KQ be one of the two contractible
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(in respect to rings r1, r2) cycles in C1 ∪ C2 ∪Q, and for i ∈ {1, 2}, let Bi be the
path KQ ∩ Ci directed so that fi is to the right of Bi.

Analogously to the generalized chord earlier, we define

slackd⋆,ψ(Q) = |E(Q)| −
⃓⃓⃓⃓
d⋆(int⋆(KQ)) +

∫︂
B1
δC⃗,ψ +

∫︂
B2
δC⃗,ψ

⃓⃓⃓⃓

Observe that the value of slackd⋆,ψ(Q) does not depend on which of the two
cycles we choose as KQ, since d⋆(F (G)) = 0 and d⋆(fi) =

∫︁
Ci
δC⃗,ψ for i ∈ {1, 2}.

For a cycle K in G edge-disjoint from C1 ∪ C2, we let slackd⋆,ψ(K) = |K| −
|d⋆(int⋆(K))|.

An edge e of G is non-chord if it is not the case that both vertices incident
with e are contained in the same cycle Ci, for i ∈ {1, 2}. For a non-chord edge e,
we let slackd⋆,ψ(e) = 2.

A constraint is a generalized chord, a (C1, C2)-connector, a cycle edge-disjoint
from C1 ∪C2, or a non-chord edge. A set X of constraints is (C1, C2)-connecting if⋃︁
X contains a path from C1 to C2. We define slackd⋆,ψ(X) = ∑︁

T∈X slackd⋆,ψ(T ).
We are finally ready to formulate the sufficient conditions.

Lemma 16. Let G be a connected simple plane graph and let C1 and C2 be vertex-
disjoint cycles bounding its rings r1 and r2 of G. Let ψ be a proper 3-coloring
of C1∪C2 and let d be a candidate demand function on G⋆ such that d⋆(fi) =

∫︁
Ci
δψ

for i ∈ {1, 2}. If slackd⋆,ψ(T ) ≥ 0 for every constraint T and slackd⋆,ψ(X) > 2
for every (C1, C2)-connecting set X of constraints, then ψ extends to a 3-coloring
of G.

Proof. Without loss of generality, let r2 be the outer face and for i ∈ {1, 2}, we
view the cycle Ci as directed so that the face ri is to the right from Ci.

Let G⃗ be an orientation of G and let H⃗ be so that H⃗⋆ = G⃗. Let Q be any
path in G from a vertex v1 ∈ V (C1) to a vertex v2 ∈ V (C2) intersecting C1 ∪ C2
only in its endvertices, and let m ≡ ψ(v2) − ψ(v1) mod 3.

By Lemma 12, it suffices to show that there exists a nowhere-zero d-flow h
in H such that the restriction of h⋆ to E

(︂
C⃗
)︂

is equal to δψ and h⋆ tension-connects
C1 and C2, that is

∫︁
Q h

⋆ ≡ m (mod 3).
For i ∈ {1, 2}, let zi = r⋆i , and let g1 and g2 be the faces of H − {z1, z2} such

that zi is drawn in gi for i ∈ {1, 2}. Note that since the cycles C1 and C2 are
vertex-disjoint, we have g1 ̸= g2.

By Observation 13, it suffices to show there exists a nowhere-zero (d/δψ)-flow
h′ in H − {z1, z2} and

∫︁
Q h

′⋆ ≡ m (mod 3). By Corollary 11, it suffices to verify
that

slackd/δψ(K) ≥ 0 (2.8)

for every cycle K in (H − {z1, z2})⋆, and that

slackd/δψ(X) > 2 (2.9)

for every (g1, g2)-connecting chain X in (H − {z1, z2})⋆.
Consider any cycle K in (H − {z1, z2})⋆, and let T be the subgraph of G with

E(T ) = E(K) and V (T ) consisting of the vertices incident with these edges.
If g⋆1, g⋆2 ̸∈ V (K), then T is a cycle in G vertex-disjoint from C1 ∪ C2.
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If g⋆i ∈ V (K) and g⋆3−i ̸∈ V (K) for some i ∈ {1, 2}, then T is either a cycle
in G intersecting Ci in one vertex and disjoint from C3−i (and thus edge-disjoint
from C1 ∪ C2), or T is a generalized chord of Ci vertex-disjoint from C3−i.

Finally, if g⋆1, g⋆2 ∈ V (K), then T is a cycle intersecting each of C1 and C2
in one vertex, or a generalized chord of Ci intersecting C3−i in one vertex for
some i ∈ {1, 2}, or a (C1, C2)-connector.

In either case, T is a constraint. Observe that by the definition of d/δC⃗,ψ, we
have

slackd⋆,ψ(T ) = slackd/δψ(K)

Furthermore, if X is a (g1, g2)-connecting chain X in (H−{z1, z2})⋆ and X ′ is
obtained from X by transforming each cycle as described above and keeping the
edges of X that are non-chord in G, then X ′ is (C1, C2)-connecting. Therefore,
the inequalities (2.8) and (2.9) follow from the assumptions of this Lemma.

Let us remark that while the condition that slackd⋆,ψ(T ) ≥ 0 for every con-
straint T is also necessary for the extendability of ψ, indeed it is necessary for
existence of any d-flow, the condition on set of constraints is only sufficient.
A coloring can extend even if slackd⋆,ψ(X) ≤ 2 for some (C1, C2)-connecting
set X of constraints. In such a case, we are not guaranteed that the condition
of tension-connecting is satisfied (as the variety of flows may not be rich enough).
This comes down to the issue that the preflow does not change if we permute
the colors on one of the precolored components by changing each color by +1.
For example, if G contains an edge between C1 and C2, it is clearly not possible
to guarantee consistent extension for every precoloring ψ of C1 and C2, however
some precoloring ψ may extend.

2.2 Torus
In Section 2.1, we obtained a set of sufficient conditions for a graph in the cylinder
to allow an extension of a 3-coloring of its rings. In this section we look more
closely at the possible obstructions, in particular as far as the application to
coloring in the torus is concerned.

We show that by an appropriate choice of the precoloring of the rings and
handling of the (≥ 5)-faces, it is possible to systematically avoid existence of most
obstructions. We use this to show that if the edge-width of a triangle-free graph
embedded in the torus is at least 21, then the graph is 3-colorable. This result also
follows from [30], where the authors show analogous result for general surface,
however without an explicit bound on the edge-width. For our applications, we
need to show that the bound is actually small.

This result, together with earlier results and the algorithm from the previous
section, is then used to design a non-constructive 3-colorability test that runs
in linear time.

2.2.1 Constraints and Their Interactions
Suppose for contradiction that G is a 4-critical triangle-free graph drawn in the
torus with edge-width at least 21. Let C be a shortest non-contractible cycle
in G. By splitting along C, we obtain a graph G′ with two rings C1, C2. We say
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that a graph with two rings is cylindrical. In this case, we also have a natural
mapping λ between the vertices (and edges) of the rings, we denote this relation
as (G′, C1, C2, λ). We often understand G′ as a plane graph with the outer face
bounded by C2. We can now use Lemma 16 to deduce some structural properties
of G′.

We use the following characterizations to bound slack of various constraints.
Let X be a set of faces, then by S(X) we denote the multiset of lengths of the
faces in X other than 4. For a contractible cycle C in G (drawn in a surface
other than the sphere), let int⋆(C) denote the set of faces of G drawn in the open
disc bounded by C. Recall that S(G) is the census of G, the multiset of lengths
of faces of G other than 4. Note that S(int⋆(C)) is the multiset of lengths of faces
other than 4 drawn in the open disc bounded by C.

Let G be a graph and H its subgraph. We say that G is H-critical if foe each
edge e, such that e ∈ E(G) and e /∈ E(H), there exists a proper coloring of H
that does not extend into a coloring of G, but does extend into a coloring G− e.

Let k and l be integers. Consider a plane graph G of girth at least k, with
outer face of length l bound by a cycle C. Furthermore, let G be C-critical. We
denote Sk,l the set of all possible values of S(int⋆(C)). Note that the elements
represent all possible sets of lengths of all faces, excluding the outer l-face.

In the following two lemmas represent a concise collection of various results.
Together these play a key role in every analysis of the structural properties of 4-
critical graphs.

Lemma 17. [53] Let G e a plane graph of girth at least five, and let C be a facial
cycle in H of length k ≤ 11. If H is C-critical, then

(a) k ≥ 8, V (G) = V (C) and C is not induced, or

(b) k ≥ 9, H − V (C) is a tree with at most k − 8 vertices and every vertex of
V (G) − V (C) has degree at least 3 in G, or

(c) k ≥ 10 and G − V (C) is a connected graph with at most k − 5 vertices
containing exactly one cycle, and the length of this cycle is 5. Furthermore,
every tex of V (G) − V (C) has degree at least 3 in G.

Lemma 18. The following relations hold

• S4,3 = S4,4 = S4,5 = ∅,

• S4,6 ⊆ {∅},

• S4,7 ⊆ {{5}},

• S4,8 ⊆ {{6}, {5, 5}, ∅},

• S4,9 ⊆ {{7}, {6, 5}, {5, 5, 5}, {5}}.

• S4,10 ⊆ {{8}, {7, 5}, {6, 6}, {6, 5, 5}, {6}, {5, 5, 5, 5, 5, 5}, {5, 5, 5, 5}, {5, 5}, ∅}

In particular, let G be a triangle-free graph with a 2-cell drawing in a surface
other than the sphere and let C be a contractible cycle in G not bounding a face.
If G is 4-critical, then the following claims hold.
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• |C| ≥ 6,

• if S(int⋆(C)) ̸= ∅, then |C| ≥ 7,

• if |S(int⋆(C))| ≥ 2, then |C| ≥ 8, and

• if |S(int⋆(C))| ≥ 3, then |C| ≥ 9.

Proof. We first prove that the second part of the statement is a consequence of the
first part. Suppose that G is 4-critical. Clearly, no proper 3-coloring of C extends
both to the interior and exterior of C. Consider removing any edge e of G from
the interior of C, G−e must allow a 3-coloring ψe inducing a 3-coloring of C that
extends into the interior of C in G − e but does not extend in G. We conclude
that the interior of C is indeed C-critical. By inspecting the list of values in the
first part of the Lemma, we observe that the second part is implied.

The first part of the Lemma is a collection of various results. The values of S4,l
for l ≤ 6 are implied by [53] (Theorems 9 and 10). The original proofs are due
to Gimbel and Thomassen [23], [54], [55], [27]. The other values of the statement
can then be derived through refinement defined in [28] and from knowledge of the
values of S5,l for l ≤ 10, obtained by results of Thomassen [22] and Walls [56].

For completeness, we give an example of derivation of the hardest set of values,
that is, the value S4,10. For more detail on the underlying process, refer to [53]
and [28], and for a more detailed derivation of S4,l for l ≤ 9, see [33].

A multiset S2 is a one-step refinement of a multiset S1 if for some k ∈ S1 we
have S2 = (S1 \ {k}) ∪ Z where Z is a multiset from S4,k ∪ S4,k+2. A multiset
S2 is a refinement of S1 if S2 can be obtained from S1 by a (possibly empty)
sequence of one-step refinements. By [28] (Lemma 5.2), every element of S4,k is
either {k − 2} or a refinement of some element from S4,k−2 ∪ S5,k.

Assuming we already know the values S4,l for l ≤ 10, we need the value of S5,10
to proceed with the refinement. We use the Lemma 17. We see that for every G
critical in respect to an outer cycle C of length 10, the interior of C either contains
only a chord, or a single vertex of degree 3, or two connected vertices of degree 3,
or five internal vertices of degree 3 forming a 5-cycle disjoint from C. By counting
edges, we get that in the latter three cases the sum of lengths of internal faces
is 16, 20 and 30 respectively, with the total number of faces being 3, 4 and 6
respectively. Clearly, in the latter two cases all of the faces are 5-faces, while
in the first of the three we get exactly one 6-face and two 5-faces. We conclude
that S5,10 ⊆ {{7, 5}, {6, 6}, {6, 5, 5}, {5, 5, 5, 5}, {5, 5, 5, 5, 5, 5}}. Together with
the set S4,8 ⊆ {{6}, {5, 5}, ∅} we now consider all refinements. However, all
one-step refinements produce other elements we already obtained.

Based on a fine structural analysis and aided by a simple computer-assisted
search, the following is known about the census of triangle-free 4-critical graphs
in the torus.

Theorem 19. [33] Let G be a 4-critical triangle-free graph with a 2-cell embedding
in the torus. Then S(F (G)) is one of {7, 5}, {6, 5, 5}, {5, 5, 5, 5}, {5, 5} or ∅.

Furthermore, as implied by the results of [32], this result is tight, as each of the
possible values of census is indeed realized, by infinitely many graphs (with the
exception of ∅ which is realized by a single graph).
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Let us consider the inner working of the algorithm from Section 2.1, namely
Theorem 15. Suppose we cut a graph G embedded in the torus along a non-
contractible cycle C into a graph G′ embedded in the cylinder. If we want to
use Theorem 15 to find out whether G is 3-colorable, we may iterate through all
precolorings of C, inducing consistent precoloring of rings of G′, and the algorithm
then iterates through candidate demand functions. If a single choice satisfies the
sufficient conditions of Lemma 16, then the 3-coloring exists. Given a graph that
is not 3-colorable, we are therefore free to choose any precoloring of C together
with any candidate demand function, and an unsatisfied constraint must exist.

In this section we consider the constraints from Lemma 16, in particular how
their slack is influenced by the free choices indicated above. In general, the slack
of constraints can be simply viewed as the relation between the length of its
boundary and the amount of flow contributed by the sinks and sources, and the
amount of flow contributed by the boundary of a ring. We show how to minimize
the contribution of precoloring (determining the amount of flow contributed by
the rings) against the slack of constraints.

Then we focus on the 4-critical graphs. According to Theorem 19 their census
is limited, and so the overall contribution of flow from sources and sinks is lim-
ited as well. For instance, if the rings are far enough apart (given a good choice
of precoloring), a connector constraint will always have a positive slack, given the
limited contribution from sources and sinks. We show that the interaction be-
tween various constrains are limited enough to allow a careful choice of a demand
function to minimize the contributions of sink and sources against the slack of all
constraints. Given these choices, we show that the coloring algorithm cannot
fail, on a graph of large edge-width, implying that such graph cannot actually be
4-critical after all.

Let C⃗ be an orientation of a cycle C and let ψ be a 3-coloring of C. In order
to maximize slackd⋆,ψ for all constraints, it is convenient if

⃓⃓⃓⃓∫︁
Q δC⃗,ψ

⃓⃓⃓⃓
is relatively

small for all subpaths Q of C. We say that ψ is tame if
⃓⃓⃓⃓∫︁
Q δC⃗,ψ

⃓⃓⃓⃓
≤ 2 for every

subpath Q of C of length at most 5. Since
∫︁
Q δC⃗,ψ and |E(Q)| have the same

parity, if |E(Q)| ∈ {1, 3, 5}, then
⃓⃓⃓⃓∫︁
Q δC⃗,ψ

⃓⃓⃓⃓
= 1. Any longer subpath Q of C can

be partitioned into paths of length 5 and one path of length |E(Q)| mod 5, giving
us the following bound.
Observation 20. Let ψ : V (C) → {0, 1, 2} be a coloring of a cycle C, let C⃗ be
an orientation of C, and let Q be a subpath of C. If ψ is tame, then⃓⃓⃓⃓∫︂

Q
δC⃗,ψ

⃓⃓⃓⃓
≤ ⌊|E(Q)|/5⌋ +m(|E(Q)| mod 5),

where m(0) = 0, m(1) = m(3) = 1, and m(2) = m(4) = 2.
Let us focus mainly on the generalized chord constraints. Let (G0, C1, C2, λ)

be obtained from a 4-critical triangle-free graph in the torus by cutting along
a non-contractible cycle. Let U be a (possibly empty) set of odd-length faces
of G0, let k and t be positive integers, and let B be a subpath of Ci for some
i ∈ {1, 2}. We say that U is (t, k)-tied to (the subpath B of) Ci if |E(B)| = t and
Ci has a generalized chord R of length k with base B such that U is exactly the
set of odd-length faces contained in int⋆(R).
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For a positive integer n, we say that U is strongly (≤ n)-tied to Ci if U is
(k, k)-tied to Ci for some k ≤ n, and U is n-loose with respect to Ci otherwise.
A face f of G0 is k-near to Ci if f ∈ int⋆(Q) for some generalized chord Q of Ci
of length at most k.

Lemma 21. Let G be a 4-critical triangle-free graph with a 2-cell drawing in the
torus of edge-width at least 15, and let C be a shortest non-contractible cycle in G.
Let (G0, C1, C2, λ) be obtained from G by splitting along C. Fix i ∈ {1, 2} and let
U be a set of odd-length faces of G0 that is (t, k)-tied to a subpath Q of Ci. Then
the following claims hold.

(a) t ≤ k

(b) If |U | = 2 and t < k ≤ 6, then (t, k) ∈ {(3, 5), (2, 6), (4, 6)}.

(c) If |U | = 2, t < k ≤ 6, U is also (t′, k′)-tied to another subpath Q′ of Ci,
t′ < k′ ≤ 6, and U is 7-loose with respect to Ci, then Q ⊆ Q′ or Q′ ⊆ Q, or
U is (3, 5)-tied to either Q ∪ Q′ or Q ∩ Q′ (and in particular the union or
intersection is a path of length three).

(d) If |U | = 2, k = t ≤ 7, U ′ is a set of odd-length faces of G0 such that
|U ′| = 2, and |U ∩ U ′| = 1, then U ′ is 7-loose with respect to Ci.

(e) If |U | ≥ 3, then U is 4-loose.

Proof. Let R be a generalized chord of Ci of length k with base Q such that U is
the set of odd-length faces of int⋆(R).

Let C ′ be the closed walk in G obtained from C by replacing Q by R. Note
that C ′ is homotopically equivalent to C, and thus C ′ is non-contractible. Since
C is a shortest non-contractible cycle in G, we have |C| − t+ k = |C ′| ≥ |C|, and
thus t ≤ k. Consequently, (a) holds.

Using (a) together with Lemma 18, we have that t+k ≥ 9 and t ≤ k implying
that k ≥ 5 and therefore (e) holds.

In the cases (b), (c), and (d), int⋆(R) contains exactly two odd-length faces,
and thus k+t is even. Furthermore, by Lemma 18, k+t ≥ 8. Hence, if t < k ≤ 6,
then (t, k) ∈ {(3, 5), (2, 6), (4, 6)}. Therefore, (b) holds.

For the cases (c) and (d), let R′ be a generalized chord of Ci of length k′ with
base Q′ of length t′, with U ′ being the set of odd-length faces of int⋆(R′), where

• in the case (c) U = U ′, and

• in the case (d) we for contradiction assume t′ = k′ ≤ 7.

Let d = k− t and d′ = k′ − t′, so that d = d′ = 0 in case (d) and d, d′ ∈ {2, 4}
in case (c) by (b). Let f1 and f2 be the faces of G0 bounded by C1 and C2. Let
∆ and ∆′ be the disks in the plane bounded by R ∪Q and R′ ∪Q′, respectively.
Consider the plane graph G′ = Ci∪R∪R′. Let D0 denote the set of faces of G′ not
contained in ∆ ∪ ∆′, and let D2 denote the set of faces of G′ contained in ∆ ∩ ∆′;
let D = D0 ∪D2. Note that if an edge e ∈ E(R ∪R′) is in the boundaries of two
faces of D, then e ∈ E(R ∩ R′). Furthermore, an edge e of Ci is incident with
a face of D distinct from fi if and only if e is contained in either both or neither
of Q and Q′.
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Hence,∑︂
f∈D

|f | ≤ k + k′ + 2|C| − (t− |E(Q ∩Q′)|) − (t′ − |E(Q ∩Q′)|)

≤ 2|C| + d+ d′ + 2|E(Q ∩Q′)|. (2.10)

Let f0 denote the face of G′ containing f3−i; clearly, f0 ∈ D0, and since C is
a shortest non-contractible cycle in G, we have |f0| ≥ |C| ≥ 15 > k + k′. Hence,
the boundary of f0 intersects Ci in at least one edge.

Let ℓ2 = ∑︁
f∈D2 |f |. If E(Q ∩ Q′) is non-empty, then the face of G′ distinct

from fi whose boundary contains E(Q∩Q′) belongs to D2 and ℓ2 ≥ 2|E(Q∩Q′)|
by (a). If E(Q ∩ Q′) = ∅, then ℓ2 ≥ 2|E(Q ∩ Q′)| trivially. Furthermore, the
odd-length faces of G drawn in ∆ ∩ ∆′ are exactly those belonging to U ∩ U ′,
and thus ℓ2 and |U ∩ U ′| have the same parity. Hence, ℓ2 is odd in the case (d),
implying ℓ2 > 2|E(Q ∩Q′)|, and since d = d′ = 0, (2.10) gives

2|C| + 2|E(Q ∩Q′)| ≥
∑︂
f∈D

|f | ≥ |fi| + |f0| + ℓ2 > 2|C| + 2|E(Q ∩Q′)|,

which is a contradiction. Therefore, (d) holds.
From now on, we assume the case (c). Then two odd-length faces of G are

drawn in ∆ ∩ ∆′, and Lemma 18 implies ℓ2 ≥ 8. We can assume that Q ̸⊆ Q′

and Q′ ̸⊆ Q, and thus |E(Q ∩Q′)| ≤ min(t, t′) − 1 ≤ 3.
Let ℓ0 = ∑︁

f∈D0\{fi,f0} |f |. By (2.10), we have

2|C|+ℓ0 +8 ≤ |fi|+ |f0|+ℓ0 +ℓ2 =
∑︂
f∈D

|f | ≤ 2|C|+d+d′ +2|E(Q∩Q′)|. (2.11)

If D0 ̸= {fi, f0}, then ℓ0 ≥ 4, and (2.11) implies d+d′ + 2|E(Q∩Q′)| ≥ 12. Since
|E(Q∩Q′)| ≤ 3, it follows that max(d, d′) ≥ 3, and thus min(t, t′) = 2. But then
|E(Q ∩ Q′)| ≤ min(t, t′) − 1 = 1, and the same argument gives max(d, d′) ≥ 5,
which is a contradiction. We conclude that D0 = {fi, f0}, and consequently
V (Q ∩ Q′) ̸= ∅, as otherwise Ci has two non-empty subpaths edge-disjoint from
Q ∪Q′, each incident with a distinct face of D0 \ {fi}.

Since the boundary of f0 contains an edge of Ci, we conclude both Q∪Q′ and
Q∩Q′ are non-empty connected subpaths of Ci (with Q∩Q′ possibly consisting
of a single vertex). Let T denote the part of the boundary of f0 edge-disjoint
from Ci. Since ∆ and ∆′ are not disjoint, observe that T is a path intersecting
Ci only in its endpoints; hence, T is a generalized chord of Ci with base Q ∪Q′,
and int⋆(T ) = U .

We claim that |E(Q ∪Q′)| ≤ 7. Indeed, since t, t′ ≤ 4, we could have |E(Q ∪
Q′)| > 7 only if t = t′ = 4 and E(Q)∩E(Q′) = ∅; but then d, d′ = 2, contradicting
(2.11). Since U is 7-loose with respect to Ci, it follows that |E(T )| > |E(Q∪Q′)|.
Furthermore, since U consists of the odd-length faces in int⋆(T ) and |U | is even,
|E(T )| and |E(Q∪Q′)| have the same parity, and thus |E(T )| ≥ |E(Q∪Q′)| + 2.

Note that |f0| = |C| + |E(T )| − |E(Q1 ∪Q2)|, and thus as in (2.11), we have

2|C| + 10 ≤ 2|C| + |E(T )| − |E(Q1 ∪Q2)| + 8 ≤ |fi| + |f0| + ℓ2

≤
∑︂
f∈D

|f | ≤ 2|C| + d+ d′ + 2|E(Q ∩Q′)|. (2.12)
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Since d, d′ ≤ 4, it follows that |E(Q ∩Q′)| ≥ 1.
If |E(Q∩Q′)| = 1, then (2.12) shows that d = d′ = 4 (and thus t = t′ = 2 and

|E(Q∪Q′)| = 3) and |E(T )| = |E(Q∪Q′)| + 2 = 5, implying that U is (3, 5)-tied
to Q ∪ Q′. If |E(Q ∩ Q′)| ≥ 2, then t, t′ ≥ 3, and thus d = d′ = 2. Hence, (2.12)
shows that |E(Q ∩ Q′)| ≥ 3. Since t, t′ ≤ 4, we have |E(Q ∩ Q′)| = 3, and thus
all the inequalities in (2.12) are tight; in particular ℓ2 = 8. Considering the face
of G′ distinct from fi whose boundary contains Q ∩ Q′ and whose length is, we
ℓ2 conclude that U is (3, 5)-tied to Q ∩Q′.

Analogously, we can bound the amount of interaction between bound sets
of faces.

Lemma 22. Let G be a 4-critical triangle-free graph with a 2-cell drawing in the
torus, and let C be a shortest non-contractible cycle in G. Let (G0, C1, C2, λ) be
obtained from G by splitting along C, let f1, . . . , f4 be distinct odd-length faces
of G, and fix i ∈ {1, 2}.

Suppose that {f1, f2} is (t1, k1)-tied to a subpath Q1 of Ci and t1 < k1 and
analogously {f3, f4} is (t2, k2)-tied to a subpath Q2 of Ci and t2 < k2. Then
|E(Q1 ∩Q2)| ≤ (t1 + t2 + k1 + k2)/2 − 8 ≤ k1 + k2 − 10.

Proof. For j ∈ {1, 2}, let Rj denote a generalized chord of Ci of length kj with
base Qj and with {f2j−1, f2j} being exactly the odd-length faces in int⋆(Rj). Let
∆j denote the open disk bounded by Qj ∪ Rj, let Dj denote the set of faces
of G′ = Ci ∪ R1 ∪ R2 drawn in ∆j \ ∆3−j, and let ℓj be the sum of the lengths
of these faces. Since f2j−1 and f2j are contained in ∆j \ ∆3−j, Lemma 18 implies
ℓj ≥ 8.

Note that if an edge e is in boundaries of two faces of D1 ∪ D2, then e ∈
E(R1 ∩ R2). Furthermore, an edge e of Ci is incident with a face of D1 ∪ D2 if
and only if e is contained in exactly one of Q1 and Q2.

Hence,

16 ≤ ℓ1 + ℓ2 ≤ k1 + k2 + |E(Q1)| + |E(Q2)| − 2|E(Q1 ∩Q2)|.

Note that tj = |E(Qj)| and kj have the same parity, since int⋆(Rj) contains
exactly two odd-length faces, and thus tj ≤ kj − 2. This implies the inequality
from the statement of the lemma.

Let G be a 4-critical triangle-free graph with a 2-cell drawing in the torus,
and let C be a non-contractible cycle in G. Let (G0, C1, C2, γ) be obtained from
G by cutting along C, and let f1 and f2 be the faces of G0 bounded by C1 and
C2.

Our goal now is to design a candidate demand function on the dual of G0
so that generalized chords gain enough slack. We do this by minimizing the
absolute value of the sources and sinks and assigning opposite signed values to
pairs of faces tied together by a generalized chord, making their contributions
cancel out.

More precisely, we say that d⋆ is a standard assignment of sources and sinks if
d⋆(F (G0)) = 0, d⋆(f) = 0 for every even-length face f ∈ F (G0), d⋆(f) ∈ {−3, 3}
for every odd-length face f ∈ F (G0), d⋆(f1) ∈ {0, 3} and d⋆(f2) = −d⋆(f1) ∈
{0,−3}, and d⋆(U) = 0 for every two-element set U of odd faces strongly (≤7)-
tied to C1 or C2.
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Note also that a standard assignment is even, 3|d⋆ and |d⋆(f)| ≤ |f | for every
f ∈ F (G0), and therefore is a candidate demand function. Let us remark that the
last condition concerning tied pairs ensures that the main contribution against
positive slack of short generalized chords comes from the precoloring of the rings
(which we can choose), not from the sources and sinks. It is however not clear
that this condition can always be met, which is the purpose of the following
lemma.

Lemma 23. Let G be a 4-critical triangle-free graph with a 2-cell drawing in the
torus of edge-width at least 15, and let C be a shortest non-contractible cycle
in G. Let (G0, C1, C2, γ) be obtained from G by cutting along C. Then there
exists a standard assignment of sources and sinks d⋆ : F (G0) → Z.

Proof. Let f1 and f2 be the faces of G0 bounded by C1 and C2. The values of d⋆
are exactly determined by the definition of a standard assignment except on odd
faces distinct from f1 and f2, where the sign of the value is not determined. We
need to choose the values on these odd faces so that d⋆(F (G0)) = 0 and the last
condition from the definition holds.

Note that G0 does not contain a path P of length less than |C|/2 between C1
and C2, as otherwise one of the three non-contractible cycles in C ∪ P in G is
shorter than C.

First we show that each face f is 7-near to at most one of C1 and C2. Suppose
not, that is, for i ∈ {1, 2} there exists generalized chord Ri of Ci such that
f ∈ int⋆(C1). The union R1 ∪R2 contains two edge-disjoint paths connecting C1
and C2. Since each path is of length at least |C|/2, we get that |E(R1)|+|E(R2)| ≥
|C|. By assumption on C, |C| ≥ 15, which is a contradiction with f being 7-near
to both C1 and C2.

Consider all pairs of odd-length faces U = {f, f ′} such that U is strongly
(≤ 7)-tied to C1 and similarly for C2. To satisfy the last condition of the standard
assignment, faces in each pair must be given opposite values.

By Lemma 21(d) and the argument in the previous paragraph, there are no
two distinct pairs U and U ′ such that U ∩ U ′ ̸= ∅. We conclude that each
odd-length face appears in at most one constraint, inducing a partial pairing
of odd-length faces. We complete the pairing, and in each pair choose arbitrarily
which of the paired faces is assigned 3 and −3. Naturally, since all non-zero values
are paired, the sum of all values is 0 as requested by the definition of a standard
assignment.

2.2.2 Satisfying Constraints
In this section, we identify the type of constraints that are potentially not satisfied
by the choices defined in the previous section.

Let G be a 4-critical triangle-free graph with a 2-cell drawing in the torus,
and let C be a non-contractible cycle in G. Let (G0, C1, C2, γ) be obtained from
G by splitting G along C, so that G0 is the obtained graph, C1 and C2 the cycles
bounding the rings of G0 and γ a natural projection of γ : V (G0) ∪ E(G0) →
V (G) ∪E(G). Let d⋆ be a standard assignment of sources and sinks. Let f1 and
f2 be the two rings of G0 bounded by C1 and C2. Let C⃗ be a cyclic orientation
of C chosen so that the paths in C1 for which f1 is to their right are mapped by
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γ to paths along C⃗ (and thus, the paths in C2 for which f2 is to their right are
mapped by γ to paths in the opposite direction to C⃗).

The (G,C, d⋆)-request is the system of all pairs (Q, s), where Q is a subpath
of C directed along C⃗ and s is a non-zero integer, such that one of the following
holds:

(Ra) G0 has a two-element set U of odd faces such that d⋆(U) ̸= 0, for some
i ∈ {1, 2}, U is (3, 5)-tied to a subpath Q′ of Ci, γ(Q′) is (up to reversal)
equal to Q, and s = (−1)id⋆(U); or

(Rb) G0 has a two-element set U of odd faces such that d⋆(U) ̸= 0, for some
i ∈ {1, 2}, U is (2, 6)- or (4, 6)-tied to a subpath Q′ of Ci, γ(Q′) is (up to
reversal) equal to Q, and s = (−1)id⋆(U); or

(Rc) G0 has a 5-face f such that for some i ∈ {1, 2}, the boundary of f intersects
Ci in a path Q′ of length two, γ(Q′) is (up to reversal) equal to Q, and
s = (−1)id⋆(f).

The (G,C, d⋆)-request R is satisfied by a 3-coloring ψ of C if
∫︁
C δC⃗,ψ = d⋆(f1)

and for every (Q, s) ∈ R,
s ·
∫︂
Q
δC⃗,ψ ≥ 0.

Note this means that the amount of flow sent across Q′ according to ψ “compen-
sates” for the flow originating in U or f according to d⋆. It turns out this suffices
to ensure extendability of ψ.

Lemma 24. Let G be a 4-critical triangle-free graph with a 2-cell drawing in the
torus of edge-width at least 21, let C be a shortest non-contractible cycle in G,
and let C⃗ be a cyclic orientation of C. Let (G0, C1, C2, γ) be obtained from G by
cutting along C, let d⋆ be a standard assignment of sources and sinks, and let ψ0
be a 3-coloring of C. If ψ0 is tame, then ψ0 does not satisfy the (G,C, d⋆)-request
R.

Proof. Suppose for a contradiction that ψ0 satisfies R. Let f1 and f2 be the rings
of G0 bounded by C1 and C2. By Theorem 19, G has at most four odd-length
faces, and |d⋆(U)| ≤ 6 for any U ⊆ F (G0) \ {f1, f2}, implying that |d⋆(U)| ≤ 9
for any U ⊆ F (G0).

Let ψ be the 3-coloring of C1 ∪ C2 corresponding to ψ0, and let δ = δC1∪C2,ψ

be the tension induced by ψ. Let us discuss possible constraints.

• Let K be a non-contractible cycle in G0 edge-disjoint from C1 ∪ C2. Since
K is non-contractible, γ(K) is non-contractible, and thus |K| ≥ 21 and
slackd⋆,ψ(K) = |K| − |d⋆(int⋆(K))| ≥ 12.

• Let K be a contractible cycle in G0 edge-disjoint from C1 ∪ C2. Since
|K| ≤ 7, then by Lemma 18 int⋆(K) contains at most one odd-length face,
and

slackd⋆,ψ(K) = |K| − |d⋆(int⋆(K))| =

⎧⎨⎩|K| if |K| is even
|K| − 3 if |K| is odd.
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If |K| ≥ 8, then slackd⋆,ψ(K) = |K| − |d⋆(int⋆(K))| ≥ |K| − 6 ≥ 2.
We observe that if slackd⋆,ψ(K) < 4 then slackd⋆,ψ(K) = 2 and either |K| =
5 and int⋆(K) = {5}, or |K| = 8 and int⋆(K) contains two odd-length faces.

• Let R be a (C1, C2)-connector consisting of paths P1 and P2. Let Q1 and
Q2 be subpaths of C1 and C2 directed so that f1 and f2 are to the right
of them, and such that K = Q1 ∪Q2 ∪ P1 ∪ P2 is a contractible cycle.
Note that there are two possible choices for Q1 and Q2, and we choose one
where |E(Q1)| + |E(Q2)| ≤ |C|. For i ∈ {1, 2}, let ai =

∫︁
Qi
δ. Since C is

a shortest non-contractible cycle in G, we have |E(P1)|, |E(P2)| ≥ |C|/2.
We have slackd⋆,ψ(R) ≥ |E(R)| − |a1| − |a2| − |d⋆(int⋆(K))| ≥ |C| − |a1| −
|a2| − 6. Since ψ is tame, Observation 20 gives |a1| + |a2| ≤ |E(Q1)|/5 +
|E(Q2)|/5 + 4 ≤ |C|/5 + 4, and thus slackd⋆,ψ(R) ≥ 4

5 |C| − 10 > 4.

• Let R be a generalized chord of Ci for some i ∈ {1, 2}. Let Q be the
base of R, and let k = |E(R)|, t = |E(Q)| and a =

∫︁
Q δ. Since C is

a shortest non-contractible cycle, we have k ≥ t and k ≥ 2. Recall that
slackd⋆,ψ(R) = k − |a+ d⋆(int⋆(R))|.

– If d⋆(int⋆(R)) = 0, then k and t have the same parity. By Obser-
vation 20, we have slackd⋆,ψ(R) ≥ 0 if k = 2, slackd⋆,ψ(R) ≥ 2 if
k ∈ {3, 4}, and slackd⋆,ψ(R) ≥ 4 if k ≥ 5.

– If |d⋆(int⋆(R))| = 3, then by parity we have k ≥ t + 1, and since G
is triangle-free, k ≥ 3. If k = 3, then R ∪ Q is a 5-cycle, and by
Lemma 18 R∪Q bounds a 5-face f . Since t = 2, (γ(Q),−d⋆(f)) ∈ R,
and since ψ satisfies R, a and d⋆(int⋆(R)) do not have the same sign.
Consequently, |a+ d⋆(int⋆(R))| ≤ 3 and slackd⋆,ψ(R) ≥ 0.
Using Observation 20, we obtain that slackd⋆,ψ(R) ≥ 0 if k ∈ {4, 5},
slackd⋆,ψ(R) ≥ 2 if k ∈ {6, 7, 8}, and slackd⋆,ψ(R) ≥ 4 if k ≥ 9.

– If |d⋆(int⋆(R))| = 6, then int⋆(R) contains exactly two odd-length faces
g1 and g2 such that d⋆(g1) = d⋆(g2) ∈ {−3, 3}. Since d⋆ is a standard
assignment, if k ≤ 7 then k ≥ t+ 2.
If k ≤ 5, then by Lemma 21(b) we have k = 5 and t = 3. Hence,
(γ(Q),−d⋆(int⋆(R))) ∈ R, and since ψ satisfies R, a and d⋆(int⋆(R))
have opposite signs.
Consequently |a+d⋆(int⋆(R))| ≤ 5 and slackd⋆,ψ(R) ≥ 0. If k = 6, then
an analogous argument gives |a+d⋆(int⋆(R))| ≤ 6 and slackd⋆,ψ(R) ≥ 0.
Once again, by Observation 20, we have slackd⋆,ψ(R) ≥ 0 if k ∈
{7, 8, 9}, slackd⋆,ψ(R) ≥ 2 if k ∈ {10, 11, 12}, and slackd⋆,ψ(R) ≥ 4
if k ≥ 13.

Hence, slackd⋆,ψ(R) ≥ 0 for every constraint R. Since G is 4-critical, ψ0
does not extend to a 3-coloring of G, and ψ does not extend to a 3-coloring
of G0. By Lemma 16 we conclude that there exists a (C1, C2)-connecting set X
of constraints such that slackd⋆,ψ(X) ≤ 2. In particular, we have slackd⋆,ψ(R) ≤ 2
for every R ∈ X.

According to the preceding analysis, we conclude thatX contains for i ∈ {1, 2}
either a non-chord edge Ri with one end in Ci or a generalized chord Ri of Ci, and
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in case R1 and R2 are generalized chords with slackd⋆,ψ(R1) = slackd⋆,ψ(R2) = 0,
X can additionally contain a non-chord edge R3 or a contractible cycle R3 with
slackd⋆,ψ(R3) = 2.

Note that G0 contains a path from C1 to C2 of length at most ∑︁R∈X⌊|R|/2⌋,
and by a straightforward case analysis using the description of constraints R with
slackd⋆,ψ(R) ≤ 2 we obtained above, this path has length at most 10. However,
since C is a shortest non-contractible cycle in G, any such path must have length
at least |C|/2 > 10, which is a contradiction.

Lemma 25. If G is a 4-critical triangle-free graph drawn in the torus, then the
edge-width of the drawing is at most 20.

Proof. Suppose for a contradiction that G is a 4-critical triangle-free graph with
a 2-cell drawing in the torus of edge-width at least 21. We prove the statement
by constructing a 3-coloring satisfying the request of Lemma 24.

Let C be a shortest non-contractible cycle inG. Let (G0, C1, C2, γ) be obtained
from G by cutting along C. Let C⃗ be a cyclic orientation of C chosen so that the
paths in C1 for which f1 is to their right are mapped by γ to paths along C⃗.

We say that an odd-length face f ∈ F (G0) \ {f1, f2} is isolated if no two-
element set containing f is strongly (≤7)-tied to C1 or C2, and that f is aligned
if for some i ∈ {1, 2}, f is 7-near to Ci and d⋆(f) = (−1)i ·3. Let d⋆ be a standard
assignment of sources and sinks such that the number of aligned isolated faces is
maximum. Let R be the (G,C, d⋆)-request.

If |C| is odd, let ψ0 be a 3-coloring of C where vertices in order have colors

0,1,2, 1, 2,1,2,0, 2, 0,2,0,1 (2.13)

followed by 0, 1 repeated (|C| − 13)/2 times; if |C| is even, let ψ0 be a 3-coloring
of C where vertices in order have colors

0,1,2, 1,2,1,0, 1 (2.14)

followed by 0, 1 repeated (|C| − 8)/2 times. The boldface emphasizes the places
where δC⃗,ψ0

(e1) = δC⃗,ψ0
(e2) for two consecutive edges e1 and e2 of C; clearly, ψ0

is tame and
∫︁
C δC⃗,ψ0

= d⋆(f1). For k ∈ {1, . . . , |C|−1}, let ψk denote the coloring
of C obtained by rotating ψ0 on C by k vertices. We say the index k is killed by
(Q, s) ∈ R if s ·

∫︁
Q δC⃗,ψk < 0. By Lemma 24, R is not satisfied, and thus every

index k ∈ {0, . . . , |C| − 1} is killed by some element of R.
Let U+ and U− be the set of faces of F (G0) \ {f1, f2} to that d⋆ assigns the

value 3 and −3, respectively. Recall that by Theorem 19, G has at most 4 odd-
length faces, and thus |U+| = |U−| ≤ 2. For i ∈ {1, 2}, let U+

i denote those of the
faces in U+ that are 7-near to Ci; U−

i is defined analogously. Let us now discuss
the elements of R arising from U+. Since C is a shortest non-contractible cycle
and |C| ≥ 21, the sets U+

1 and U+
2 are disjoint.

• If |U+
1 | ≤ 1 and |U+

2 | ≤ 1, then U+ only contributes to R by (Rc): U+
1

may contribute (Q1,−3) and U+
2 may contribute (Q2, 3) for some subpaths

Q1, Q2 ⊂ C of length two. An inspection of the coloring ψ0 shows that
in total the contributed elements kill at most 3 indices if |C| is odd and
at most two indices if |C| is even.
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• Suppose |U+
1 | = 2 (and thus U+

2 = ∅). Note that U+
1 is 7-loose with respect

to C1, since d⋆ is a standard assignment of sources and sinks.

– If U+
1 is (3, 5)-tied to a subpath Q of C1, then U+ contributes to R

the element (Q,−6), and by Lemma 21(c) can additionally contribute
only elements (Q′, s) where s ∈ {−3,−6} and Q′ is either a length-two
subpath or a length-four superpath of Q; and observe that each index
killed by (Q′, s) is also killed by (Q, s). Consequently, the elements
contributed by U+ kill (|C| + 9)/2 indices if |C| is odd and |C|/2
indices if |C| is even.

– If U+
1 is not (3, 5)-tied to C1, but is (4, 6)-tied to a subpath Q of C1,

then U+ contributes to R the element (Q,−6), and by Lemma 21(b)
and (c) can additionally contribute only elements (Q′, s) where s ∈
{−3,−6} and Q′ is a length-two subpath of Q. Note that each index
killed by (Q,−6) is also killed by (Q′,−3) for some length-two subpath
of Q, and by considering three consecutive length-two subpaths of C,
we conclude the elements contributed by U+ kill at most 9 indices if
|C| is odd and at most 3 indices if |C| is even.

– If U+
1 is neither (3, 5)-tied nor (4, 6)-tied to C1, then by Lemma 21(b)

and (c) contributes to R either one element (Q1,−6) for a length-
two subpath Q1, or (by (Rc)) two elements (Q1,−3) and (Q2,−3)
for length-two subpaths Q1 and Q2. Consequently, the elements con-
tributed by U+ kill at most 6 indices if |C| is odd and at most 2 indices
if |C| is even.

• The case that |U+
2 | = 2 is symmetric, but the signs are switched; hence,

in the three considered subcases, the elements contributed by U+ kill

– (|C| − 9)/2 indices if |C| is odd and |C|/2 indices if |C| is even,
– no indices if |C| is odd and at most 3 indices if |C| is even, and
– no indices if |C| is odd and at most 2 indices if |C| is even, respectively.

The situation for U− is symmetric, up to switching of signs. Let us first consider
the case that |C| is even. Since all indices are killed and |C|/2 > 3, this implies
each of U+ and U− is (3, 5) tied to one of C1 and C2, and by the preceding
analysis, each index is killed by exactly one of elements (Q+, s+) and (Q−, s−)
of R, where Q+ and Q− are length-three subpaths of C and s+, s− ∈ {−6, 6}.
Without loss of generality, we can assume that the index 0 is killed by (Q+, s+)
and in ψ0, the path Q+ covers the first four colors of (2.14); all other cases are
symmetric. Then also 1, |C| − 1, and |C| − 2 are killed by (Q+, s+), and thus
none of them is killed by (Q−, s−). This is only possible if Q− covers the last
four colors of (2.14). However, then 2 is killed by neither of the elements, which
is a contradiction.

Therefore, |C| is odd. We can by symmetry assume that at least |C|/2 > 9
indices are killed by elements contributed by U+, and thus |U+| = 2 and U+ is
(3, 5)-tied to C1. If |U−

2 | = 2, then since d⋆ is a standard assignment of sources
and sinks, all elements of U+ ∪ U− are isolated but not aligned, and there exists
a standard assignment of sources and sinks with more isolated aligned faces,
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obtained by assigning −3 to faces in U+ and +3 to faces in U−, contradicting
the choice of d⋆. Hence, |U−

2 | ≤ 1. Since all indices are killed, the elements
contributed by U− kill at least (|C| − 9)/2 > 3 indices. It follows that |U−

1 | = 2
and U− is (3, 5)-tied to C1. By the preceding analysis, each index is killed by
exactly one of elements (Q+,−6) and (Q−, 6) of R, where Q+ and Q− are length-
three subpaths of C; and by Lemma 22, Q+ and Q− are edge-disjoint. Without
loss of generality, we can assume that in ψ0, the path Q+ starts two vertices
before the first color of (2.13), and thus (Q+,−6) kills 0, 1, 2, and 3. Hence,
(Q−, 6) does not kill 0, 1, 2, and 3, which is only possible if Q− is shifted by 5 or
10 vertices to the right from Q+ in (2.13). However, then |C| − 2 is not killed by
either of the elements, which is a contradiction.

2.3 Templates
Before combining the results of Sections 2.1 and 2.2 into algorithmic applications
in Section 2.4, we take a detour into a very different approach. We will present
analysis of the structure of triangle-free 4-critical graphs embedded in the torus
based on exhaustive search performed by a computer. The results presented
played a significant role in inspiring the analysis in Section 2.2. In fact, the
computer assisted proof shows that even stronger results should be obtainable
by a more detailed treatment of the constraints, however, the tools of our choice
seem to fall short of providing theoretical basis for replicating the full extent
of these results purely theoretically.

The content of this section is a shorter version of [32], focusing more on the
features common with the results from Sections 2.2 and 2.4. The main result is
an almost-exact description of 4-critical triangle-free toroidal graphs, providing
a precise characterization of 3-colorability of triangle-free graphs drawn in the
torus, and in principle also a linear-time decision algorithm to test 3-colorability.
There are infinitely many such 4-critical graphs, however there are only a few
faces in these graphs other than 4-faces. A typical 4-critical graph is therefore
a huge near-quadrangulation with at most four faces of length 5, 6 or 7 floating
somewhere among the other 4-faces. We call these faces long faces.

Let us consider the behavior of nowhere-zero flows in the dual of such graph.
In the spirit of representing the nowhere-zero flow as linkages and circulations,
since 4-faces do not act as sources or sinks, they essentially only conduct the
linkage connecting the long faces. It comes then as no surprise that the exact
structure of the quadrangulation stops playing any role in colorability far away
from the long faces. We therefore aim at abstracting away the quadrangulations
to the extent that does not influence the colorability in the hope of describing
the infinite class in a finite set of structures that can then be studied.

Thomassen [23] proved that every graph embedded in the torus without con-
tractible (≤ 4)-cycles (but possibly with non-contractible triangles or 4-cycles)
is 3-colorable. Moreover, every contractible 4-cycle in an embedded 4-critical
graph is know to bound a face. Consequently, every 4-critical triangle-free graph
G drawn in the torus has a 4-face. A natural way of dealing with 4-faces is to
identify opposite vertices of one of them, effectively removing it from the graph.
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2.3.1 Collapsing 4-faces and Reduction Operation
Consider a graph G embedded in a surface and a 4-face f of G bounded by
the cycle v1v2v3v4. Let G′ be the graph drawn in the torus obtained from G by
identifying v2 with v4 and suppressing the parallel edges from the resulting vertex
v to v1 and v3. Informally, we obtain an embedding of G′ naturally by sliding the
unified verticies to the same location within f .

Let P be the path v1vv3 in G′. We say that G′ is obtained from G by collapsing
f to P . Let us remark that there are two ways to collapse a 4-face, to path v1vv3
or v2vv4, we say that these collapses are performed in different directions.

Observation 26. Let G be a graph drawn in a surface, f its 4-face and G1, G2
be graphs obtained from G by collapsing f in . Then the following hold:

• If G is not 3-colorable, then neither G1 nor G2 is 3-colorable.

• If G is 3-colorable, then at least one of G1, G2 is 3-colorable.

• Any coloring of G1 and G2 extends to a coloring of G.

Proof. If we have a 3-coloring of G1 or G2, we may naturally modify it to 3-color
G as well, by coloring the two extra vertices in G by the color of their unifications
of Gi. This implies the first and the last point. On the other hand, if we have a 3-
coloring of G, then it must assign the same color to at least one pair of opposite
vertices of f . Collapsing f in the direction that unifies these vertices produces
a graph that is 3-colored by a natural modification of the coloring of G. This
implies the latter point.

This operation is of particular interest for the study of triangle-free 4-critical
graphs, because it reduces size of the graph. In particular, when applied to a 4-
critical graph G, the resulting graph G′ contains a (smaller) 4-critical subgraph
H, although possibly not a triangle-free one. If G′ is also triangle-free, we say
that H is a reduction of G.

In [33], we proved the following technical lemma relating H to a subgraph
of G (there are several cases depending on whether the edges vv1 and vv3 and
the vertices v1 and v3 belong to H or not), see Figure 2.3 for an illustration. The
Lemma serves mainly as a prescription of how to inverse the reduction operation.

Lemma 27 ( [33] Lemma 17). Let G be a 4-critical triangle-free graph drawn
in the torus and let H be a 4-critical subgraph of a graph obtained from G by
collapsing a 4-face. If H is triangle-free, then there exists

• a subgraph G1 of G whose drawing in the torus is 2-cell, and

• a path v2zv4 contained in the boundary of a face f0 of G1, such that f0 is
not a face of G,

such that one of the following claims holds.

(i) H is obtained from G1 by identifying v2 with v4 to a new vertex v within f0
and suppresing the resulting 2-face vz, or

(ii) H is obtained from G1 by identifying v2 with v4 to a new vertex v within f0
and deleting both resulting edges between v and z, or
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v1
v

v3 = z
v1

v2
v3 = z

v4

f0

(i) vz ∈ E(H) for some z ∈ {v1, v3}

v
v3 = z

v1

v2

v3 = z
v4

f0

(ii) vv1, vv3 /∈ E(H), z ∈ V (H) for some z ∈ {v1, v3}

v
v1

v2

v3 = z
v4

f0 f1

(iii) v1, v3 /∈ V (H)

Figure 2.3: A subgraph G1 of G (on the right side) corresponding to a reduction H
of G (on the left side). Blue edges and vertices indicate parts of G not belonging
to G1.
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(iii) z has degree two and it is incident with two distinct faces f0 and f1 in G1,
f1 is not a face of G, and H is obtained from G1 by contracting both edges
incident with z.

Note that no parallel edges except for those explicitly mentioned in the state-
ment of Lemma 27 are created by the identification of v2 with v4 (in particular,
when the collapsed 4-face of G is bounded by a cycle v1v2v3v4 and z = v3, at most
one of the edges v1v2 and v1v4 belongs to G1; this is also the reason why we can
assume f0 is not a face of G).

Lemma 27 is useful in conjunction with the basic properties of critical graphs,
stated in Lemma 18. The graph G can be obtained from its reduction H by
first finding its subgraph G1 with properties described in Lemma 27, then filling
some of the faces of G1 by graphs drawn in a disk and critical with respect to the
boundary cycle.

The reduction operation forms a natural hierarchy within the class of triangle-
free 4-critical graphs and a natural framework to either reduce its graphs of any
size down to small instances, and to generate the whole infinite class from a finite
seed. We say that G is irreducible if collapsing of any 4-face in any direction
produces a triangle. In another paper, we have identified all irreducible graphs.

Theorem 28 (Dvořák and Pekárek [33]). There are only four non-homeomorphic
irreducible graphs drawn in the torus: I4, I5, I

a
7 , I

b
7, as depicted in Figure 2.4.

(a) I4 (b) I5 (c) Ia7 (d) Ib7

Figure 2.4: Irreducible 4-critical graphs drawn on torus. Red and blue faces are
5- and 7-faces, respectively.

As an example why this is useful, using the census information about criti-
cal graphs in disks from Lemma 18, one can inductively prove Theorem 19 by
considering how census may change when the reduction is reversed. See [33] for
details.

For the purposes of this paper, we need to describe the inverse of the reduction
operation in more detail, in the setting of templates. For this purpose, we describe
several operations describing the necessary steps in a more abstract setting.

A template T consists of a graph GT 2-cell embedded in the torus and a func-
tion θT assigning to each face of GT a multiset of integers greater or equal to
five such that ∑︁ θT (f) ≡ |f | (mod 2) for every face f ∈ F (GT ). We say a graph
H 2-cell embedded in the torus is represented by the template T if there exists
a homeomorphism κ of the torus mapping GT to a subgraph of H, such that for
each face f of GT , θT (f) is equal to the census of the set of faces of H drawn
in κ(f).
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We say a face f ∈ F (GT ) is proper if either |f | = 4 and θT (f) = ∅, or
θT (f) = {|f |}. By Lemma 18 we see that that if G is a triangle-free 4-critical
graph represented by template T via a homeomorphism κ and f is a face of GT

that is proper, then κ(f) is a face of G. On the other hand, each non-proper face
f of GT bounded by the facial walk C corresponds to a κ(C)-critical subgraph
of G of census θT (f).

Let T be a template such that every face f with θT (f) ̸= ∅ is proper, we say
that T is direct. Note that direct template reflects exact positions of all (≥ 5)-
faces of any represented graph, and allows the represented graphs to differ only
in quadrangulations of some areas of the torus.

A template T is relevant if

• the graph GT is triangle-free,

• ⋃︁
f∈F (GT ) θT (f) ∈ {∅, {5, 5}, {5, 5, 5, 5}, {5, 5, 6}, {5, 7}}, and

• for every face f , θT (f) ∈ S4,|f | ∪ {{|f |}} if |f | ≠ 4 and θT (f) = ∅ if |f | = 4.

By Theorem 19, if a triangle-free 4-critical graph is represented by a template
T , then T is relevant.

2.3.2 3-colorability of Templates
Consider a graph G with a proper coloring φ by the elements of Z3, and let
ωφ : E(G) → {−1,+1} be the tension of φ. Let W be a closed walk, we use the
notation ωφ(W ) =

∫︁
W tφ. For a 2-cell face f , if W is the closed walk bounding f

in the clockwise direction, then we define ωφ(f) =
∫︁
W ωφ.

Note that if W is a cycle, then φ can be extended in a natural way to a continu-
ous mapping from the drawing of the cycle to a triangle in the plane, representing
the three colors of φ, and in this representation ωφ(W ) is equal to three times
the winding number of the corresponding closed curve around the interior of the
triangle; thus, we will call ωφ(W ) the winding number of φ on W (ignoring the
factor of three for convenience).

Recall the following properties of tension functions:

Observation 29. Let G be a graph 2-cell embedded in an orientable surface, let φ
be a 3-coloring of G, let H be a subgraph of G, W a clockwise facial walk of a face
f of H, and m = |W |. Then

• ωφ(f) = ∑︁
g∈F (H),g⊆f ωφ(g)

• 3|ωφ(W ), ωφ(W ) ≡ m (mod 2), and |ωφ(W )| ≤ m

• In particular, if W has length 4, then ωφ(W ) = 0.

• ∑︁
f∈F (G) ωφ(f) = 0

We need the following important result. For a set F of faces and an integer
k, a winding number assignment summing to k is a function n : F → Z such that∑︁
f∈F n(f) = k and for every f ∈ F , n(f) is divisible by 3, n(f) has the same

parity as |f |, and |n(f)| ≤ |f |. This notion of a winding number of a coloring
around a face is essentially dual to the notion of a candidate demand function.
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Lemma 30 ([52, a reformulation of Lemma 5]). Let G be a graph with a 2-cell
drawing in an orientable surface, let H be a subgraph of G, and let f be a 2-cell
face of H. Let φ be a 3-coloring of H and let F be the set of faces of G contained
in f . The coloring φ does not extend to a 3-coloring of the subgraph of G drawn
in the closure of f if and only if for every winding number assignment n for F
summing to ωφ(f), either

(i) there exists a path P in G drawn in f and intersecting the boundary of f
exactly in its endpoints, and denoting by Q a part of the clockwise bound-
ary walk of f between the endpoints of P and by F ′ ⊆ F the set of faces
contained in the part of f bounded by Q+ P , we have⃓⃓⃓⃓

ωφ(Q) −
∑︂
f∈F ′

n(f)
⃓⃓⃓⃓
> |E(P )|;

or,

(ii) there exists a cycle C in G drawn in f and intersecting the boundary of f
in at most one point, and denoting by F ′ ⊆ F the set of faces contained
in the part of f bounded by C, we have we have⃓⃓⃓⃓ ∑︂

f∈F ′
n(f)

⃓⃓⃓⃓
> |C|.

For a multiset I of positive integers, let us analogously define a winding number
assignment summing to k as a function n : I → Z such that ∑︁i∈I n(i) = k
and for every i ∈ I, n(i) is divisible by 3, n(i) has the same parity as i, and
|n(i)| ≤ i. Let ω(I) be the set of all integers k such that there exists a winding
number assignment for I summing to k. A proper 3-coloring of a template T is
a proper 3-coloring φ of GT such that ωφ(f) ∈ ω(θT (f)) for every face f ∈ F (GT ).
A justification for this definition is the following fact.

Lemma 31. Let T be a template and let φ be a proper 3-coloring of GT . Then φ
is a proper 3-coloring of T if and only if there exists a graph G represented by T
(via a homeomorphism κ) such that φ ◦ κ−1 extends to a proper 3-coloring of G.

Proof. Suppose that there exists a graph G represented by T with a 3-coloring
ψ extending φ ◦ κ−1, i.e., φ(v) = ψ(κ(v)) for every v ∈ V (GT ). Let s = 1 if
κ preserves orientation and s = −1 if κ reverses the orientation. For any face
f ∈ F (GT ), let Wf denote the closed walk of G bounding κ(f) in the clockwise
direction and let Ff (G) denote the set of faces of G contained in κ(f). By
Observation 29, we have

ωφ(f) = s · ωψ(κ(Wf )) = s ·
∑︂

g∈Ff (G)
ωψ(g).

Since θT (f) is the census of Ff (G), Observation 29 implies ωφ(f) ∈ ω(θT (f)).
Hence, φ is a proper 3-coloring of T .

The converse is proved by filling in the faces of GT by a suitably generic
subgraphs (avoiding short paths between points on the boundary and short sep-
arating cycles) with faces of appropriate census, so that Lemma 30 implies φ
extends to a 3-coloring of these subgraphs. As we will not need this implication,
the details are left to the reader.
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We say that a template T is 3-colorable if it has a proper 3-coloring. Note that
not all realizations of a 3-colorable template are 3-colorable, but the converse is
true, as is easy to see from Lemma 31.

Corollary 32. If G is represented by a template T and T is not 3-colorable, then
G is not 3-colorable.

Testing whether a template is 3-colorable is of course NP-hard, but for reason-
ably small templates, a brute-force algorithm enumerating all proper 3-colorings
of GT and testing the winding number conditions for each is fast enough for our
purposes.

Throughout the rest of this section, let T be a template.

2.3.3 Operations on Templates
Hiding, Revealing, Subtemplates

Let e be an edge of GT , where either e is incident with two distinct faces or with
a vertex v of degree one. Then T ⋄ e denotes a template obtained from T as
follows: in the former case GT⋄e = GT − e, in the latter case GT⋄e = GT − v.
Let fe denote the face of GT − e in which e used to be drawn, and let X be the
set of (at most two) faces of GT incident with e. The function θT⋄e matches θT
on F (GT ) \X, and θT⋄e(fe) = ⋃︁

θT (X). We say that T ⋄ e is obtained from T by
hiding the edge e. Conversely, we say that T is obtained from T ⋄ e by revealing
the edge e. Note that revealing an edge may add new vertex of degree one into
the template.

A template T ′ is a subtemplate of T if a template homeomorphic to T ′ is
obtained from T by repeatedly hiding edges. Equivalently, there exists a home-
omorphism κ of the torus mapping GT ′ to a subgraph of GT , such that for each
face f ′ of GT ′ , we have

θT ′(f ′) =
⋃︂

f∈F (GT ),f⊆κ(f ′)
θT (f).

Note that if a graph is represented by T , then it is also represented by T ′.

Splitting

Let I be a multiset of integers. We say a multiset A is obtained from I by splitting
if A is obtained from I by

• removing an element of value 6, or

• replacing an element of value i ≥ 7 by an element of value i− 2, or

• replacing an element of value i ≥ 8 by two elements of values i1 and i2 such
that i1, i2 ≥ 5 and i1 + i2 = i+ 2.

For a face f ∈ F (GT ) with θT (f) ̸= ∅ and max θT (f) ≥ 6, we say a template
T ′ is obtained from T by splitting inside f if GT ′ = GT , θT ′(g) = θT (g) for
g ∈ F (GT ) \ {f}, and θT ′(f) is obtained from θT (f) by splitting. Note that if
H is a triangle-free graph represented by T via a homeomorphism κ and we add
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a chord to a face h of H (splitting it into two faces) so that the resulting graph H ′

is triangle-free, then H ′ is represented by a template obtained from T by splitting
inside f , where f is the face of GT such that h ⊆ κ(f).

Filling

We say a multiset A is a filling of a multiset I if A is obtained from I by replacing
each element i ∈ I by the elements of a multiset belonging to {{i}} ∪ S4,i. We
say that a template T ′ is obtained from T by filling if GT ′ = GT and θT ′(f) is
a filling of θT (f) for f ∈ F (GT ). By the definition of the sets S4,i, if H is a graph
represented by T and H ′ is a 4-critical triangle-free supergraph of H in the torus,
then H ′ is represented by a filling of T .

Boosting

We say a multiset A is obtained from a multiset I by boosting if either A = I or
A is obtained from I by replacing an element of value i by the elements of some
multiset from S4,i+2.

This operation interprets mainly the case of (iii) of Lemma 27. In particular,
reverting a collapse of a 4-face can increase a length of at most two faces by 2.
When these faces are represented as faces of a template, but abstracted via the
θ function, the corresponding values are boosted in the reverse reduction.

Partial Amplification

Note that a vertex v of a graph G can appear in the boundary of a face f several
times. The following definition is used to indicate a particular incidence of f
with v. We fix an open neighborhood δ of v small enough so that no other vertex
appears in δ, and for each edge e intersecting δ, e is incident with v and e ∩ δ is
an initial segment of e starting in v. An angle of f at v is an arcwise-connected
subset a of δ after removing the drawing of G such that a ⊂ f .

A partial amplification of T is a template obtained in one of the following
ways:

(i-a) For some face f ∈ F (GT ), we change θT (f) to a multiset obtained from it
by boosting.

(i-b) For a vertex v of GT , we first either choose an edge e incident with v, or
reveal an edge e incident with v. Then we choose an angle a of a face f at v,
add an edge e′ parallel to e so that e and e′ bound a 2-face f ′, and split the
vertex v into two vertices so that f ′ merges with the angle a. Finally, we
change θT (f) to a multiset obtained from it by boosting.

(ii-a) For some face f ∈ F (GT ), we split a face inside f and then change θT (f)
to a multiset obtained from it by boosting.

(ii-b) For a vertex v of GT and incident face f , we split a face inside f , then
reveal an edge e incident with v and drawn in f . Then we choose an angle
a of a face f ′ at v, add an edge e′ parallel to e so that e and e′ bound
a 2-face f ′′, and split the vertex v into two vertices so that f ′′ merges with
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the angle a. Finally, we change θT (f ′) to a multiset obtained from it by
boosting.

(iii-a) For some face f ∈ F (GT ), we change θT (f) to a multiset obtained from it
by boosting twice.

(iii-b) For a vertex v of GT and distinct angles a1 and a2 of (not necessarily
distinct) faces g1 and g2 at v, we split v into two vertices v2 and v4 and add
a new vertex z and a path v2zv4 so that the angles a1 and a2 now extend
along this path. Then we change θT (g1) and θT (g2) to multisets obtained
from them by boosting (boosting twice when g1 = g2).

Comparing this definition with Lemma 27 (the “a” cases corresponding to the
situation where the vertex v discussed in the Lemma does not belong to GT )
and using the interpretations of the operations of revealing an edge, splitting and
boosting we introduced in this section, we conclude the following lemma holds.

Lemma 33. Let G be a 4-critical triangle-free graph drawn in the torus and let
H be a 4-critical subgraph of a graph obtained from G by collapsing a 4-face;
suppose H is triangle-free and let G1 ⊆ G, f0 and possibly f1 be as described
in Lemma 27. Let G2 be the subgraph of G obtained from G1 by, for i ∈ {0, 1},
adding the vertices and edges of G drawn in fi. If H is represented by a template
T , then G2 is represented by a partial amplification of T .

Proof. We give the argument in the case (ii) from the statement of Lemma 27,
the arguments in the remaining two cases are similar.

Let H ′ be the graph obtained from G1 by identifying v2 with v4 to a new
vertex v within f0 and let g be its 2-face bounded by the edges from v to z. Let
g0 be the face of H ′ corresponding to f0 and let a0 be the angle of g0 such that g
merges with a0 when we split v back to v2 and v4.

Without loss of generality, assume the homeomorphism showing that H is
represented by T is the identity. Let f be the face of H in which the edges
between v and z are drawn in H ′. A template T ′ representing H ′ is obtained
from T by splitting inside f and in case that v ∈ V (GT ), additionally revealing
the edges e and e′ between v and z.

If v ∈ V (GT ), then let f ′ be the face of GT ′ and a its angle containing the
angle a0. As described in more detail after the definition of the boosting operation,
a template representing G2 is obtained from T ′ by splitting the vertex v into two
vertices v2 and v4 so that the 2-face bounded by e and e′ merges with the angle
a, and changing θT ′(f ′) to a multiset obtained from it by boosting. This matches
the case (ii-b) from the definition of partial amplification. If v ̸∈ V (GT ), and
thus v is drawn inside f , we achieve the same effect just by boosting the multiset
θT ′(f ′), matching the case (ii-a).

Amplification

An amplification of T is a filling of a partial amplification of T . Since the graph
G2 in Lemma 33 is a subgraph of G, a template representing G is obtained from
one representing G2 by filling. An example of the amplification operation is given
on the right in Figure 2.5.
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Figure 2.5: The process of deriving a critical template for a 4-critical triangle-free
graph G from a template for its reduction H.
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Corollary 34. Let G be a 4-critical triangle-free graph drawn in the torus and
let H be a 4-critical subgraph of a graph obtained from G by collapsing a 4-face.
If H is triangle-free and H is represented by a template T , then G is represented
by an amplification of T .

However, note that even if T is not 3-colorable, some of its amplifications can
be 3-colorable. Next, we deal with this issue.

2.3.4 Making a Template Non-3-colorable
The following definitions are motivated by Lemma 30(i), essentially restating
what an obstruction to extendability of a 3-coloring may look like from the point
of view of templates. Consider a template T and let f be a face of GT . A strut of f
is a directed path P whose endpoints s and t are vertices of GT in the boundary
of f , and the rest of P is drawn inside f . For a strut P , let R(P ) denote the
subwalk of the clockwise boundary walk of f starting in t and ending in s, and let
r(P ) denote the part of f bounded by the cycle formed by the concatenation of P
and R(P ). Consider a proper 3-coloring φ of T and a winding number assignment
n for θT (f) summing to ωT (φ). An f -barrier for (φ, n) is a pair (P, I), where P
is a strut of f and I is a multisubset of θT (f) such that⃓⃓⃓⃓

ωφ(R(P )) −
∑︂
i∈I

n(i)
⃓⃓⃓⃓
> |E(P )|.

A set B of f -barriers is drawing-consistent if the intersection of the drawings
of any two of the struts is a union of vertices and edges; in such a case, let ⋃︁B
denote the graph consisting of the union of the struts. We say that B blocks φ if
for every winding number assignment n for θT (f) summing to ωT (φ), B contains
an f -barrier for (φ, n).

Given a system B = {Bf : f ∈ F (GT )}, where Bf is a drawing-consistent set
of f -barriers for each face f ∈ F (GT ), a realization of B is a template T ′ such
that

GT ′ = GT ∪
⋃︂

f∈F (GT )

⋃︂
Bf ,

T is a subtemplate of T ′, i.e., every face f ∈ F (GT ) satisfies

θT (f) =
⋃︂

h∈F (G′
T ),h⊆f

θT ′(h),

and for every f ∈ F (GT ) and (P, I) ∈ Bf ,

I =
⋃︂

h∈F (GT ′ ),h⊆r(P )
θT ′(h).

The last condition expresses that in the realization, the values from I are ex-
actly those assigned to the faces of the realization contained in r(P ). For this
reason, a system B does not necessarily have a realization even when it is drawing-
consistent, since it may not be possible to choose θT ′ so that the last condition
holds. On the other hand, it may also be possible to choose θT ′ (and thus a realiza-
tion) in several different ways. If B has a realization, we say that it is consistent.
For a proper 3-coloring φ of T , we say that B blocks φ if there exists f ∈ F (GT )
such that Bf blocks φ. The following claim is essentially clear from the definitions
and Lemma 30.
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Lemma 35. Let T be a relevant template and let B = {Bf : f ∈ F (GT )} be
a consistent system of sets of barriers. Let T ′ be a realization of B. If B blocks
every proper 3-coloring of T , then T ′ is not 3-colorable.

Proof. Suppose for a contradiction T ′ has a proper 3-coloring φ′, and let φ be
the restriction of φ′ to V (GT ). Consider any face f of GT , and let Ff = {g ∈
F (GT ′) : g ⊆ f}. Let nf : ⋃︁g∈Ff θT ′(g) → Z be a function whose restriction to
θT ′(g) is a winding number assignment for θT ′(g) summing to ωφ′(g) for every
g ∈ Ff ; such a function nf exists, since φ′ is a proper 3-coloring of T ′.

Since T ′ is a realization of T , Observation 29 implies

ωφ(f) = ωφ′(f) =
∑︂
g∈Ff

ωφ′(g)

=
∑︂
g∈Ff

∑︂
i∈θT ′ (g)

nf (i) =
∑︂

i∈θT (f)
nf (i),

and thus nf is a winding number assignment for θT (f) summing to ωφ(f). Since
this holds for every f ∈ F (GT ), we conclude that φ is a proper 3-coloring of T .

Therefore, B blocks φ, and thus for some f ∈ F (GT ), Bf contains an f -barrier
(P, I) for (φ, nf ). Since φ′ is a proper 3-coloring of T ′ and by Observation 29, we
have

ωφ′(P +R(P )) =
∑︂

g∈F (GT ′ ),g⊆r(P )
ωφ′(g)

=
∑︂

g∈F (GT ′ ),g⊆r(P )

∑︂
i∈θT ′ (g)

nf (i)

=
∑︂
i∈I

nf (i)

Since |ωφ′(u, v)| ≤ 1 for any adjacent u, v ∈ V (GT ′), we have |ωφ′(P )| ≤ |E(P )|.
Consequently⃓⃓⃓⃓
ωφ(R(P )) −

∑︂
i∈I

n(i)
⃓⃓⃓⃓
=
⃓⃓⃓⃓
ωφ′(R(P )) −

∑︂
i∈I

n(i)
⃓⃓⃓⃓

≤
⃓⃓⃓⃓
ωφ′(P +R(P )) −

∑︂
i∈I

n(i)
⃓⃓⃓⃓
+ |E(P )| = |E(P )|,

which is a contradiction, since (P, I) is an f -barrier for (φ, nf ).

More interestingly, a converse holds as well.

Lemma 36. Let T be a relevant template. If a 4-critical triangle-free graph G is
represented by T , then there exists a consistent system B of sets of barriers which
blocks every proper 3-coloring of T such that G is represented by a realization
of B.

Proof. Without loss of generality, we can assume T represents G via the identity
homeomorphism, and thus GT ⊆ G. For a face f ∈ F (GT ), let Ff denote the
set of faces of G contained in f , and let us fix a bijection γf mapping each face
g ∈ Ff of length at least 5 to an element of θT (f) of value |g|.

Consider a proper 3-coloring φ of GT . Since G is not 3-colorable, there exists
f ∈ F (GT ) such that φ does not extend to a 3-coloring of the subgraph of G
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drawn in f . Consider any winding number assignment n for θT (f) summing to
ωφ(f). For g ∈ Ff , let n′(g) = n(γf (g)) if |g| > 4 and n′(g) = 0 if |g| = 4; then
n′ is a winding number assignment for Ff summing to ωφ(f). We now apply
Lemma 30 to φ and n′.

Suppose first that (ii) holds; let C and F ′ be as in the statement, and let
I = γf (F ′), so that

⃓⃓⃓⃓∑︁
i∈I n(i)

⃓⃓⃓⃓
> |C|. Since G is 4-critical and triangle-free,

I ∈ S4,|C|. If I = {i}, then since n is a winding number assignment, we have
|C| = |n(i)| ≤ i = max I, contradicting Lemma 18. Consequently |I| ≥ 2, and
thus Lemma 18 implies |C| ≥ 8. Since |n(5)| ≤ 3 and

⃓⃓⃓⃓∑︁
i∈I n(i)

⃓⃓⃓⃓
> |C| ≥ 8,

we have I ̸= {5, 5}, and thus Lemma 18 implies |C| ≥ 9. Since |n(6)| ≤ 6 and
|n(7)| ≤ 3, the same argument now gives I ̸= {5, 6}, I ̸= {5, 7}, and I ̸= {5, 5, 5}.
Let J = ⋃︁

h∈F (GT ) θT (h); since T is relevant and I ⊆ J , we conclude that J is
either {5, 5, 5, 5} or {5, 5, 6} and I = J . Therefore,∑︂

i∈I
n(i) =

∑︂
h∈F (GT )

∑︂
i∈θT (h)

n(i) =
∑︂

h∈F (GT )
ωφ(h) = 0

by Observation 29. Therefore,
⃓⃓⃓⃓∑︁

i∈I n(i)
⃓⃓⃓⃓
= 0 < |C|, which is a contradiction.

Therefore, (i) holds; let P be as in the statement (with F ′ = {g ∈ F (G) :
g ⊆ r(P )}) and let I = γf (F ′). Then (P, I) an f -barrier for (φ, n). Collecting
all such barriers for all proper 3-colorings φ of T and for all choices of n gives
us a consistent system B of sets of barriers which blocks every proper 3-coloring
of T , with a realization representing G.

A system B of sets of barriers is T -minimal if B blocks all proper 3-colorings
of T , but removing any barrier from any of the sets results in a sytem that no
longer blocks all proper 3-colorings of T . Note that a T -minimal system has
bounded size, and thus there are (up to homeomorphism) only finitely many T -
minimal systems and their realizations. Let us remark that a realization of a T -
minimal set of barriers may still contain a proper non-3-colorable subtemplate.

A template T ′ is critical if T ′ is not 3-colorable, but all proper subtemplates
of T ′ are 3-colorable. Observe that if a template is 3-colorable, then all its sub-
templates are also 3-colorable. Hence, a non-3-colorable template T ′′ has a critical
subtemplate, which can be obtained from T ′′ by repeatedly hiding edges whose
removal does not cause the template to become 3-colorable.

We can now combine all the results. We say that a template T3 is grown from
a template T if there exists an amplification T1 of T , a T1-minimal consistent
system B of sets of barriers, and a realization T2 of B such that T3 is a relevant
critical subtemplate of T2. See the bottom part of Figure 2.5 for an illustration.

Theorem 37. Let G be a 4-critical triangle-free graph drawn in the torus and let
H be a 4-critical subgraph of a graph obtained from G by collapsing a 4-face. If
H is triangle-free and H is represented by a template T , then G is represented by
a template grown from T .

Proof. By Corollary 34, we can choose an amplification T1 of T representing G.
Since G is 4-critical and triangle-free, Theorem 19 implies that the template T1
is relevant. By Lemma 36, there exists a T1-minimal consistent system B of sets
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of barriers such that G is represented by a realization T2 of B. By Lemma 35, T2
is not 3-colorable, and thus it has a critical subtemplate T3, which also represents
G.

2.3.5 A Complete Description of 4-critical ∆-free Graphs
Embedded in the Torus

For a set T of templates and a graph G, G is represented by T if there exists
T ∈ T such that G is represented by T . A set T of templates T is closed under
growing if for every T ∈ T , all templates grown from T belong to T . A set
T of templates is total if T is a set of relevant critical templates such that the
graphs I4, I5, Ia7 , and Ib7 are represented by T and T is closed under growing.

Corollary 38. If T is a total set of templates, then every 4-critical triangle-free
graph drawn in the torus is represented by T , and no graph represented by T is
3-colorable.

Proof. For the first claim, the proof is illustrated in Figure 2.5. Suppose for
a contradiction G is a 4-critical triangle-free graph drawn in the torus and not
represented by T with the smallest number of vertices. Since all irreducible graphs
are represented by T , G contains a 4-face that can be collapsed without creating
a triangle; let H be the corresponding reduction of G. Since H is 4-critical,
triangle-free, and |V (H)| < |V (G)|, the minimality of G implies H is represented
by a template T ∈ T . By Theorem 37, G is represented by a template grown
from T . This is a contradiction, since T is closed under growing.

The second claim follows from Corollary 32, since all templates in T are
critical, and thus not 3-colorable.

It remains to show that a finite total set of templates exists. This claim is
not at all evident. While it is clear that an infinite set representing all 4-critical
graphs exists, a finiteness may be doubted. As motivated earlier, there are plenty
of informal reasons to assert the existence of a finite set with confidence. All
the represented graphs have limited census, and in the spirit of bariers, such
graphs are colorable once there are no tight obstructions separating their long
faces. On the other hand, quadrangulations far away from these faces become
structurally irrelevant.

We do not give a firm theoretical basis to confirm the existence of a finite
total set, but we explicitly constructed the set T using a computer search. For
more details and the total set, see [32]. In fact, we give the following stronger
result.

Claim 39. There exists a total set of direct templates of size 186.

The fact that we can get away with only having direct templates came as
a bit of a surprise to us. Note that the operations of filling, boosting, or hiding
edges may (and typically do) turn a direct template into a non-direct one. It is
fortuitous that adding struts when turning a template into a non-3-colorable one
counteracts these effects. On an intuitive side, this gives more evidence to how
crucial the close surroundings of each (≥ 5)-face is.
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By studying the total set, we may also observe further properties. For in-
stance, if we focus on the subgraphs of the template graphs induced by the edges
of their long faces, the subgraphs are always connected and non-planar. We ob-
serve that all templates have edge-width at most four, with a single exception.
As a consequence, we get the following.

Lemma 40 (computer assisted). Let G be a triangle-free graph drawn in the
torus.

• If G has edge-width at least six, then G is 3-colorable.

• If G has edge-width at most five, then G is 3-colorable if and only if it does
not contain I4 as a subgraph, in which case it has edge-width exactly five.

2.3.6 Algorithmic Application Remarks
From Claim 39, we have a way to test whether a triangle-free toroidal graph G is
3-colorable, by checking whether it contains a subgraph represented by an element
T ∈ T . Performing this test efficiently is not entirely trivial, though.

We may use a standard result:

Lemma 41 (Eppstein [57],[58]). Let H be a fixed graph and Σ a surface. There
exists an algorithm which for an input graph G embedded in Σ tests whether
H ⊆ G in time O(||G||).

We give a very brief sketch of the proof. One of the standard approaches
to solving a generally hard problem in restricted graph classes is to use limited
tree-width together with dynamic programming approach. Given fixed H, the
relation H ⊆ G can be expressed as a logical formula, which is testable in linear
time as long as the tree-width of G is limited, by Theorem of Courceille [59].
A result of Eppstein [57] shows that a tree-width of a limited-distance neighbor-
hood of any vertex v in a graph G embedded in the fixed surface Σ has limited
tree-width. We can clearly combine these two results to obtain a quadratic al-
gorithm, first guessing mapping of one vertex from H to G, and then testing
whether H is a subgraph of a limited neighborhood of the mapped vertex. By
a more sophisticated approach, similar construction can be made to work in linear
time [58].

Of course, we are still faced with the issue that for a template T = (GT , θT ), it
is not enough to test whether GT ⊆ G. We may use the same method as Lemma
46 in 2.4 to remove short separating cycles from G or conclude that G cannot be
a supergraph of a 4-critical graph according to its census. Then, if GT ⊆ G we
use the fact that T is direct, implying that we only need to test whether some
faces of GT map to quarangulated subgraphs of G. If not, then there are more
(≥ 5)-faces in G then allowed by T and therefore G is not represented by T , even
if a different mapping of GT into G exists.

We may also use a more basic approach, avoiding the enormous constants in-
volved in the machinery for the subgraph test. First, we eliminate all contractible
separating cycles. Then we guess mapping of long faces of GT to G. As mentioned
earlier, the long faces of GT form a connected subgraph, and so up to a choice
of mapping of one edge (in a directed sense), the mapping is unique. It then
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remains to find mapping of the remaining vertices in GT . There are typically
only a few vertices and only rarely some of them do not neighbor the long faces
directly. In a typical case this boils down to testing whether there exists a path
across of length at most 3 connecting some pair of already mapped vertices. With
sophisticated effort, this approach could also be made to finish the test in lin-
ear time. However, there turns out to be a simpler solution, which we present
in Section 2.4.

So far, we discussed testing whether a graph s represented by a template,
essentially testing whether it is 3-colorable. In theory, it is possible to use tem-
plates to obtain a 3-coloring as well, using methods similar to those in Section
2.4, basically repeatedly reducing G via collapses of 4-faces to smaller graph while
maintaining 3-colorability. However, as we discuss in Section 2.4, this is not
straightforward in a triangle-free setting on any surface other than the sphere.

2.4 Coloring Algorithms
In this section we combine the Theorem 15, with the results from Sections 2.2
and 2.3 to test and obtain 3-colorings of triangle-free graphs embedded in the
torus.

The overall approach is the following. Theorem 15 allows us to efficiently de-
cide 3-colorability for graphs that have properties similar to those observed in the
4-critical graphs, that is, limited census and at least one short non-contractible
cycle. We first deal with parts of graph that are not parts of potential 4-critical
subgraphs, if possible, until the remaining graph is similar to a 4-critical graph
and we can decide colorability efficiently.

To actually obtain a 3-coloring, we employ a strategy based on collapse of 4-
faces to reduce (virtually) any 3-colorable graph on the input to a smaller 3-
colorable graph and deal with structural issues arising from 4-face collapses,
namely non-contractible triangles. To do that, we exploit the fact that Theo-
rem 15 operates on graphs embedded in the cylinder, without the necessity of its
rings or their precolorings to match. We can therefore divide the graph embedded
in the torus into multiple pieces embedded in cylinders and work with each piece
separately.

2.4.1 Testing of 3-colorability
Let G be a given graph, triangle-free and with 2-cell embedding in the torus.
We may assume without loss of generality that the input graph is of minimum
degree 3. If that is not the case, any vertex of degree at most 2 may be deleted
at any point without affecting colorability of the graph.

Suppose G is not 3-colorable and therefore contains a 4-critical subgraph H.
Let us compare H and G. Starting with H, we may construct G by adding
elements into some of its faces. Note that representativity of H is at least 2, as
implied by templates or from a more direct approach [33, 32], and therefore each
face of H is a face of G or its boundary is a separating cycle in G. By Theorem 19,
all faces of H are of length at most 7 and Lemma 18 characterizes what structure
may be contained inside a separating cycle in H. We observe that if we delete the
interiors of all separating (≤ 7)-cycles that do not contain one of the structures
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specified by Lemma 18, the obtained graph H ′ still contains a 4-critical subgraph
H̄, possibly different than H. Furthermore, if we find a coloring of H ′, we are
guaranteed that a proper extension to G exists. The only difference between H ′

and H̄ is that a 6- or 7- face of H̄ may be a separating cycle in H ′, quadrangulated
in the former case, and near-quadrangulated up to a single 5-face in the latter
case.

We say that the multiset of integers is modest if it is one of the values from
Theorem 19 or one of their subsets. That is one of

{7, 5}, {7}, {6, 5, 5}, {6, 5}, {6}, {5, 5, 5, 5}, {5, 5, 5}, {5, 5}, {5}, ∅

We say that a graph is modest if its census is modest.
Note that in the reasoning above, both H̄ and H ′ are modest. The former

by Theorem 19, and the later by considering the difference between H̄ and H ′

allowed by Lemma 18. Furthermore, by Corollary 25, the representativity of H̄
is at most 20, and so is the representativity of H ′ and G.

The high-level strategy for testing 3-colorability is as follows. Given G, we
construct a subgraph H ′ which is close enough to H̄ so that it is modest and
of low edge-width, unless G is 3-colorable (implying that H̄ does not exist) and
crucially H ′ is 3-colorable if and only if G is 3-colorable. We then use results from
Section 2.1 to decide whether H ′ is 3-colorable, where the parameters influencing
the time complexity are now limited.

Let G be a graph, H a subgraph of G and f a face of H that is a 2-cell face.
We say that f is a cell (of G). We say that the (clockwise) facial walk of f (in H)
bounds the cell f . Note that by orientation, the bounding walk defines f uniquely
and therefore we do not need to strictly distinguish between cell and its bounding
walk. We say that a cell is separating if it contains any edges or vertices of G
in its interior.

It is easy to see that if G is a critical graph and f its separating cell bounded
by a closed walk C, then the graph embedded in f is C-critical, the same way as
this is true for separating cycles. Furthermore, even though the boundary of a cell
is not necessarily a cycle, when considering C-criticality of the interior, we can
split some vertices of C to make it into a cycle bounding a disk in which the
interior of the cell is naturally embedded. Therefore, if a triangle-free 4-critical
graph contains a cell bounded by a closed walk C of length l, then the structure
of the interior of the cell corresponds to a planar graph critical in respect to its
outer face of length l.

To detect and remove separating cells efficiently, we use a slight modification
of the following notion introduced by Dvořák, Král’ and Thomas [31]. A face
f of length l is k-free if it is not contained inside a separating cell of length
at most k. We say that a face of length l is free when it is l-free. We extend
the same terminology to general parts of the graph (such as an edge or a pair
of faces), that is, a part of a graph is k-free if it is not contained (all individual
parts simultaneously) in the interior of a separating cell of length at most k.

In order to test freeness, we need a standard technical method based on the
concept of universal cover. Let us give an informal description of the construction.
Given an embedding of a graph G, we split the torus along a non-contractible
cycle C1, obtaining a cylinder. Let P be a shortest path connecting the two copies
of C1 arising by splitting and let C2 be a non-contractible cycle of G obtained as P

69



together with arc of C1 connecting the endpoints of P . We cut the cylinder again
along P and obtain a patch-like piece of surface with opposite sides corresponding
to copies of the path along which the cuts were made.

Let us denote the resulting graph T . We say that the graph T together with
its embedding is a tile. If the endpoints of P represent the same vertex of C we
say that the tile is square, and interpret the tile as embedded in a unit square
with the opposite sides corresponding to C1 or P embedded identically along the
edges of the square. Otherwise, we say that T is hexagonal tile. We interpret T
as embedded into a unit hexagon, with the opposite sides representing the copies
of C1 ∩ C2, P and C1 \ C2, with identical embeddings along the edges of the
hexagon.

We say that two hexagons of a hexagonal grid, or two squares of a square grid
are neighboring (at distance 1) if they share a vertex. A graph H is a (hexagonal
or square) grid of size k tiled by G with a center tile C, if H is obtained from
tiling all hexagons or squares at distance at most k from some initial hexagon or
square h using the tile T obtained from G. By this we mean embedding a copy
of the tile T into each cell of the grid and unifying the vertices and edges with
overlapping embeddings (on the edges and vertices of the grid). The center tile
C is then the copy of T embedded into the initial hexagon h.

The grid H has natural non-injective projection into the graph G, as each
element of H is essentially a copy of an element of G.

In the following observation, we use a grid of infinite size to concisely describe
properties of a large enough grid, given that we do not run into its outer boundary.
We then use this observation to specify what size of grid is large enough for
applications so that its boundary is never an issue.

Observation 42. Let G be a graph embedded in the torus that is not planar. Let
H be a grid of infinite size tiled by G. Let W be a walk in G from vertex v to
vertex w (possibly v = w). For any preimage v′ ∈ V (H) of v ∈ V (G), there exists
a walk in W ′ in H such that all of the following holds:

• W ′ begins in v′, projects to W and |W ′| = |W |

• If W is a path or a cell, then W ′ is a path or a cell respectively.

• W ′ is contained in tiles (including their borders) at distance at most |W |
from any tile that is incident with v′. Furthermore, if W bounds a cell in G,
then W ′ is contained in tiles at distance at most ⌊|W |/2⌋.

Proof. The first point can be seen by considering the inverse of projection of H
into G. We obtain W ′ by starting in the vertex v′ and following edges that
project to edges of W , in the order as they appear on W . Note that these are
always unique. The walk W ′ contains preimages of all edges and vertices of W .
Furthermore W ′ contains the same number of preimages of each edge e as is the
number of times e appears in W , and similarly for vertices. Therefore, if W is
a path, then so is Wv′ (note that the opposite implication does not hold since the
projection is not injective).

Suppose now that W is a cell. Since the projection preserves incidences
of edges with faces, we observe that all faces on the left side of W , when walking
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along W , have their respective preimages on the left side of W ′. Therefore, W ′

does not cross itself, and because it is also closed, it bounds a cell.
The last point follows from the fact that by the definition of a tile T obtained

from G, the boundary of (the embedding of) T is exactly the embedding of the
cycle bounding the outer face of T . Let W be a walk in H. Let us consider
moving along the walk and for each visited vertex v measure the distance t of a tile
containing v from the initial tile. Additionally, if v is contained in multiple tiles,
we take the lowest distance value of all tiles containing v.

The first vertex of W ′ is incident with the initial tile, so its distance is 0. For
every edge e = (uv) of W , there exists a tile containing e, and so both endpoints
of an edge are incident with the same tile. On the other hand, each vertex may
be incident only with mutually neighboring tiles. We conclude that every step
changes the distance by at most 1. If W ′ is closed and of length k, the maximum
distance reached is at most ⌊k/2⌋.

For the purposes of determining the algorithm complexity we also need the
following

Observation 43. A tile T obtained from G can be constructed in time O(|G|).

Proof. For example, we may run a BFS search from any arbitrary vertex of G⋆.
We obtain a (spanning) BFS tree S of faces, together with its embedding in the
torus. We construct the tile T so that S is a spanning tree of the T ⋆(with
the exception of the outer face of T ). For simplicity, we may create a separate
copy of the facial walk for every vertex of S and unify the edges represented by
edges of S. By walking around the outer boundary of the obtained structure we
exhaustively unify together pairs of copies of the same edge neighboring around
a vertex. We obtain a graph T where only the outer face contains duplicates
of elements of G. In particular, since BFS touches every edge outside of the
BFS tree exactly twice, each edge of G appears exactly twice on the outer face
boundary, or exactly once otherwise.

We argue that T is indeed a tile. We may project the facial walk of the outer
face back into G, where it forms a closed walk W and the embedding of W has
a single 2-cell face (containing the embedding of S). Using Euler’s formula for
the torus, we get that e(W ) = v(W ) + f(W ) = v(W ) + 1. We conclude that all
vertices are of degree 2 up to either one vertex of degree 4 or two vertices of degree
3. We see that W is the union of two non-contractible cycles, either intersecting
in a single vertex of degree 4, yielding a square tile, or intersecting in a subpath
connecting the two vertices of degree 3, yielding a hexagonal tile.

Lemma 44. There exists an algorithm which given a triangle-free graph G embed-
ded in the torus removes interiors of all separating 4-cycles in G in time O(|G|).

Proof. The following construction an adaptation of a construction from a bachelor
thesis by Urmanov [60]. We give a sketch of the algorithm. First, we need to
orient G so that the maximum out-degree is bounded. Since triangle-free graphs
embedded in the torus (or the plane) have average degree at most 4, we can
always obtain out-degree at most 4 by a greedy approach: iteratively find a vertex
v of degree at most 4, orient all edges of v out of v, continue with G− {v}. This
process can be implemented to run in time O(|G|).
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Observe that in G⃗, oriented with out-degrees at most ∆, the number of ori-
ented walks of length ℓ from any vertex is bounded by ∆ℓ.

We consider all possible orientations of a 4-cycle C and describe how to iterate
over each type of orientations in G. We say that a vertex v of C is a source or
sink, if both edges of C are oriented away from v or into v respectively. If C
has no source, then C is one of the oriented walks of length 4 beginning in any
vertex of C. If C has a single source v, then it is the union of two oriented walks
beginning in v with the sum of length 4. In both cases, there is a limited number
of options to iterate through.

Finally, if C has two sources, we proceed a bit more carefully. Let us fix
a vertex w and suppose w is one of the two sinks of C. For each edge (vi, w) we
iterate through all out-neighbors x of vi. We store at the vertex x the information
that vi is a potential corner of a 4-cycle, together with x (and the fixed vertex
w). At any point, any pair of corners vi, vj stored at x forms a 4-cycle w, vi, x, vj.
Once we finish iteration through all edges (vi, w), we delete all stored corners. We
repeat this process for all choices of w. Clearly, over all choices of w we iterate
through each edge (vi, w) only once, for each there are at most ∆ choices of x
and so overall we store at most O(||G||) corners. It may of course happen that
a single vertex x would store many vi’s. If we process all new pairs of corners when
storing a new corner, we avoid this issue. It can be shown that any embedding
of K2,9 has a non-facial contractible 4-cycle, and therefore there can never be
more than 8 corners stored at a single vertex without one corner being in the
interior of a 4-cycle defined by a pair of the other corners.

For each 4-cycle we need to determine whether it is contractible and which
elements of G lie in its interior. We construct a grid of size 4 tiled by G. For each
4-cycle we find a preimage W which is a walk of length 4 in H, beginning in the
center tile. If the walk is not closed, we conclude that C is non-contractible,
by Lemma 42. Otherwise it forms a 4-cycle in H with a uniquely determined
interior.

We may determine which side of W is the interior by the following construc-
tion. We fix an arbitrary spanning tree T⃗ of H⋆ rooted in the outer face of H and
oriented towards the root. For each edge of T⃗ we precompute the number of ver-
tices in its subtree. We observe that if we sum the values of edges of T⃗ crossing
C oriented out from the interior of C and subtract values of edges oriented into
the interior, we obtain the number of faces in the interior of W . If we do the
same for the exterior, we get a negative value. Once we determined the interior,
we may simply run search of the interior of W , project all elements into G where
we delete them together with all their preimages in H. Note that we do not need
to update the tree T⃗ as we delete elements of G, since the edges crossing a given
4-cycle still correctly count faces in the original grid H and therefore distinguish
correctly the interior from the exterior.

Lemma 45. There exists an algorithm which for any triangle-free graph G with
a 2-cell embedding in the torus, F a set of faces of G, and k an integer such that
k ≤ 9, satisfying one of the following conditions:

• |F | = {f}, k ≤ |f | + 1

• |F | ≤ 3, every f ∈ F is 4-free
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decides whether F is k-free. If F is not k-free, the algorithm returns a certifying
separating cell C such that |C| ≤ k and C itself is |C|-free. The algorithm runs
in time Ok(|G|).

Proof. The main idea is to test freeness using a max-flow algorithm, an adaptation
of approach appearing across literature. We omit some of the more technical
details. We proceed as follows.

In general, we represent G as a tile and use it to tile a portion of the plane.
By Observation 42, a grid of size at most ⌊k+1

2 ⌋ is always enough to contain any
closed walk of length at most k incident with the central tile.

We first describe the construction for the case when |F | = {f} and k < |f |.
We then present modifications to solve the remaining cases. Let H be the plane
graph obtained as a grid of size ⌊k+1

2 ⌋ tiled by G. We use H⋆ to define the
flow network. For the outer face g of H, we declare g⋆ to be the source and set
capacities of all edges to 1. We create a new sink vertex, and a new junction
vertex. We connect the junction vertex to the sink via edge of capacity k+ 1 and
connect the preimage of f in the central tile to the junction vertex. We can now
run a max-flow algorithm, for instance the Ford-Fulkerson algorithm, to obtain
integer-valued flow, in time O(m · ||H⋆||) where m is the size of a maximum flow,
and m ≤ k + 1 by the construction of the network.

Suppose that a separating cell C of length m, such that m ≤ k, exists in G.
Then we can find preimage C ′ of C in H such that it separates f in the central tile
from g. Note that while C ′ is incident with the central tile, it is not necessarily
contained in the central tile. We observe that the maximum possible flow in the
flow network is at most m, as C ′⋆ is a cut of the network. We conclude that if
the maximum flow is of size k + 1, then f is k-free.

Conversely, suppose that the maximum flow is of size m, such that m ≤ k.
Let us construct cut S as the closest cut to g⋆ as follows. Consider the set A
of vertices of the network reachable from g⋆ along non-saturated edges. We take
the set of (saturated) edges with exactly one end in this set as a cut S and denote
K the set of edges of H dual to edges in S. We claim that K is a closed walk
bounding a cell in H. Consider the components of H after deleting S. Clearly, A
forms a component and all other components neighbor only with A, by definition
of S. If there was a component D not containing a sink, then there must be flow
both entering and exiting D across S, but then vertices in D are reachable along
the edge with flow from D into A. Therefore V (H⋆)\A form a single component,
which is exactly the interior of the cell in H bound by K.

Project the closed walk K into G and denote it C. If the projection of K
intersects itself, C may have multiple faces, but only one of them contains f . Let
Q be the closed walk bounding this face. We argue that |Q| ≤ |K|. Clearly, only
the edges of K form the boundary of Q, however, due to wrapping around the
torus, it may happen that both sides of an edge belong to the boundary of Q.
Consider the projection of the cell κ (understood set of its interior faces) bounded
by K into G. For each face defined by the embedding of C count how many times
it is covered by the projection of κ. Let e be an edge of Q such that exactly one
edge of K projects to e, then we observe that the two faces of C incident with e
are covered by κ distinct number of times and therefore are not the same face.
We conclude that if e appears twice in Q, then it also has at least two preimages
in K, which implies that indeed |Q| ≤ |K|. If Q ⊂ K, we get a contradiction
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with the minimality of S, and therefore Q = K.
We obtain a cell bound by K of length at most m which is separating and

contains f in its interior, as required.
Note in the case |F | = 1, by minimality of S, K is in fact a cycle. Also, note

that if k ≤ 7, then the non-existence of triangles implies that C cannot intersect
itself in G and therefore C = Q automatically. In the cases of k ∈ {8, 9} we may
get a cell wrapped around the torus and kissing itself in a single vertex. This
may even happen twice, once for each direction it may wrap around the torus.

To solve the case when |F | = {f} and k ≥ |f |, we need to deal with the
problem that the facial walk of f is itself a small cut. We observe that if f is
contained in a cell C, then the interior of C contains f together with at least
one of its neighbors. We iterate through each neighbor fi of f in the central tile
of H. Consider removing the edge between f and fi and applying the previous
case on f ′. Since |fi| ≥ 4, we get that |f ′| ≥ |f | + 2 solving the problem with
application to f directly. Note that f ′ may neighbor with itself, however even if
a subset of the facial walk of f ′ forms a small cut, we still get a separating cell C
in G other than the facial walk of f . We conclude that the previous correctness
analysis analogously holds when applying to f ′. In implementation however, we
prefer to perform an equivalent adjustment, where we connect both f and fi to
the junction vertex instead of removing their shared edge. Not removing the edge
does not disturb the tile and preserves the properties of Observation 42 ensuring
that the size of the grid is sufficient.

If we obtain a separating cell C for any i, we conclude that f is not k-free
and output C. If all tests fail to find a separating cell, then f is k-free. We now
argue that it is in fact sufficient to run at most k+1 tests even if f has more than
k + 1 neighbors. Suppose that f is not k-free, there exists a cell C separating f ,
but a test with some choice fi fails to find C. This is only possible if fi is not
in the interior of C, and therefore the edge ei between f and fi is an edge of C.
In each test which does not produce a separating cell we conclude that ei ∈ C for
a different edge ei. After k + 1 tests we conclude that |C| > k, a contradiction.

For the case when we test F of size at least 2, we need to deal with the
following problem. Let F = {f1, f2, . . . }. Suppose C is a separating cell in G
with all elements of F in its interior. We may find a preimage C ′ of C such that
it separates a preimage of f1 in the central tile from the outer face g. Then C ′

may separate from g different preimages of f2, . . . than those in the central tile.
We therefore iterate over all possible choices of tiles into which we can project
the faces f2, . . . , and for each choice we proceed analogously to the previous case,
connecting the junction vertex to each selected projection.

We argue that if the flow is at most k, we again obtain a separating cell. It
may conceivably happen that we obtain a cut S such that the corresponding set
K of edges in H induces multiple cells separating distinct subsets of F from g,
since we now have multiple sinks in H (connected to a common artificial sink).
However, since each of the elements in f is at least 4-free, each of the cells must
have boundary of length at least 5. By minimality, no edge is in the boundary
of at least two cells, and therefore |S| ≥ 10, which is a contradiction with the
assumption that k ≤ 9. We therefore obtain a cell C as in the first case.

Again, if any of the projection choices yields a separating cell, we return this
cell, and if none choice yields a separating cell, then F is k-free.
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Let us analyze the complexity of the algorithm. In all cases, the leading
factors are the runs of max-flow algorithm. Considering k as a parameter, the
flow network is of size O(k2|G|), and so the max-flow algorithm runs in time
O(k3∥G∥) since the maximum flow is upper-bounded by k+1. In the cases when
|F | = 1 we run at most k + 1 instances of the max-flow algorithm. In the case
when 1 < |F | ≤ 3, we run at most (2k + 1)2(|F |−1) instances of the max-flow
algorithm. Naturally, it is possible to greatly reduce these factors, especially
whenever G has non-trivial edge-width and so the bounds in Observation 42 can
be reduced. Overall, since k is upper-bounded by a constant, we get that the
time complexity is at worst O(k7|G|) = Ok(|G|).

As a side note, we do not actually need the cases when k ∈ {8, 9} or |F | = 3
for testing of 3-colorability, however they will be useful when re-purposing the
same algorithm to obtain a 3-coloring later on. Also note that the cell given
on the output uniquely determines its interior by orientation.

Lemma 46. There exists an algorithm that, given a triangle-free graph embedded
in the torus terminates in time O(|G|) and either

• produces subgraph H of G such that S(H) is modest and H is 3-colorable if
and only if G is 3-colorable; or

• determines that G is 3-colorable.

Proof. Suppose G is a triangle-free graph embedded in the torus. Suppose that
G is not 3-colorable, and therefore contains a 4-critical subgraph H. The graph
G can be obtained from H by filling some faces of H with planar graphs. In other
words, every face of G that is k-free either contributes to S(H) or is contained
inside a separating cell of length more than k which forms a face of H. Suppose
f is a face of G but not a face of H. Since S(H) is modest, and in particular the
largest possible face of H is a 7-face, f is not 7-free. Conversely, any 7-free face
of G contributes to S(H).

The algorithm builds a set F of faces with high freeness. In doing so, the
algorithm iteratively removes interiors of short separating cells, following the
results of Lemma 18, which guarantees that the (non-)colorability is maintained.
By the reasoning above, if lengths of faces in F exceed the limits of modesty, a 4-
critical subgraph H cannot exists and G is correctly decided to be 3-colorable.
Otherwise the remaining graph H is modest.

In particular, following Lemma 18, the faces in F should maintain the follow-
ing properties:

• Every 5-face is 6-free

• Every pair of 5-faces is 7-free

• Every (≥ 6)-face is 7-free

Before running the procedure, we remove interiors of separating 4-cycles, if
any exist, using the algorithm from Lemma 44. We start with the initial graph
G and an empty set F . Iteratively we pick an unprocessed (≥ 5)-face f and
use the algorithm from Lemma 45 to test whether it is min{|f | + 1, 7}-free. If
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a separating cell is found, we delete its interior and add the new resulting face fs
into F , otherwise we add f into F . If the face being added is a (≥ 8)-face (and
therefore at least 7-free), modesty of F is violated and we terminate instead.

After adding a new face into F , we need to maintain the above listed proper-
ties. If the added face was f , then it already satisfies the conditions on individual
faces as it is min{|f | + 1, 7}-free. If however the added face fs arose from a sep-
arating cell, it is only free. Note that in this case, |fs| ≥ 5, since no separating
4-cycles remain. We need to further refine the face to ensure that it is 6- or 7-free
to satisfy the conditions. We repeat the test above, for fs.

If the added face was a 5-face, then we test it in combination with all 5-faces
already in F for 7-freeness. As before, we use the algorithm from Lemma 45
and if a separating cell of length 7 is found, we delete its interior and add the
new face to F . Note that all 5-faces in F are already individually 6-free, and so
a separating cell of length 6 requiring further refinement may not be produced
at this point.

The set F now satisfies all of the listed conditions. If it is not modest, we
terminate concluding that G is 3-colorable. Otherwise we continue processing
faces of the remainder of the graph until all (≥ 5)-faces are in F and we return
the remainder of the graph.

Let us consider the complexity. Each iteration adds at least one new face into
F , while possibly deleting other faces. This may happen when deleting interiors
of separating cells that contain some faces already in F . Note that all faces in F
are at least free, in particular whenever a subset of faces is deleted from F , a new
face that is strictly longer than each deleted face is added into F . This also implies
that 7-free faces of F are never deleted, and therefore the number of (≥ 6)-faces
never drops. We conclude that a constant number of iterations may take place
before modesty is violated and the algorithm terminates. Each iteration consists
of a constant number of runs of the algorithm of Lemma 45, which runs in time
O(|G|). Altogether at most a small constant number of freeness tests occurs,
giving an overall time complexity of O(|G|).

To use our theory of coloring graphs in the cylinder efficiently, we need to find
a short separating cycle, if it exists. We again use tiles to find such cycle.

Lemma 47. Let G be a graph embedded in the torus, v a vertex of G, k an integer
and H a grid of infinite size tiled by G. If there exists a path P of length at most
k connecting two distinct preimages v0, v1 of v in H, then G contains a non-
contractible cycle of length at most k.

Proof. We may assume that P is a shortest path connecting v0 and v1. Clearly,
any path in H connecting two preimages of v projects into a closed walk in G.
We will argue that every vertex of G has at most one preimage in V (P ), except
v which has exactly two preimages in V (P ). It then follows that P is a cycle and
projects into a cycle C of G. Since P is not a cell, by Observation 42, C does not
bound a cell and is therefore non-contractible.

Suppose x1, x2 ∈ V (P ) are two preimages of x ∈ V (G) \ {v}, in the order
as they appear on P . Then we may cut out the segment of P between x1 and
x2, and mimic the segment from x2 to v1 to instead go from x1 to some v2 along
preimages of the same edges. If v2 ̸= v0, then the obtained path is a shorter
path connecting two distinct preimages of v, a contradiction. If v2 = v0, we

76



instead consider the segment S of P connecting x1 and x2. Clearly, S satisfies
the assumptions of the Lemma, with even lower k, and has less preimages of x,
we proceed inductively.

We will need to solve the following problem. Given a planar graph H and
a (small) constant k, we need to find shortest paths between all pairs of vertices
that are at distance at most k in time O(∥H∥). We use the following result based
on an oracle data structure.

Lemma 48 (Kowalik and Kurowski [61]). For a fixed integer k, there exists
a datastructure which for a planar graph G takes preprocessing time O(|G|) and
in time O(1) answers queries whether given two vertices are at distance at most
k and if so computes a corresponding shortest path.

Their structure additionally allows updates upon deleting edges or vertices
in time O(1), and in time O(logk |G|) upon adding an edge. In the construction
of coloring algorithm later on, it can therefore be kept updated as the interiors
of separating cells are deleted and as 4-faces are collapsed.

Corollary 49. There exists an algorithm such that for any G embedded in the
torus decides whether G has a non-contractible cycle of length at most k and if
so outputs such cycle. The algorithm runs in time O(|G|) for fixed k.

Proof. Suppose C is a non-contractible cycle of length at most k in G. Let H be
a grid of size k tiled by G. Let v ∈ V (C), v0 be a preimage of v in the central tile
of H and e1, e2 edges incident with v in C. Applying Observation 42 to C − e1
and C − e2 we get that C has a preimage in H that is a path beginning in v0
and ending in some other preimage of v. Together with Lemma 47 we get that
G contains a non-contractible cycle of length at most k such that v ∈ V (C) if
and only if H contains a path P of length at most k connecting v0 and another
preimage of v.

We apply Lemma 48 to test each vertex of the central tile of H together with
all other preimages of the same vertex of G. If we find no shortest path of length
at most k, then we conclude that G does not contain a non-contractible cycle
of length at most k. Otherwise let P be the shortest of all found paths, then
G contains a non-contractible cycle of length l ≤ k, and it must project to one
of the found paths of length exactly l. Therefore the projection of P into G is
exactly a shortest non-contractible cycle.

Since |H| = O(k2|G|) and k is fixed, we can perform all test in time O(|G|).

We are finally ready to put together the test of 3-colorability.

Theorem 50. There exists an algorithm that, given a triangle-free graph G with
a 2-cell embedding in the torus, decides whether G is 3-colorable. The algorithm
runs in time O(|G|).

Proof. At any point we may assume that G is of minimum degree 3, connected
and not planar, otherwise we can reduce G or decide that G is 3-colorable (by
Grötzch’s Theorem).
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We use Lemma 46 to either conclude that G is 3-colorable or obtain subgraph
H of G such that S(H) is modest and H is 3-colorable if and only if G is 3-
colorable.

We find the shortest non-contractible cycle C of length at most 5 in H, if
it exists, using the algorithm from Corollary 49. If the shortest cycle is longer
than 5, then by Lemma 40 H is 3-colorable. (Alternatively we may rely on the
theoretical result of Lemma 25, giving limit 20)

We use the cycle C to split H into a graph H ′ embedded in the cylinder. We
iterate through all possible precolorings of C, inducing a precoloring of the rings
of H ′. For each precoloring we run the algorithm from the Theorem 15 which
decides whether the precoloring can be extended. Since S(H) is modest, and C is
short, we get that the complexity factors of the algorithm from the Theorem 15
depending on S(H ′) are limited by a small constants and therefore the algorithm
finishes in linear time.

2.4.2 Algorithm for Obtaining a 3-coloring
The task of actually producing a 3-coloring turns out to be substantially more
complex than just testing whether a 3-coloring exists. This is partly due to the
fact that several of the tools used in the 3-colorability test are non-constructive,
in the sense that they do not produce coloring when a graph is decided to be 3-
colorable, but rather focus on certifying non-colorability. In the positive cases, the
approaches do not provide any obvious ways to break-down the task of actually
coloring the graph.

An algorithm for obtaining a 3-coloring of triangle-free embedded graphs is
already shown to exist in [31]. The contribution of our approach is that unlike
the algorithm in [31], we use a significantly more constructive approach. The
complexity of our algorithm has only small multiplicative constants and can be
used in practice.

A standard approach is to use the test of 3-colorability as a black-box, and to
reduce the graph step by step. For instance, if we can adjust G to force the same
color for some pair of vertices, we can then test colorability of the adjusted graph
and regardless of the test result, we can narrow our search to colorings that assign
the same or distinct colors to the pair. The former can be done for instance by
unifying the two vertices, the latter by introducing a new edge connecting them.
In our approach we follow a similar idea, using 4-faces to narrow our search by
collapsing them. Given the structural limitations on inputs of our testing method
however, we also need to deal with several additional special cases where we run
into non-constructive dead-ends.

As we reduce the input graph, we not only collapse 4-faces, but also remove
interiors of short separating cells. Once the graph becomes trivial and we obtain
a 3-coloring, we need to extend the coloring back into the original graph. We
therefore need an algorithm which takes a planar graph with a precolored outer
face (up to some length) and extends the precoloring into the whole graph (if
it exists). Another obvious issue is that we may run out of 4-faces, or be given
a graph with no 4-faces to begin with. In this case, we have a graph embedded
without contractible (≤ 4)-cycles (note that it may still contain non-contractible
4-cycles). We deal with this special case by adapting existing results. The last
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issue is that in collapse of a 4-face we may produce triangles. This issue is
unavoidable, but given our tools and existing results relatively straight-forward
to deal with, although a little tedious. Dealing with triangles will take most of the
remainder of this section.

For completeness, since a graph embedded in the torus may be planar, we
refer to the following result dealing with the planar case.
Theorem 51 ([62]). There exists an algorithm running in linear time which
outputs a 3-coloring for any input triangle-free planar graph.

No Contractible Cycles of Length at Most 4

The first ingredient towards a complete coloring algorithm is the following char-
acterization of graphs of high girth.
Theorem 52 (Thomassen [23]). Every graph of girth at least 5 embedded in the
torus is 3-colorable.

Fortunately for us, in order to apply induction, Thomassen actually proves
the following stronger claim:
Lemma 53 (Thomassen [23]). Every graph embedded in the projective plane or
in the torus so that all contractible cycles have length at least 5 is 3-colorable.

And to prove this, he first proves the following helpful characterization
Lemma 54 (Thomassen [23]). Let G be a plane graph of girth at least 5. Then G
is 3-colorable. Furthermore, if G has an outer face bound by a cycle C of length
at most 9, then any proper precoloring of G[V (C)] extends to a 3-coloring of G,
unless C has length 9 and G−C has a vertex joined to three vertices of C, which
are precolored by three distinct colors.

The proofs of both lemmas are structured as follows. Suppose we are given
a graph G which is a minimal counterexample. We observe that various struc-
tures cannot appear in G, as otherwise we can reduce G into a smaller graph G′

satisfying the assumptions of the lemma and therefore 3-colorable by assumption
of minimality, and the 3-coloring of G′ can be extended to a 3-coloring of G (in
the proof of Lemma 53 sometimes using the Lemma 54). After collecting sev-
eral of these forbidden structures, we observe that G not containing any of these
cannot exist.

By inspection of the proofs, one can derive an algorithm to actually obtain
the 3-coloring as follows. First search for the forbidden structures, as they appear
in the proof. If found, follow the construction reducing G into G′, recursively color
G′ and expand the 3-coloring of G′ into a 3-coloring of G. By the nature of the
argument, at least one such structure must appear in G, and so G recursively
reduces until it is trivial, at which point we color G by brute force.

The forbidden structures used in the arguments are easy to detect. In the case
of Lemma 54, it is short generalized chords, single vertices neighboring the outer
cycle, and facial walks of lengths at most 6, possibly with prescribed degrees
of vertices. In the case of Lemma 53, subgraphs isomorphic to K4 and facial
walks of lengths other than 5, with or without certain chords. The presence of all
of these structures can be tested in linear time. We therefore claim the following
two statements to be true:
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Lemma 55. There exists an algorithm which for any plane graph G of girth
at least 5 and an outer cycle C of length at most 9 and a precoloring ψ of G[V (C)]
such that G−C has no vertex connected to three vertices of C colored by distinct
colors by ψ constructs a 3-coloring of G extending ψ in time O(|G|2).

Lemma 56. There exists an algorithm which for any graph G embedded in the
torus without contractible cycles of length at most 4 constructs a 3-coloring of G
in time O(|G|2).

The argument we give here is only a sketch of derivation of the algorithms
and their complexity. Let us call the algorithm corresponding to Lemma 55 as
algorithm A, and an algorithm corresponding to Lemma 56 as algorithm B.

First we construct the algorithm A. As mentioned above, finding a forbidden
structure can be achieved in linear time. For any structure, we have a prescription
how to make a local adjustment of the graph that does not increase the number
of vertices and allows us to either recurse on a subgraph, or to split it into multiple
subgraphs disjoint up to their boundary and recurse on each. Since the proof is
by induction on |V (G)|, the graphs we recurse on have strictly less vertices and
therefore the depth of recursion is at most |V (G)|.

As mentioned, the recursion of the algorithm A may branch, so we need to
analyze the recursion more closely. We observe that when the recursion splits
the working graph G into graphs G1, G2, . . . to branch, it essentially recurses
into graphs induced by distinct areas of the embedding that only overlap in their
boundaries (bound by cycles). Similarly, if it does not branch, it recurses into
a strictly smaller area. Therefore, in each level of recursion, each edge appears
in at most two graphs. Since each recursion node processing a graph Gi runs
in time O(|G|), this gives an overall complexity of O(|G|) for each level of recur-
sion, and O(|G|2) for the whole algorithm A. This analysis of course ignores the
local adjustments in each recursion node, as arguing that these do not change
this outcome would require going through each possible construction.

The algorithm B has a significantly simpler structure. As before, finding
a forbidden structure can be achieved in linear time. For each structure found
in G, we have a prescription of a local adjustment of G into G′ which does not
increase the number of vertices and allows us to use recursion. In this case, we
always recurse by at most one call of B, possibly after deleting interior of some
separating cycle. We then extend the obtained coloring into this cycle by a call
of the algorithm A, or into some small structure adjusted for the recursive call.
The argument is based on induction in |V (G)|, so each recursive call of B strictly
decreases the number of vertices. We conclude that the depth of the recursion
is at most |V (G)|, and each recursion node of B (excluding the call of A) runs
in time O(|G|).

Similarly to the analysis of the algorithm A, we observe that each recursive
call essentially recurses into a smaller subgraph, and if the recursion node calls
both algorithms A and B, then the graphs in their inputs are disjoint up to the
bounding cycle of the graph presented to A. In particular, each edge appears
as an interior edge in at most one call of A, each call contains at most 9 other
edges, and the total number of calls is O(|V (G)|). We conclude that the overall
complexity of all calls of the algorithm A is O(|G|2), and so is the complexity
of the whole algorithm.
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Interiors of Separating Cells

Other ingredients we need are ways to deal with the interiors of separating cells
that are inconsequential to colorability of the whole graph, yet still need to be
colored in the final coloring.

Lemma 57 (Dvořák, Kawarabayashi and Thomas [62] algorithm 4.6). There
is an algorithm which for any triangle-free plane graph G with outer cycle C
of length at most 5 and a precoloring ψ of C decides in time O(|G|) whether ψ
extends to a 3-coloring of G and outputs such coloring in the affirmative case.

Note that in the above lemma, a 3-coloring always exists by Lemma 18. We
will also need the following stronger versions of a pair of cases of the Lemma 18.

Lemma 58 ([27]). Let G be a plane triangle-free graph with outer face bounded
by an induced cycle C = c1, . . . , c6 of length 6. The graph G is C-critical and ψ
is a 3-coloring of C that does not extend to a 3-coloring of G if and only if G
contains no separating cycles of length at most four, every internal face of G is
a 4-face and for i ∈ {1, 2, 3}, ψ satisfies ψ(ci) = ψ(ci+3).

Lemma 59 (Dvořák and Lidický [52]). Let G be a plane triangle-free graph with
outer face bounded by a cycle C = c1, . . . , c7 of length 7. The graph G is C-
critical and ψ is a 3-coloring of C that does not extend to a 3-coloring of G if
and only if G contains no separating cycles of length at most five and one of the
following propositions is satisfied up to relabeling of vertices (see Figure 2.6 for
an illustration).

(a) The graph G consists of C and the edge c1c5, and ψ(c1) = ψ(c5).

(b) The graph G contains a vertex v adjacent to c1 and c4, the cycle c1c2c3c4v
bounds a 5-face and every face drawn inside the 6-cycle vc4c5c6c7c1 has
length four; furthermore, ψ(c4) = ψ(c7) and ψ(c5) = ψ(c1).

(c) The graph G contains a path c1uvc3 with u, v /∈ V (C), the cycle c1c2c3vu
bounds a 5-face and every face drawn inside the 8-cycle uvc3c4c5c6c7c1 has
length four; furthermore, ψ(c3) = ψ(c6), ψ(c2) = ψ(c4) = ψ(c7) and ψ(c1) =
ψ(c5).

See Figure 2.6 for illustration.

Non-contractible Triangles and Census

In this section we derive an analogue of Theorem 19 allowing us to limit census
of critical graphs in the cases where non-contractible triangles are present. The
overall idea is to use the triangles to cut the working graph into slices of the torus,
each of which is critical in respect to precoloring of its triangular boundaries
shared with the neighboring slices. The goal of this section is to show that each
slice has a small limited census. Deriving this fact from the base case with no
4-faces is however surprisingly far from straight forward.

We say that a graph G is {H1, H2}-critical if H1, H2 are subgraphs of G and for
every proper subgraph H of G (containing H1 and H2) there exists a precoloring
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Figure 2.6: Illustrations of the cases of Lemma 59

of H1 ∪ H2 that does not extend into a coloring of the whole graph G, but does
extend into H.

Consider a ring R of G embedded in the cylinder. By a stretch of the definition
we allow a pair of neighboring vertices or a single vertex to be a ring, of lengths
2 and 1 respectively. We say that R is a vertex-like ring if at most one of its
vertices is incident with vertices outside of R. Note that if R is vertex-like, then
precoloring of the ring is effectively equivalent to a precoloring of its single vertex.

Lemma 60 ([63]). Let G be an {R1, R2}-critical graph embedded in the cylinder,
where R1, R2 are the rings of G and |R1|, |R2| ≤ 3. If every cycle of length at most
4 in G is non-contractible, then one of the following claims holds:

• G consists of R1, R2 and an edge between them, or

• neither R1 nor R2 is vertex-like and G consists of R1, R2 and two edges
between them, or

• neither R1 nor R2 is vertex-like and G consists of R1, R2 and two adjacent
vertices of degree three, each having a neighbor in R1 and in R2.

Observe that by the lemma above, given the lengths of R1 and R2, the census
of G is uniquely determined for each case. If |R1| = |R2| = 3, then the census
of G is {8}, {5, 5} and {6, 5, 5} for each case respectively. Later on we will need,
that in all of these cases, S(G) is an element of S4,10.

First we need a simple characterization showing the reasoning behind refine-
ment operation from Section 2.3. Recall that by collapse of a 4-face we mean the
operation where two opposite vertice of a 4-face are unified and the resulting two
2-faces suppressed by unifying parallel edges. The two edges formed in this way
form a path and we say that the 4-face collapses into this path. Note that there
are two distinct directions in which a 4-face can be collapsed. Also recall that
by reduction of a critical graph, or by reduction of its 4-face, we mean a graph
obtained by first collapsing a 4-face and then taking a critical subgraph of the
result.

Since in this section we work with graphs critical in respect to some precolored
vertices, we need to be a bit more careful. For the purposes of the general logic
of the constructions in this section, we assume that the precolored vertices of a
reduction are inherited from the original graph in the natural way. We use the
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same notation to refer to the precolored vertices in both graphs, and often refer to
a vertex obtained as a unification of two vertices one of which was precolored by
the name of the original precolored vertex. We avoid unification of two precolored
vertices. While it would be a valid operation under the condition that both input
vertices are precolored using the same color, the precolorings we work with are
often only implicit.

To make full sense of the following lemma, we consider the relation of H being
a subgraph of G as witnessed by an injection of H into G.

Lemma 61. Let G,H be plane graphs 4-critical in respect to two precolored rings
of length at most 3, and without triangles except for their rings. Suppose H is a
reduction of G, let f be the collapsed face of G, F the path into which f collapses
and x the middle vertex of F . If S(G) is not a refinement of S(H), then H
contains no edges of F and in H ∪ F both edges of F are leaves within the same
face of H. In particular, x is an articulation of H or x is precolored in H and
H is a subgraph of G, however the injection of H into G does not map x to a
precolored vertex of G.

Proof. We obtain this result by reproducing the proof of Lemma 27, with weaker
assumptions and a slightly different approach. Let G′ be the graph obtained from
G by collapsing f into the path F . Note that S(G) = S(G′) as the lengths of all
facial walks (except f) are preserved.

We argue that x ∈ V (H). If not, then H ⊂ G. This is not possible if
both graphs have the same vertices precolored (in respect to the injection of H
into G), in particular if no vertices are precolored. Since we assume that H
inherits its precolored vertices from G, both G and its subgraph H can be critical
only if x is precolored in H but the injection of H into G does not map x to a
precolored vertex (and therefore the other non-mapped vertex merging into x was
precolored), however then necessarily x ∈ V (H). See Figure 2.7a for illustration.

Consider the graph H ∪F . If we uncollapse F back into f , we get a graph H ′

which is a subgraph of G. Similarly to comparing S(G) and S(G′), we have that
S(H ′) = S(H ∪F ) and since G is obtained from H ′ by filling some of its faces by
plane graph critical in respect to their boundary, S(G) is a refinement of S(H ′).

Let us compare S(H ∪ F ) and S(H). If H contains both edges of F , then
clearly S(H) = S(H ∪ F ). Let e1, e2 be the two edges of F . Let us assume that
e1 /∈ E(H) but e2 ∈ E(H). Then H ∪ F is either obtained from H by adding a
chord into one of its faces, or a leaf. In the former case, S(H ∪F ) is a refinement
of S(H) as cycle with a chord is always critical in respect to its boundary and
therefore the refinement operation describes this operation in terms of census. In
the latter case, the adjusted face grows in length by 2. Consider uncollapsing F
back into f , the leaf turns into a vertex of degree 2 incident with two faces, one
of which is f . Since G is critical and does not contain a vertex of degree 2, we see
that during subsequent transition from H ′ to G, the interior of the enlarged face
is replaced by a plane graph critical in respect to its boundary. The refinement
operation describes these two consecutive steps. We conclude that S(G) is a
refinement of S(H), even though the intermediate step S(H ∪ F ) is not.

Suppose neither e1 nor e2 are edges of H. By the previous reasoning, if at
least one of them is added as a chord into H, or each is added into as a leaf into
a different face of H, then S(G) is a refinement of S(H). If both are added as a
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f

(a) An example of G and its reduction H such that H ⊂ G but both are critical
in respect to inherited precolored vertices. Precolored vertices are indicated
in black, f is the reduced face in G. Both graphs are colorable if and only if
colors do not repeat on the precolored vertices.

f

T
f0

(b) The arrow graph (on left) and the crinkle (on right)

leaf into the same face, it grows in length by 4. Note that if e1 and e2 neighbor
around x, then uncollapsing F back into f produces H ′ such that H ⊂ H ′ ⊂ G.
By the reasoning above, this is not possible unless x is precolored but does not
map to a precolored vertex via the injection of H into G. If e1 and e2 do not
neighbor around x, but are in the same face, then x is an articulation.

Let arrow graph be the graph on 4 vertices composed of a triangle and an
edge connecting the fourth vertex to the triangle.

Let crinkle be the plane graph obtained from a 4-face f by attaching a pair
of paths of length 3 connecting its opposite vertices (outside of f), necessarily
crossing to form a single triangle T sharing an edge with the 4-face. We say that
the 4-face f and the triangle T form a crinkle. See Figure 2.7b for reference.

Lemma 62. Let G be a plane graph with some vertices of G precolored, in partic-
ular all vertices of triangles are precolored, let f be a 4-face of G and T a triangle
sharing a single edge with f . Suppose further that all precolored vertices that are
not vertices of T are at distance at least 2 from T . Then there exists a 4-face f0
sharing edge with T (possibly f0 = f) that can be collapsed without forming a new
triangle or unifying any precolored vertices. Furthermore, after the collapse, the
distance between T and the closest precolored vertex decreases by at most 1.

Proof. Since f shares an edge with T , all of the other vertices of f are at distance
at most 1 from T , and therefore none of them are precolored. Suppose f itself
does not satisfy the requirements of the lemma, then each direction of collapse of
f must form a triangle. Consider the two implied paths of length 3 connecting the
opposite vertices of f . By the definition of a crinkle, f forms a crinkle, necessarily
with T as no other triangle can share an edge with f by the assumptions of the
lemma.

Let f0 be either of the 4-faces of the crinkle other than f . We observe that
collapsing f0 by unifying the vertex x shared by f and T with a vertex of the
outer face cannot form a triangle. Indeed, any path of length 3 connecting the
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opposite vertices of f would necessarily use at least one of the edges of f or T to
reach the outer face, but then in all cases forms a triangle in the outer face.

Since f0 shares an edge with T , no other vertices of f are precolored. We con-
clude that f0 satisfies the statement. Note that in both cases, namely collapsing
f or f0 as indicated, the vertex unified with a vertex of T is at distance 1 from
T , which implies the final part of the statement.

Lemma 63. Let G be a plane graph with triangle T bounding a ring, otherwise
with no triangles and {T, v}-critical where v ∈ V (G) \V (T ). If d(T, v) ≤ 1 or all
4-cycles in G separate T from v, then G is the arrow graph.

Proof. Suppose d(T, v) = 1 and let uv be the edge connecting T and v. We double
the edge uv and split the vertex u into two vertices so that the 2-face enclosed
by the two parallel copies of uv merges with the ring bound by T . We obtain a
plane graph with precolored 5-cycle C bounding the new ring, critical in respect
to C. According to Lemma 18, such graph is equal to the cycle C. We conclude
that G contains no other elements other than T , v and uv, and is therefore an
arrow graph.

For the second case, we use Lemma 60. Let us consider T and v as two rings
of length at most 3, one of which is clearly vertex-like. We conclude that G
necessarily follows the first case of Lemma 60, implying it is an arrow graph.

Lemma 64. Let G be a plane graph with a triangle T and otherwise without
triangles. For every precoloring ψ of T and every v ∈ V (G) \ V (T ) there exists
a color c such that if ψ′ is obtained from ψ by additionally setting ψ′(v) = d for
an arbitrary color d ̸= c, then ψ′ extends to coloring of G.

Proof. We proceed by induction on the number of vertices. For contradiction, let
G be the smallest counterexample, in particular G is {T, v}-critical. Let us first
note that by Lemma 18, any precoloring of the triangle T extends to the whole
G. If there is an edge connecting v to T , then the statement holds by Lemma 63,
which implies that if v is colored consistently with its only neighbor on T , then
the coloring always extends. We may therefore assume that d(T, v) ≥ 2. If every
4-cycle in G separates T from v, then by Lemma 63 the same conclusion holds as
well.

By the above, we may fix a 4-face f of G. If f can be reduced so that the
resulting graph H is triangle-free apart from T , and v is not unified with a vertex
of T , then by the induction hypothesis, the claim holds on H for v and some color
c. Consider the two colorings of H obtained by extending precoloring with colors
other than c on v. By the natural extension of these two colorings, the claim also
holds on G. We may therefore assume that no 4-face can be collapsed without
forming a triangle or unifying v with T .

Each direction of collapse of f must either produce a triangle or merge v with
T . If both directions produce a triangle, then f must be part of a crinkle in G,
together with T . By Lemma 62, there exists a face f0 sharing an edge with T
such that at least in one direction of its collapse does not produce a triangle and
maintains that d(T, v) ≥ 1. We conclude that f0 can be reduced, a contradiction.
It follows that for each 4-face f , collapse in one direction must unify v with a
vertex of T and the collapse in the other direction must produce a triangle.
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Let v, x, a, y be the facial walk of f , where a ∈ V (T ) and let P be a path
of length 3 connecting x to y, and let C be the 5-cycle composed of P and v.
Without loss of generality, T lies in the interior of C. Consider the exterior of C,
since it contains no precolored vertices, it must be critical in respect to C and is
therefore just a 5-face, by Lemma 18. Consider splitting the vertex a into two so
that the face bound by T and the face f merge into a single 7-face f ′. Since all
precolored vertices now lie on the boundary of f ′, the adjusted graph G′ must be
critical in respect to f ′ and therefore G is critical in respect to the corresponding
cell D of length 7. By Lemma 18, the census of the exterior of D is exactly {5},
and therefore the triangle bound by T and the outer 5-face are the only faces in
G of length other than 4. In particular, the interior of C contains a 4-face other
than f which is not incident with v and therefore can be reduced, as neither
direction of its collapse can unify v with a vertex of T , a contradiction.

Lemma 65. Let G be embedded in the cylinder with rings T1, T2 of lengths 3 and
otherwise without triangles. If G is {T1, T2}-critical, then any articulation in G
is a vertex of T1 or T2 and separates T1 from T2.

Proof. We proceed by contradiction. Let v be an articulation in G. Suppose v
is not separating T1 from T2. By criticality of G, each side of the cut can be
colored independently. The colors of the part with no precolored vertices can be
permuted, obtaining a coloring compatible with the coloring of the other part,
and consequently a coloring of G, which is a contradiction.

Otherwise suppose v is an articulation separating T1 from T2 but not a vertex
of either of the triangles. We use Lemma 64 on both sides of the cut and obtain
two colorings for each side with different colors on v. Clearly, there is a pair
of colorings matching on v combining into a coloring of the whole graph G,
a contradiction.

Lemma 66. Let G be a plane graph with a ring T of length 3, otherwise without
triangles and containing an articulation. If G is {T, v}-critical where v ∈ V (G) \
V (T ), then G is the arrow graph. In particular S(G) = {5} and the distance
between T and v is 1.

Proof. Let w be the articulation of G. Consider gluing a triangle T2 to v and
precoloring it. The resulting graph is {T, T2}-critical and therefore by Lemma 65
w is a vertex of T . We split G into two subgraphs G1 and G2 along w, so that
T is contained in G1, v is contained in G2 and w is part of both subgraphs. The
subgraph G1 is T -critical, and therefore by Lemma 18 G1 = T . Clearly, G2 is
{w, v}-critical, but then by Lemma 63, G2 is exactly the edge connecting u and
v. We conclude that G is the arrow graph and consequently S(G) = {5}.

Lemma 67. Let G be a plane graph with a ring T of length 3 and otherwise
without triangles. If G is {T, v}-critical where v ∈ V (G) \ V (T ), then S(G) ∈
S∆ = {{5}, {5, 5, 5}}.

Proof. We proceed by induction on the number of vertices. By Lemma 66 we can
assume that G has no articulation and by Lemma 63 G has at least one 4-face.

We repeatedly use the following argument. Suppose G contains a 4-face f such
that collapsing it in at least one direction neither produces a new triangle nor
lowers the distance between T and v down to 1. Let H be a graph obtained by a
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reduction in this direction. Then by Lemma 66, H does not have an articulation
and by the induction hypothesis, S(H) ∈ S∆. By Lemma 61 S(G) is a refinement
of S(H) unless one of the unified vertices was v. If it was not, in particular if
v is not incident with f at all, we conclude that therefore S(H) = S(G), a
contradiction. We refer to this argument by saying that f admits amplification.

We now prove a series of claims.
(1) The distance of T and v is at least 3
By Lemma 63 the distance d(T, v) is at least 2. Suppose it is exactly 2.

We proceed similarly to the proof of Lemma 63. We double both edges along a
shortest path from T to v and then split the two vertices other than v so that the
two 2-faces merge with the ring bound by T into a new face of length 7, which is
a new ring. The resulting graph is critical in respect to the 7-cycle bounding the
ring, and by Lemma 18, the census of the graph is {5}. Since this surgery did
not change any faces other than the ring, we conclude that S(G) = {5}.

(2) T does not share an edge with a 4-face
Suppose for contradiction f is a 4-face sharing an edge with T . By (1), after

collapsing f in either direction d(T, v) ≥ 2. Unless f admits amplification, both
directions of collapse of f must produce a triangle and therefore T and f form
a crinkle. By Lemma 62, there is a face f0 sharing edge with T which admits
amplification, a contradiction. Hence (2) holds.

We say that a 4-face f is unsafe if one pair of its opposite vertices a, b is
connected by a path P of length 3 and in the other pair, one of the vertices is v
and the other vertex x is part of a separating closed walk C of length at most 5
with T located on the other side of C than f , and C ∩ P = ∅. Without loss of
generality, we assume T is in the interior of C. See Figure 2.8a for illustration.

(3) There exists a safe 4-face
Suppose every 4-face is unsafe and let f be an unsafe 4-face. We use the

notation as specified in the definition above. Note that indeed the cycle formed
by P and x separates v from T as otherwise it would itself be a separating 5-cycle
with all precolored vertices on the same side, which is not possible according to
Lemma 18. Similarly, the exterior of the cycle formed by P and v is critical in
respect to the 5-cycle and is therefore necessarily empty, in other words an outer
5-face. On the other hand, the interior of the cycle formed by P and x does not
contain any 4-face as such 4-face cannot be incident with v and would therefore
be safe, contradicting assumption of the subclaim.

The facial walk of f together with C form a cell W of length at most 9, such
that the whole exterior of W is critical in respect to W . We use Lemma 17 which
for setting k ≤ 9 implies that the exterior of W contains at most one vertex. This
contradicts presence of P , which has two such vertices.

(4) There is no safe 4-face incident with v
For contradiction suppose f is a safe 4-face incident with v. Let us denote the

facial walk of f as vabc. If both directions of reduction of f form a triangle, f and
T must form a crinkle, which contradicts (1). If one direction of collapse reduces
the distance between T and v to 1, then T is connected via an edge to b, and
the other direction of collapse must form a triangle. However, this configuration
cannot happen as then f would be a special case of unsafe 4-face, see Figure 2.8a
for illustration.

We can therefore reduce f without forming a triangle and maintaining that
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(a) Unsafe 4-faces f . General case, as defined in Lemma 67 on the left, and a
special simple case on the right.
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(b) Construction illustrations. On the left H ′ in Lemma 67, subclaim (4), case
where C ∩ P is an edge. On the right, H1 in the final argument of Lemma 68
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d(T, v) ≥ 2. However since we may assume f does not admit amplification by
unifying a and c, there is a path P of length 3 connecting a and c. We reduce f
by unifying b and v obtaining a graph H in which the distance between T and v
is at least 2, and therefore H is 2-connected by Lemma 66. Let F be the path
into which f collapses in G during reduction. Let us return F back into H. Since
f does not admit amplification, by Lemma 61 it must be the case that both edges
of F are missing in H and both are added into the same face of H. Note that this
face is of length at most 5, by induction hypothesis. Without loss of generality
we assume it is the outer face of H.

Let H ′ be obtained from H by uncollapsing the face f from F and adding the
path P connecting a and c. Note that H ′ contains H as a subgraph, bound by a
cell C of length at most 5. Also note that the cycle formed by P and v bounds
an outer 5-face, as otherwise it would be a separating 5-cycle with all precolored
vertices on the same side. If C and P are disjoint, we conclude that f is in fact
an unsafe 4-face, contradicting the assumption of the claim.

Let g, h be the two faces of H ′ in the exterior of C other than f and the outer
5-face. We bound their lengths by counting the number of edges of P,C and f
that may bound them. If P ∩C contains an edge, then |g|+ |h| ≤ 8 and therefore
both are 4-faces, see Figure 2.8b for illustration. In particular, equality must hold
and consequently C has length 5, implying the outer face of H is a 5-face. We
can see that S(G) = S(H) as G is obtained from H by filling its outer 5-face
with three 4-faces and a 5-face. If P ∩C is a vertex, then |g| + |h| ≤ 10. Without
loss of generality let h be incident with the middle vertex w of P that is not a
vertex of C. The degree of w must be at least 3 by criticality and therefore h is
not a face of G, but rather a separating cell. By Lemma 18, |h| ≥ 6, we conclude
that |h| = 6, |f | = 4, and the interior of h is quadrangulated in G. As before, the
length of C must be exactly 5 and S(G) = S(H). We have a contradiction with
G being an counterexample and therefore (4) must hold.

We may therefore assume that (4) holds on G as otherwise the claim of the
lemma holds for G.

(5) There is no safe 4-face incident with T
For contradiction suppose f is a safe 4-face incident with T . By (2) the

incidence is a single vertex x. Let us denote the facial walk of f as xabc. We may
assume that f does not admit amplification by unifying a and c, and therefore
there is a path P of length 3 connecting a and c. Note that T and v must be on
the opposite sides of the 5-cycle formed by P and b.

Suppose further that b is connected to v via an edge. Consider the graph H
consisting of T , f , P and the edge bv. The face incident with v is of length 7
and is not a face of G since b is not an articulation. Since it is also critical in
respect to its boundary, the census of the interior of the face is exactly {5} by
Lemma 18. The cell incident with T is of length 8 and is similarly not a face of
G since x is not an articulation, and therefore its census is either {5, 5} or {6}
or ∅. By (2) the census cannot be ∅ and if the census was {6}, then by (2) the
triangle T neighbors only with the 6-face implying x is an articulation, which is
not possible. We conclude that S(G) = {5, 5, 5}, a contradiction.

In the remaining case, b is not connected to v via an edge. Since f and T
do not form a crinkle, we can reduce f by unifying x and b without any triangle
forming, and additionally the distance between T and v remains at least 2. This
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shows that f does admit amplification, which is a contradiction and therefore (5)
holds.

Finally, we formally draw the final contradiction to prove the lemma. Together
the subclaims (3), (4) and (5) imply that there exists a face f in G not incident
with any precolored vertices. In particular, reducing such a face cannot decrease
the distance of T and v down to 1. Also, at most one direction of collapse of f may
produce a triangle, as otherwise f forms a crinkle, necessarily touching T . We
conclude that f admits amplification, and therefore S(G) ∈ S∆, a contradiction.

Note that there is only one case of the proof where the census of G is {5, 5, 5}.
We believe that this case can be further analyzed to show that in fact the census
is always {5}. However for our purposes it suffices that the largest element of the
census is 5 and that the number of elements is small. Therefore we do not craft
further expansion of the already tedious argument.

We say that a multiset of integers is quasimodest if it can be obtained as a
union of three parts, a subset of {5, 5, 5}, a subset of an element of S4,8 and a
subset of an element of S4,9 ∪ S4,10. In particular, if X is a quasimodest multiset,
then its maximum element is at most 8, and its size is at most 12.

Lemma 68. Let G be embedded in the cylinder with rings T1, T2 of lengths 3 and
otherwise without triangles. If G is {T1, T2}-critical, then S(G) is quasimodest.

Proof. Let us proceed by induction on the number of vertices. Let G be a minimal
counterexample. If G has no 4-face, then according to Lemma 60 S(G) ∈ S4,10
and is quasimodest by definition. Therefore, we may assume that G has at least
one 4-face.

We now prove a series of claims.
(1) If G is as in the statement of the lemma and contains an articulation x,

then S(G) ∈ {{8}, {8, 5, 5}, {7, 5}, {7, 5, 5, 5}}.
According to Lemma 65 and without loss of generality x is a vertex of T1. Let

us split G using the cut vertex x. The side containing T1 contains no precolored
or cut vertices other than T1, therefore it is critical in respect to T1, and by
Lemma 18 equal to T1, implying that T1 is a vertex-like ring in G. Consider
deleting the two vertices of T1 other than x from G. We obtain a graph which
is {T2, x}-critical and by Lemma 67 has census {5} or {5, 5, 5}. We obtain G by
gluing a triangular ring back to x, increasing length of one face by 3 (possibly
of a 4-face which is not represented by an element of the census). We conclude
that S(H) ∈ {{8}, {8, 5, 5}, {7, 5}, {7, 5, 5, 5}}, all of which are quasimodest and
therefore (1) holds.

Similarly to Lemma 67, we say that a 4-face f admits amplification if in at
least one direction of reduction no new triangles or new articulations are formed.
Suppose H is a graph obtained by a reduction in this direction. By the induction
hypothesis, S(H) is quasimodest and by Lemma 61 S(G) is a refinement of S(H).
Since quasimodesty is closed under refinement, we conclude that S(G) is also
quasimodest, a contradiction. Note that to avoid articulations, it suffices if none
of the two unified vertices is a vertex of T1 or T2, by Lemma 65, as applied to H.

(2) d(T1, T2) ≥ 3
Suppose for contradiction it is at most 2. We double all edges along the

shortest path and split all of its vertices so that the 2-faces and both rings merge
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into a single face of length at most 10, which becomes the new ring. The rest of
the graph is critical in respect to this ring and therefore, depending on its length,
by Lemma 18 we have that S(G) is an element of S4,10,S4,8 or S4,6, the latter
two of which are subsets of S4,10 and therefore S(G) is necessarily quasimodest,
a contradiction.

(3) There is no 4-face sharing edge with T1 or T2 in G.
Suppose f shares an edge with T1, without loss of generality. We may assume

f does not admit amplification. If collapsing f in each direction produces a
triangle, then f and T1 form a crinkle and by Lemma 62 there exists a face f0
sharing edge with T1 and f0 can be collapsed without forming a triangle; we take
f0 instead of f . Again, we may assume that f does not allow amplification and
therefore reducing f in at least one direction must produce H with an articulation
x. Since G is minimal counterexample, S(H) is quasimodest. Since quasimodesty
is closed under refinement, if S(G) is a refinement of S(H), we have that G is not
a counterexample and we reach a contradiction. Let F be the path into which
f collapses in G. By Lemma 61 it must hold that neither edge of F is an edge
of H. However one edge of F is an edge of T1, a contradiction. We conclude that
(3) holds.

Let f be a 4-face, by (3) it has at most one precolored vertex, implying f
does not form a crinkle and therefore collapsing it forms a triangle in at most one
direction of collapse. On the other hand, collapsing f may produce an articulation
in at most one direction as that can only happen when a vertex of T1∪T2 is unified
with another, by Lemma 65. Let the facial walk of f be xabc. We may assume
that f does not allow amplification. By the previous, we may assume x ∈ V (T1)
without loss of generality and that there is a path P of length 3 connecting a and
c.

Let us consider reducing f by unifying x and b and denote the resulting graph
H. Since we assume f does not admit amplification, the resulting unified vertex x
must be an articulation in H. By (1), S(H) ∈ {{8}, {8, 5, 5}, {7, 5}, {7, 5, 5, 5}}.

Let F be the path into which f collapses. We may assume that S(G) is not
a refinement of S(H), as otherwise the claim holds. By Lemma 61, we have that
H contains no elements of F other than x. Let H0 be the graph obtained from
H by returning F into H, and adding back the path P connecting a and c. We
further have that all of the new elements are contained within one 7- or 8-face
of H, splitting it into two parts which we denote A and B where A is the face
incident with T1. Let us determine the sizes of A and B. The addition of F ∪ P
adds 5 edges, and each edge contributes one unit of length to each of the faces A
and B. The face A is bound by T1 ∪ F ∪ P and is therefore of length 8, while B
is of length either 9 or 10 depending on the length of the initial face being 7 or 8
respectively.

Let H1 be a graph obtained by uncollapsing F back into f in H0, see Figure
2.8b for illustration. Clearly S(H1) = S(H0), while H1 is a subgraph of G and
therefore S(G) is a refinement of S(H1). Since G has no articulation, neither
face A nor B can be a face of G, as then either x or b would be an articulation
in G. By filling both faces A and B in H1 appropriately, we obtain H2 which
is a subgraph of G. The census S(H2) is union of three parts, first part is a
subset of {5, 5, 5} depending on the census of H, second part is an element of S4,8
representing the filling of A, and the last part is an element of either S4,9 or S4,10
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representing the filling of B. In particular, S(H2) is quasimodest by definition.
Since each part is on its own closed under refinement, and S(G) is obtained as a
refinement of S(H2), we conclude that S(G) is also quasimodest.

Non-contractible Triangles, Algorithms

To process graphs critical in respect to two precolored triangles, we need analogue
of the algorithm from Lemma 45. We say that a graph G is a segment if G is
a graph 2-cell embedded in the cylinder with both rings of length 3 and otherwise
triangle-free.

Lemma 69. There exists an algorithm which for any segment G with disjoint
rings, F a set of faces of G (other than rings), k an integer such that k ≤ 9
satisfying one of the following conditions:

• |F | = {f}, k ≤ |f | + 1

• |F | ≤ 3, every f ∈ F is 4-free

decides whether F is k-free. If F is not k-free, the algorithm returns a certifying
separating cell C such that |C| ≤ k and C itself is |C|-free. The algorithm runs
in time Ok(|G|).

Proof. The theoretical part of the construction is identical to that of Lemma 45,
although technical details differ.

Similarly to the construction in Lemma 45, we want to unravel the cylindrical
graph into a repeating structure. This time, we need to repeat in only one axis,
as cylinder is cyclic in only one direction. Let P be a (shortest) path connecting
the rings T1 and T2 of G. We cut G along P , obtaining a planar graph embedded
into a rectangle bound by two copies of P and walks of T1 and T2, a semi-tile
T . Analogously to the definition of a tiled grid of size k, we define a tiled strip
of size k as follows. We take 2k + 1 copies of T arranged into a strip so that the
edges of the embedding rectangles coincide and unify the overlapping embeddings
of the copies of P . The strip has a natural projection back into G. Analogously
to Observation 43, we observe that a closed walk of length k beginning in the
central tile is contained within tiles at distance at most k/2.

Let H be a tiled strip of size k/2 and c its central tile. We build the network
from H⋆ analogously to the construction in Lemma 45, with the source being the
outer face g of H, all capacities 1, and the sink connected via an edge of limited
capacity to various substructures.

As in the Lemma 45, we branch into several networks in the case when F =
{f} and k ≥ |f |. We iterate over at most k + 1 neighbors of f , however exclude
g in the case when f is incident with a ring in G.

Similarly, in the case when |F | ≥ 2, we iterate over various projections of el-
ements of F other than the first one into H. Let us note that in the case where
|F | = 3, we may restrict iteration over all projections where the two faces pro-
jected with the largest distance are mutually within a span of the potential sep-
arating closed walk implied by the analogue of the Observation 43.

Once we run the max-flow algorithm, we either obtain a flow of size k + 1
or we extract the minimum cut S of size at most k closest to g⋆. Unlike in the
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Lemma 45, S may consist of edges incident with g⋆ originating from the rings
of G. This does not constitute a problem as these edges correspond to a valid
border of G. We obtain a closed walk in H corresponding to S and project it
back into G. By the same argument as in Lemma 45, we argue that the obtained
structure is a separating cell.

Lemma 70. There exist an algorithm which for any given segment G with disjoint
rings T1, T2, terminates in time O(|G|) and either

• Produces a quasimodest subgraph H such that T1, T2 ⊂ H and every precol-
oring ψ of T1 ∪ T2 extends to a 3-coloring of H if and only if it extends to
G, or

• determines that every precoloring ψ of T1 ∪T2 extends to a 3-coloring of G.

Proof. The algorithmic approach is practically identical to that of Lemma 46.
We build a set F of faces with high freeness, so that if the set exceeds certain
limit, we may certify that G does not contain a {T1, T2}-critical subgraph and
therefore all precolorings extend. The main difference is that we are now guided
by Lemma 68 and quasimodesty. The key observation bring that if G contains
a critical subgraph H, with all faces of length at most 8, then any 8-free (≥ 5)-face
of G contributes to a census of H.

Lemma 18, describes the only cases when a (≥ 5)-face may be contained
in a separating cell of length at most 8. In particular, the faces in F should
maintain the following properties:

• Every 5-face is 6-free

• Every pair of 5-faces is 7-free

• Every triple of 5-faces is 8-free

• Every 6-face is 7-free

• Every pair consisting of a 6-face and a (≥ 5)-face is 8-free

• Every (≥ 7)-face is 8-free

Before running the procedure, we remove interiors of separating 4-cycles, if
any exist, using the algorithm from Lemma 44. We start with the initial G and
an empty set F and iteratively use Lemma 69 to test unprocessed (≥ 5)-faces
f of G for min{|f | + 1, 8}-freeness. If a separating cell is found, we delete its
interior and add the new resulting face into F , otherwise we add f into F . If the
face being added is a (≥ 9)-face, the quasimodesty is violated and we terminate
instead. Note that the added face is always at least free.

After adding the new face into F , we need to maintain the above listed prop-
erties of single faces, pairs and triples. We always test the conditions on single
faces first, only moving to pairs once all individual conditions holds, and then
to triplets once all conditions on pairs hold. When a new face is obtained from
a separating cell, it is only free, and so we test whether its freeness is high enough,
possibly replacing it again with a longer face and repeating until the test is suc-
cessful. If the new face is a 5-face or a 6-face, we test it in combination with the
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faces already present in F . As before, if a short separating cell is found, we delete
its interior and continue with the new face instead. Note that whenever the tests
of pairs or triples detect a short separating cell, it is always longer than each
of the faces from F contained in its interior, at least by 2 due to their individual
freeness.

If the set F satisfies all of the properties above, and it is not quasimodest, we
terminate and conclude that G admits all precolorings to extend. Otherwise we
continue processing faces of the remainder of the graph until all (≥ 5)-faces are
in F and we return the remainder of the graph.

We show that F grows lexicographically in every iteration. Notice that the
first step of each iteration either adds a new element into F or terminates the
algorithm. Consider the multiset of lengths of faces in F , sort them from highest
to lowest value and compare resulting lists lexicographically. Clearly, whenever
the set is extended by a new element, it also grows in the lexicographical sense.
It may happen that some elements of F are removed when the algorithm deletes
the interior of a separating cell. Since all faces in F are free, the separating cell
must be of length strictly higher than each of the removed elements, implying
that F grows in the lexicographical sense.

At the beginning of each iteration, |F | ≤ 12, as otherwise the quasimodesty is
violated and we terminate. Each iteration consists of several freeness tests, where
each test runs in time O(|G|) (for faces of limited size) and the number of tests
depends on the current size of F . Therefore, each iteration runs in linear time.
As observed, the set F grows lexicographically in each iteration, and therefore
the number of iterations is limited by a constant. We conclude that the algorithm
terminates in time O(|G|).

Let G be a graph with a 2-cell embedding in the torus such that G is 3-
colorable and all triangles in G are non-contractible, and let T be an arbitrary
triangle. Let ψ be a partial coloring of G such that all (non-contractible) triangles
in G that are homotopically equivalent to T are colored by ψ and ψ extends to
a 3-coloring of G. We say that the tuple (G,ψ)T is a segmented toroidal graph. We
may take the set of all non-contractible triangles of G homotopically equivalent
to T and cut G along each. We obtain a set of cyclically ordered segments.

The triangle T is only a technical way to ensure that the definition is con-
sistent with its use, that is, we intend to use previously developed tools to work
with individual segments and precolorings of their rings and only their rings.
A triangle homotopically non-equivalent to T might contain a vertex in the inte-
rior of a segment, causing problems if precolored by ψ. Also, cutting along such
triangle would split G into pieces that are not cylindrical.

Let T1, T2 be two homotopically equivalent triangles. We say that T1 and
T2 are matching if the order of their vertices wraps around the surface (torus
or cylinder) in the same order. More formally, if represented as oriented closed
curves, these can be brought together so that their orientations match. The
triangles are mismatching otherwise. We say that triangles have matching 3-
colorings if the order of colors on the triangles matches, and mismatching 3-
colorings if the order of colors does not match. In particular, if T1 ∩ T2 ̸= ∅,
then T1 ∪ T2 has at most two types of coloring, up to permutation of colors, one
matching and possibly one mismatching.
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Observation 71. Let G be a segment with rings T1, T2 such that T1 ∩ T2 ̸= ∅.
Then a precoloring of T1 ∪T2 does not extend into a 3-coloring if G if and only if
T1 and T2 intersect in a single vertex, the colorings of T1 and T2 are mismatching,
and G is a quadrangulation (except its rings).

Proof. First suppose that the rings T1 and T2 intersect in a single vertex x. The
triangles together form a boundary C = T1 ∪ T2 of a cell of length 6. Assuming
that a precoloring of C does not extend into G, Lemma 58 confirms the conclusion
unless C has a chord improperly colored by the precoloring. We observe that all
vertices of C are at distance at most 2 from each other and so any such chord
would form a triangle distinct from T1 and T2, which contradicts G being a single
segment.

Let us now assume that T1 and T2 intersect in an edge. By the same approach,
the rest of the graph is then a equivalent to a triangle-free planar graph critical
in respect to its boundary of length 4, however no such graph exists according to
Lemma 18. Therefore G = T1 ∪ T2 and the given precoloring colors the whole G,
a contradiction.

Lemma 72. There exists an algorithm such that given a segment S and a precol-
oring ψ of the rings of S decides whether ψ extends into a 3-coloring of S in time
O(|S|).

Proof. First we use the algorithm from Lemma 46 on S and if we obtain a quasi-
modest reduced version of the segment S ′, we proceed by algorithm from Theorem
15 applied to S ′, otherwise ψ is guaranteed to extend. Both algorithms run in time
O(|S|).

Lemma 73. There exists an algorithm such that given a segmented toroidal graph
(G,ψ)T produces a 3-coloring of G in time O(|G|2).

Note that the produced 3-coloring does not necessarily extend ψ.

Proof. We proceed via recursion. If ψ colors all vertices of G, we terminate.
First we use the algorithm from Lemma 44 to delete interiors of all separating
4-cycles. If G has no contractible 4-cycle F , we use the algorithm from Lemma
56 to obtain a 3-coloring. Note that in this case the obtained coloring does not
extend ψ. Otherwise, we have a contractible 4-cycle F , which bounds a 4-face f .
Note that f is contained within a single segment S of G.

By collapsing f in (at least) one of the two possible directions we obtain
a graph G′ such that ψ extends to a 3-coloring of G′. Let S be the segment
containing f , T1, T2 the rings of S, and S ′ the cylindrical subgraph of G′ corre-
sponding to S. To decide whether ψ extends into G′, we only need to test whether
ψ extends into S ′.

If S ′ contains a contractible triangle, we observe that G contains a separating
5-cycle C containing f in its interior. According to Lemma 18 we may delete
the interior of C in G instead of collapsing f . We recurse on the obtained graph
instead and once its 3-coloring is obtained, we use the algorithm from Lemma 55
to extend it into the interior of C. We may therefore assume from now on that
no contractible triangles appear in S ′.

First suppose that there is no new non-contractible triangle homotopically
equivalent to T in G′, therefore S ′ is a segment. We test whether ψ extends to S ′
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using the algorithm from Lemma 72. If the precoloring does extend, we recurse
on (G′, ψ). If the precoloring does not extend, we collapse f in the opposite
direction. We are of course guaranteed that the precoloring extends in this other
direction, although we might end up in a different case of this algorithm.

Otherwise, let x be the new vertex resulting from the unification of opposite
vertices of f and T be the set of all new non-contractible triangles homotopically
equivalent to T . Note that each triangle in T contains x and the triangles can
be ordered by distance from T1. We get a sequence of segments ordered from
T1 to T2, separated by triangles in T . We proceed in a manner of dynamic
programming. In principle, we may test each segment to obtain the precolorings
of its rings which extend into the segment, and combine these in order from T1
to T2 to obtain a consistent coloring of T that together with ψ extends to S ′.

First we deal with the (at most two) segments such that at least one of their
rings does not intersect x, we say that these segments are non-trivial. To test
which precolorings extend, for each we iterate over all precolorings of the ring that
is not precolored by ψ and test extendability using the algorithm from Lemma
72.

If |T | ≥ 2, it remains to deal with the trivial segments bound by two rings
intersecting in x. We observe that for the purposes of combining with the non-
trivial segments, all colorings of T are of only two distinct types, those that color
the first and the last triangle in the matching way, and those that do not. It
suffices to decide for each type whether such coloring exists. We use Observation
71. If all triangles in T are precolored in a matching way, the precoloring always
extends into all intermediate segments. A coloring such that the first and the last
triangle in T are colored in a mismatching way exists if and only if at least one
trivial segment extends a mismatching precoloring of its rings; if so, we construct
a precoloring extending into all segments where all up to one pair of consecutive
triangles are precolored in a matching way. According to Observation 71 this fails
if and only if all of the trivial segments are quadrangulated and each consecutive
pair of triangles in T intersects in exactly x.

We combine all types of precolorings extending into the non-trivial segments
consistent with ψ together with the (at most) two options of precoloring of T .
If we get a consistent combination, we extend ψ into ψ′ accordingly and recurse
on (G′, ψ′). Otherwise we conclude that ψ does not extend to G′ and we collapse
f in the other direction.

Once we obtain the 3-coloring from the recursive call, we adjust it to G by
coloring vertices of f , and we possibly use the algorithm from Lemma 55 to extend
the coloring into the deleted interiors of separating 4-cycles.

Each recursion except the last one runs in time O(|G|), where the leading
contributor to the complexity is the testing of extendability. Note that when
multiple segments are tested, testing on each segment is performed for a constant
number of precolorings, and each test runs in time linear in respect to the size
of the segment. The sizes of the segments sum up to at most 2∥G∥. Each time,
the size of the graph is reduced by at least one vertex, implying that the depth
of the recursion is at most O(|G|). In the last recursion node, either the graph
was reduced to a trivial size, or we call the algorithm from Lemma 56, which runs
in time O(|G|2). We conclude that the overall time complexity is O(|G|2).
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Coloring in Torus

Theorem 74. There exists an algorithm that given a triangle-free graph G with
a 2-cell embedding in the torus, decides whether G is 3-colorable and produces
a 3-coloring in time O(|G|2).

Proof. First we may test whether G is 3-colorable, using the algorithm from
Theorem 50, and reject G if it is not colorable. If G is planar, we run the
algorithm from Theorem 51.

As an overarching strategy, we iteratively reduce G by collapsing its 4-faces,
until we are able to obtain a coloring of the reduced graph. Then we unfold the
reduced graph back to G, extending the 3-coloring. Along the way, we remove
vertices of degree 2 and interiors of separating contractible (≤ 5)-cycles, which
can then be colored during the unfolding.

If G has no contractible 4-cycle F , we use the algorithm from Lemma 56 to
obtain a 3-coloring. Otherwise, we may assume that F bounds a 4-face f , by
Lemma 18.

Collapsing f in at least one direction must produce a 3-colorable graph G′.
First assume that G′ contains no triangles. We use the algorithm from Theorem
50 to determine whether G′ is 3-colorable and if it is, we recurse on G′, otherwise
we reduce f in the other direction.

If G′ contains a contractible triangle, then we observe that G contains a sep-
arating 5-cycle C containing f in its interior. We remove the interior of C and
recurse on the remaining graph instead. Once the recursive call produces a 3-
coloring, we extend it into the interior of C using the algorithm from Lemma
57.

Finally, suppose G′ contains a non-contractible triangle T . Note that if G′

is 3-colorable, then any proper 3-coloring of T extends to G′. We fix any such
coloring ψ. If T is the only triangle in G′ homotopically equivalent to T , (G′, ψ)T
is a segmented toroidal graph, and we use the algorithm from Lemma 73 to finish
the 3-coloring. If there are multiple triangles in G′ homotopically equivalent
to T , we extend ψ into precoloring of all of the triangles analogously to the
approach used in Lemma 73, except that in this case we have only one non-
trivial segment. Note that we may also get triangles that are not homotopically
equivalent to T , however these triangles constitute no issue for our approach to
coloring if segmented toroidal graphs, as no such triangle can exist as a whole
within a single segment.

Each recursion node except the last runs in time O(|G|), where the leading
contributors to the complexity are the testing of 3-colorability (or extendability
of segments in the case of multiple homotopically equivalent triangles) and pos-
sibly extension of a 3-coloring into a separating cell of length at most 5. In each
recursive call, the size of the graph is reduced by at least one vertex, implying
that the depth of the recursion is at most O(|G|). In the last recursion node, we
call one of the other algorithms, each of which runs in time O(|G|2). We conclude
that the overall time complexity is O(|G|2).
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2.4.3 Algorithmic Remarks
There are essentially only a few types of procedures to our construction of algo-
rithms. We group them into four types and discuss each in turn.

The core component is the testing algorithm from Theorem 15 testing 3-
colorability, which is however only efficient if the input is ”4-critical-like”, that
is, having a limited census and shortest non-contractible cycle. Naturally, the
specific limits we put on the census are not essential for the working of the algo-
rithm, however the complexity scales steeply when the limitations are loosened.
In a typical application, in particular in the decision algorithm from Theorem 50,
we iterate over all precolorings of the rings, where the number of configurations
scales exponentially with the length of the rings. If we use analysis analogous to
that from Section 2.2 to narrow down the prospective precolorings, however, the
complexity of the test itself scales only linearly with the lengths of the rings.

We could in principle of course eliminate many more inputs in the Theorem
50 based on other properties observed in Sections 2.2 and 2.3 to be necessary
for a graph to be non-3-colorable. For example, we may eliminate inputs where
the (≥ 5)-faces are not close together. This may however require more nuanced
processing tools, as a 4-critical graph may contain only two faces of lengths 5 and
7 that do indeed touch, but its modest super graph (obtained by Lemma 46) we
work with may have only two 5-faces, one of which is deep inside the separating
7-cycle, not touching the other 5-face.

The second kind of procedures are those reducing the problem down to the
”4-critical-like” graphs, dealing with separating cells and separating cycles. In all
constructions using the tiling of a grid, the sizes of the grids used are worst-case
scenearios based on reasoning along the lines of Observation 42. In the argument
we consider a walk across the grid where each edge of the walk is contained
in some tile at distance d from the central tile, and connects a vertex incident
with a tile at distance d − 1 to some tile at distance d + 1. If no such shortcuts
using either one or some small constant number of edges to cross the tile exist,
we can greatly reduce the grid sizes. The presence of such shortcuts in a fixed
tile can of course be tested in linear time (in respect to the size of the tile), and
the grid designed dynamically, with different number of tile repetitions in each
direction. We of course put no effort into constructing tiles in any special way,
there is therefore freedom in designing the tile so that such shortcuts are avoided
unless the input graph is somewhat degenerated.

As mentioned just after Lemma 48, the oracle construction used to detect
short non-contractible cycles is even more powerful than we need to achieve
the correct asymptotic complexity. If we are only interested in testing of 3-
colorability, it is enough if we can either find a short non-contractible cycle
of length at most k1 or certify no non-contractible cycle of length at most k2
exists. Note that while we set k1 = k2 = 5, this is not necessary. We only need
5 ≤ k1 to safely eliminate only inputs that are 3-colorable by Lemma 40, while k2
can be any constant, although as discussed above, the complexity of 3-colorability
testing scales steeply with k2 without additional improvements.

If we are interested in obtaining a 3-coloring, the full power of the oracle
is useful in the sense that whenever we reduce the working graph by deleting
the interior of a separating cell, we can update the oracle in constant time (per
element), and when collapsing a 4-face, we can update it in time O(logk |G|).
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Note that this requires us to maintain the tiled grid graph rather than the graph
embedded in the torus.

On the other hand, when building a 3-coloring, we do not need the algorithm
from Lemma 44 to detect and delete interiors of separating 4-cycles in linear time
and we may use a simpler method instead. It suffices to iterate through all 4-faces
in quadratic time, by checking each pair of vertices whether they have more than
one common neighbor. We then find interior (if it exists) and delete it analogously
to Lemma 44. It is then straight-forward to maintain that the working graph has
no separating 4-cycles by checking only new 4-cycles containing the new vertex
after each collapse, avoiding repeated runs of the procedure.

Third set of procedures are those used to reduce inputs to smaller subproblems
in order to find a 3-coloring. When it comes to collapsing 4-faces, we choose
arbitrarily the next 4-face to be processed. Given a large input graph without
short non-contractible cycles, it is in principle possible to systematically collapse
4-faces so that no short non-contractible cycles appear and therefore we avoid
the necessity to repeatedly test 3-colorability; it is guaranteed by non-existence
of short non-contractible cycle. For example, once we construct a tile, we can
perform any collapse such that the vertices being unified are at distance at least
3 from the borders of the tile. Since a non-contractible cycle passing through the
new vertex must have preimage in the grid connecting two preimages of the new
vertex to boundaries of distinct tiles, it cannot then be of length less than 6.

With more sophisticated approach in the spirit of templates from Section
2.3, we can even remove whole quadrangulated cells at once, replacing them
with quadrangulations of at most quadratic size in respect to the length of the
cell boundary. While this does not affect 3-colorability, the quadrangulation
replacement must be chosen carefully so that any obtained coloring then extends
into the interior of the original cell. The specific problems are described by
Lemma 30.

When we work with the segmented toroidal graphs, it is in principle possible
to use not only non-contractible triangles to separate the individual segments, but
also longer cycles. Since we can reduce the graph easily until it has at least one
non-contractible cycle of length at most 5, this might simplify the architecture
of the algorithm, however the price would be a much higher limit on census,
and consequently exponentially higher running time of the core testing algorithm
in the worst case. Similar approach was employed by Dvořák and Lidický in [64],
where the the graphs in consideration are segmented by (≤ 4)-cycles. Their
analysis of graphs critical in respect to two rings of length at most 4 suggests
that the census analysis for segmentation by 5-cycles would be significantly more
difficult.

The last type of procedures are the procedures producing 3-colorings in spe-
cial cases. In particular, we use algorithms for 3-coloring planar triangle-free
graphs and graphs of girth at least 5 or with no contractible (≤ 4)-cycles. These
algorithmic counterparts of classical results by Grötzsch are not described in this
work in depth, however various constructions and improvements exist across lit-
erature. The efficiency and applicability of these procedures may differ heavily
depending on the chosen variation.
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Final Remarks
Our approach does not seem to allow a particularly straight-forward generaliza-
tion into higher surfaces. The most obvious struggle with a general surface Γ is
to determine its equivalent of modest census values, and more crucially methods
to reduce general graphs down to the case with limited census. Recall that the
general bound on census given by Dvořák, Král’ and Thomas in [28] only implies
upper-bound on census complexity for 4-critical graphs without non-contractible
4-cycles. While this is not an issue in the torus, 4-critical graphs in higher sur-
faces can contain unlimited number of (generalized) segments with non-empty
census separated by non-contractible 4-cycles. A description of such graphs,
called Thomas–Walls graphs, and their analysis can be found for instance in [29].

While these graphs can be analyzed using the algorithm from Theorem 15,
even if the goal is to only test 3-colorability, our approach leads towards splitting
the graphs into (generalized) segments, with potentially much richer structure
of interaction in between segment boundaries.

Our ambition was to generalize our approach to decide 3-colorability in the
Klein bottle as well, since graphs embedded in the Klein bottle after cutting along
a single non-contractible cycle simplify into graphs embedded in the cylinder,
similarly to the torus case. However, as can be seen from the effort needed to
deal with segments separated by non-contractible triangles, dealing with Thomas-
Walls graphs is a lot of additional effort, in our opinion not worth persuing without
a more general result in mind or at least a particular interest in the Klein bottle
3-coloring problem.

In a recent, not-yet published result, Dvořák, Bang, Heath and Lidický came
up with generalization of the methods behind Theorem 15 to allow testing 3-
colorability of near-quadrangulations on general orientable surfaces. Recall, that
in our setting, we describe vorticity as integer values, and aim to find a big-
enough set of non-contractible cycles to guarantee that a nowhere-zero flow can
be adjusted to be consistent with a given precoloring (prescribing a specific vor-
ticity value). A direct generalization of such approach would represent vorticity
as elements of a homology group and the necessary structure of cycles to guar-
antee sufficient adjustments would be rather complex, as contribution of flipping
flow along each would represent an element in the homology group. It therefore
came as a surprise to us, that a rather elegant solution exists through a change
of perspective. This is a great step towards fast 3-coloring algorithms on general
surfaces.
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3. Induced Odd Cycle Packing
Number

3.1 Induced Odd Cycle Packing Number and
Geometric Representations

In this section we will explore the connection between the induced odd cycle
packing number, a relatively new graph parameter, and geometric representabil-
ity of a graph. The induced odd cycle packing number of a graph G, denoted
iocp(G) is the maximum integer k such that G contains an induced subgraph
consisting of k pairwise vertex-disjoint odd cycles. Note that whenever two cy-
cles are connected by an edge, their vertices do not induce such a subgraph.

To simplify the exposition, we will often require the iocp to be bounded
in the complement of a graph. A complement induced odd cycle packing number
of a graph G, denoted as ciocp(G) is defined as iocp(Ḡ) where Ḡ is the comple-
ment of G.

Bonnet et al. [65] proved that the intersection graphs of disks in the have
their ciocp at most 1. They exploit this insight to derive several algorithmic
applications to efficiently solve problems that are hard in general. Later, Bonamy
et al. [66] proved that the intersection graphs of unit balls in 3-dimensional space
also satisfy ciocp at most 1 with similar algorithmic consequences. Additionally,
it fairly easy to observe the following:

Observation 75. If G is planar, then ciocp(G) ≤ 1.

Proof. Suppose for contradiction that Ḡ has an induced subgraph H̄ consisting
of at least two odd cycles C1, C2. For i ∈ {1, 2}, let Si ⊆ V (Ci) such that |Si| = 3.
Clearly, S1 ∪ S2 induces a supergraph of K3,3 in G implying it is not planar.

We show that this phenomenon is more common. In particular we show
broad classes of shapes, and sufficient geometric properties, that induce graphs
of limited ciocp and are therefore algorithmically approachable via methods we
later present in Section 3.2 as well as motivate further development of similar
methods. We conjecture that the property of limited ciocp is in fact much more
common than we can currently show.

3.1.1 Geometrically Represented Graph Classes
Let X be a finite set of geometric shapes in the plane. We say that X is a geometric
representation of a graph G if V (G) = X and for all pairs of X, Y ∈ V (G),
XY ∈ E(G) if and only if X∩Y ̸= ∅. Conversely we say that G is the intersection
graph of X .

For any class of shapes C we may define its intersection class of graphs, as the
class of all graphs obtained as intersection graphs of arrangements of shapes from
C. We only consider classes C of reasonably behaved shapes, that is, composed
of connected closed subsets of the plane, obtainable by deformation of closed
full discs, or lines and simple (non-self-intersecting) continuous curves, possibly
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closed curves. We understand an arrangement of shapes from C to be obtained
by arbitrary translations of arbitrary shapes from C. We do not necessarily allow
rotations or scaling. If we do allow rotations or scaling, we express this using C.
In such a case we say that C is closed under various transformation.

We say that a shape S has crossection 0 if there exists a finite set of points
P such that S \ P is disconnected. We say that S has a positive crossection
otherwise.

We want to explore properties of touching shapes in sufficient generality, for
this reason we need to define touch of shapes in a rather technical manner. For
basic geometric shapes of positive crossection, such as discs and squares, it is suf-
ficient to say that a pair of shapes is touching if it intersects, but the intersection
is contained in the boundaries of the shapes or equivalently is of volume 0. Such
definition is insufficient for shapes of crossection 0, such as lines, line segments
or circles.

We say that two shapes A,B touch if they intersect, their intersection is of vol-
ume 0, and there exist two shapes SA, SB topologically equivalent to full open
discs such that A and B are contained in the closures of SA and SB respectively,
and either SA ∩SB = ∅ or SA ⊂ SB or SB ⊂ SA. Note that the formulation of re-
lation between SA and SB cannot be narrowed to SA ∩ SB = ∅ to accommodate
shapes with holes.

If each pair of intersecting shapes in X only touches, we say that the repre-
sented graphs are touching graphs and we define the touch classes analogously to
the intersection classes. Note that under our definition, every touch representa-
tion is an intersection representation. Often times in literature, an intersection
representation is assumed to contain no pairs that only touch. Depending on C,
this can usually be enforced by scaling up the shapes by a small factor. Most
shape classes we assume allow such scaling and avoid this nuanced distinction.

It is fairly easy to see that the touch classes almost always form subclasses
of planar graphs.

Observation 76. Let G be a touching graph of connected closed shapes of positive
crossection such that no three shapes touch in a single point. Then G is planar.

Proof. Suppose G is touch-represented by connected closed shapes of positive
crossection. We may construct a planar embedding ofG, or rather of the incidence
graph of vertices and edges of G. To represent edges, choose any point in the
intersection of the relevant shapes, and represent each vertex as any point of the
associated shape. It is now possible to connect each point representing a vertex
to all point representing incident edges (which now lie on the boundary of the
shape) by curves so that no two curves cross. Clearly, the same representation is
also a planar drawing of G.

Similar conclusion can be reached for touching graphs of lines, line segments
and closed curves, by first continuously deforming the representation to ensure
that all shapes have positive diameter. Note that since we do not restrict the
drawing, it is not an issue that the shapes get distorted in the process.

It is natural to ask, whether the converse is true, that is, whether all pla-
nar graphs can be represented as touch graphs of some specific class of shapes.
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Perhaps surprisingly, there are many classes of shapes that indeed allow repre-
sentation of all planar graphs. Among the most prominent are discs and trian-
gles. As shown by the Schramm’s Monster theorem [67], a much more general
settings of shapes, than the ones we choose to work with here, are sufficient.
This demonstrates a very tight two-directional connection between planarity and
touch-representability.

3.1.2 Intersection Classes
The intersection classes are substantially more complex. Clearly we may expect
a typical intersection class to also contain all planar graphs (at least under the
definition we use), which are in a sense already complex. Additionally, large
cliques and even chordal graphs are typically representable subclasses. In the case
of touch representations, is it easy to see that if we do not require the shapes to be
connected, non-planar graphs may become representable. Similarly, we may ask
interesting questions about representability via intersections, such as what natural
conditions on the class of shapes, or their arrangements, impose an exploitable
structure on the represented graphs, and how to quantify complexity of this
structure. Conversely, what natural conditions still allow a wide-enough classes
of graphs to be represented? Put together, a very interesting prospect is to
represent usefully general graph classes, especially classes structured by some
practical conditions, and exploit their structure or representation algorithmically.
Naturally, these often exhibit as various generalizations of planar classes, and
generalizations of algorithms for planar graphs.

We will now define a few interesting properties and later show their connection
to the ciocp parameter. To avoid technical difficulties in this section, we define the
types of shapes we work with in a more combinatorial way. We say that a shape
is simple, if the shape is formed by the (closed) interior of a simple closed curve
(by simple we mean that the curve does not self-intersect or touch itself). We call
this curve a boundary curve of the shape. We say that a collection of shapes is
simple if all shapes in the collection are simple and the curves never touch, that
is, each time two boundary curves intersect, they also cross.

A representation is non-pass, if for every pair of shapes A,B ∈ X the part
of A outside B (formally A − (A ∩ B)) is connected. Intuitively, the non-pass
property says that no shape can have part of it pass through another shape and
emerge on the other side.

A representation is strongly non-pass, if for every shape A and union of any
number of shapes B = ∪iBi, we analogously have that A\B is connected.

If for two shapes A,B we have A ⊂ B, we say that A is nested in B. If
any shape is nested, we say that the representation has nested shapes. We say
that a representaion has no nested (pairwise) intersections if for every triplet
of distinct shapes A,B,C, if A and B intersect, then (A ∩B) − C is non-empty.
We usually drop the ’pairwise’ specification, as we always limit only the pairwise
intersection in this sense.

Let X be a set of shapes in the plane. A point p in the plane is of thickness t
if p is contained in exactly t shapes.

A representation has no hidden intersections if for every pair of intersecting
shapes A,B, there exists a point in A ∩ B of thickness 2. In other words, the
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intersection is not nested in the union of all of the other shapes.

Observation 77. A simple strongly non-pass representation with no hidden in-
tersections and no nested shapes is equivalent to a touch representation (using
more general shapes) and consequently the represented graph G is planar.

Proof. Let A,B be two distinct shapes and U the union of all shapes other than
A,B. Let X be the set of all points of thickness at least 3. For every shape S let
S ′ be the restriction of S to S\X . By the strong non-pass property and the fact
that no shapes are nested, A\U and B\U are both connected, and so are A′ and
B′.

Suppose A∩B ̸= ∅. Since no intersections are hidden, both restrictions A′ and
B′ also contain a point from A∩B. We conclude that A′ and B′ intersect. Since
A,B were chosen arbitrarily, the representation consisting of all of the restricted
shapes S ′ represents the same graph.

Let us now consider further restriction of shapes by deleting all points of thick-
ness 2, restricting every shape S ′ further to S ′′. The shape A′′ remains connected
and if A intersects B, A′′ touches A′ ∩ B′. We may therefore extend each such
pair of shapes arbitrarily into A′ ∩ B′ so that they touch. We obtain a touch
representation of connected shapes representing the same graph.

To obtain the embedding, for every shape S we choose an interior point cS
of thickness 1 representing its vertex. For each edge e we choose a point pe
where the corresponding shapes touch. Clearly, within each shape S we can draw
curves representing half-edges connecting cS and all of the points pe which lie
on the boundary of the shape. All used points are point of thickness at most 2
and at least 1 in the original representation.

Observation 78. Let G be a hereditary graph class. For any G ∈ G there exists
G′ ∈ G such that ciocp(G) = ciocp(G′) and no shapes in G′ are nested.

Proof. Let G be the represented graph and H its induced subgraph equal to the
complement of disjoint union of odd cycles. If u, v are vertices of H, then each
has exactly two non-neighbors in H and this pair of non-neighbors is unique. If
the shape representing u is contained in the shape representing v, then N [u] ⊆
N [v], in particular every non-neighbor of v is a non-neighbor of u, which is not
possible.

In particular, the observation implies that when upper-bounding ciocp(G) by
considering an arbitrarily chosen graph G ∈ G, we may assume G has no nested
shapes without loss of generality.

Lemma 79. If a simple representation (of a finite graph) satisfies (weak) non-
pass property, has no nested intersections and each intersection is connected, then
it also satisfies the strong non-pass property.

Proof. For contradiction, let A together with some collection S of shapes vio-
late the strong non-pass property, that is, A\(∪S), has (at least) two connected
components A1, A2, . . . . For the purposes of the proof we assume that the pair
(A,S) is minimal, that is, no (B,S ′) violates the strong non-pass property, where
|S ′| < |S|. Our goal is to derive that |S| = 1, showing that the weak non-pass
property is violated.
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For the rest of the proof, by shapes (with no further specification), we mean
shapes from {A} ∪ S. By the minimality, each shape in S intersects A. Fur-
thermore we show that no shape S is contained in A. Consider otherwise. If S
intersects another shape S0 ∈ S, then S∩S0 is nested in A, violating the assump-
tions. We conclude that S does not intersect any shape other than A. Either S
itself cuts A into at least two components, contradicting the choice of S, or S∩A
is contained within one component of A\(∪(S \S)), contradicting the minimality
of S. In here we use the fact that A has no holes, implying that A \ (S1 ∪ S2)
cannot be disconnected if A ∩ (S1 ∪ S2) is disconnected.

We define an auxiliary (multi-)graph H as follows. Vertices of H correspond
exactly to points of pairwise intersections of the boundaries of shapes. The edges
of H represent segments of the boundaries in between the intersection points.
The geometric representation of shapes (more specifically their boundaries) is
a planar drawing of H. Note that every shape S naturally corresponds to a cycle
in H (possibly of length 2), we say that shape S induces this cycle. We say that
a shape S holds an element x (vertex, edge or face) of H if x represents part
of plane contained in the interior of S or on its boundary.

For technical convenience we limit ourselves to a subgraph G of H containing
only vertices and edges held by A. Let Ā denote the outer face of G. The
boundary of Ā is the cycle induced by A, we call this cycle the horizon. Note
that every shape S other than A induces a path in G with both ends on the
horizon. Let a1, a2 denote the two faces of G corresponding to A1 and A2.

In the geometric representation, we say that a curve c is cutting, if it is con-
tained in A∩ (∪S), ends and begins on the boundary of A and A\c splits into (at
least) two components such that distinct components contain A1 and A2 respec-
tively. An existence of cutting curve is equivalent with the assumption that A\S
is disconnected. We say that a walk W in G is cutting, if its drawing is a cutting
curve. In other words, W separates a1 from a2 within A.

For the purposes of this proof, we understand walks as defined by a list
of edges, with vertices naturally implied. Let Wa and Wb be walks such that
the last vertex of Wa is the first vertex of Wb and Wc is their concatenation.
We express relations of these walks as WC = WA + WB (concatenation) and
WB = WC − WA (prefix removal). Note that for the lengths (number of edges)
analogous relations hold, |WC | = |WA +WB| = |WA| + |WB|.

We define a potential Φ(W,S) of a cutting walk W and a shape S as the
length of walk W −WS where WS is maximal initial segment of W induced by S.
The potential Φ(W ) of the walk W is then defined as the minimal Φ(W,S) over
all choices of S from S. We say that S witnesses Φ(W ) via the (initial) segment
WS if Φ(W,S) = Φ(W ) = |WS|. Intuitively, |W −WS| quantifies by how much S
fails to induce W all the way to the other side of the horizon. We want to show
that actually there exists S such that it carries W all the way (Φ(W,S) = 0).

Since the representation of shapes satisfies the weak non-pass property, for
every pair of shapes there are at most two vertices of G representing the points
where their respective boundaries intersect. By the same reasoning, each shape
induces a limited amount of edges of G (at most 2|S|). Clearly it is possible to
construct a cutting walk W with a finite potential by considering a facial walk
of a1 and connecting its ends to the horizon if the facial walk does not intersect
the horizon.
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Let W be a walk with minimum potential. Assume Φ(W ) > 0. First we
observe that the first edge of W is not induced by A, as otherwise Φ(W ) = |W |
(as no shape induced the first edge of W ) and by removing the first edge we
obtain a shorter cutting walk, clearly with lower potential. Let S1 be witnessing
Φ(W ) via the initial segment W1 of W (necessarily |W1| > 0).

We observe that if the maximal initial segment X of W held by S1 is longer
than W1 (the walk W continues inside S1 after leaving its the boundary), then
Φ(W ) is not minimal. Let q be the last vertex of X. Consider W ′ obtained
as X ′ + (W − X) where X ′ is chosen as either of the two paths induced by S1
connecting q to the horizon. We observe that W ′ is cutting, since it can be
obtained from W by a continuous deformation within S1. Clearly, Φ(W ′, S1) <
Φ(W,S1), as W −X = W ′ −X ′ and X ′ is induced by S1 while X is not.

Let S2 be the shape inducing the edge e immediately following W1 on W and
let W2 = W − W1 be the rest of W . Consider one of the two paths induced
by S1 ∩ S2 connecting q to the horizon and denote it as W3. We observe that
W3+W2 is cutting, by the same reasoning as before sinceW3 is held by S1. Clearly,
Φ(W ′, S2) < Φ(W,S1) = |W2|. We get a contradiction with the assumption that
Φ(W ) > 0.

It remains to note that if Φ(W ) = 0, then the boundary of some S induces
a cutting walk, implying that |S| = 1. We conclude that A and S violate the
weak non-pass property.

A collection of shapes is a collection of pseudocircles if each shape is simple,
and for each pair of shapes either their boundaries intersect in exactly two points
and their intersection is connected, or their boundaries do not intersect at all.

Observation 80. The following holds:

• If G is represented via pseudocircles with no hidden intersections, then
ciocp(G) ≤ 1

• If G is represented via pseudocircles, then Ḡ does not have an induced sub-
graph consisting of two disjoint triangles.

Proof. Note that a representation via pseudocircles has weak non-pass property
and connected intersections by definition.

If we also assume that given representation has no hidden intersections, and
as a consequence no nested intersections, then by Lemma 79 the strong non-pass
property holds, and by Observation 77, G must be planar, implying ciocp(G) ≤ 1
by Observation 75.

For the second point, let us assume that Ḡ contains an induced pair of disjoint
triangles. The same vertices induce K3,3 in G. Since K3,3 is triangle-free, its
induced representation has no points of thickness at least 3 and therefore no
nested intersections. By Observation 77, the represented graph is planar, which
is a contradiction.

3.1.3 Representations Using Geometric Shapes
In this section we present several examples of geometrically represented classes.
Apart from being interesting in isolation, we use these examples to support our
conjecture connecting ciocp and properties of geometric representations.
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For the following lemma, we define circle as the set of boundary points
of a disk. In other words, for a given center point c and radius r, the set of points
at distance exactly r from c.

We say that a family of shapes is rotable, if it is closed under rotation. Simi-
larly, a family of shapes is stretchable if it is closed under arbitrary rescaling along
arbitrary (non-fixed) direction. For example, a stretchable family containing all
disks must also contain all ellipses.

Lemma 81. The following intersection representation classes have unlimited
ciocp

• representation via lines or line segments

• representation via circles

• representation via arbitrarily stretchable and rotable shapes

Proof. For the representation via lines, note that two distinct infinite lines inter-
sect if and only if their slopes differ. For arbitrary k we construct a representation
with ciocp = k as follows; fix k arbitrary slopes and construct 3 lines for each
slope. In the complement, each triplet of lines induces an independent triangle.
For line segments, we construct effectively the same representation. Depending
on the choice of the slopes and the minimal length of a segment, there exists an ϵ
such that if the centers of all line segments are at distance at most ϵ from a fixed
point, then they intersect if and only if their slopes are different.

For the case of scallable rings, we use a slight variation of the same construc-
tion. For arbitrary k, consider k unit rings, all intersecting in one point x. For
some ϵ, and every unit ring with center c, add two more rings with the center
at c and radii 1 + ϵ and 1 − ϵ. If ϵ is sufficiently small, two rings intersect if and
only if they are defined by distinct centers.

In the last case, we may stretch any initial shape until its width is negligible
in respect to its length. We may then use the same construction as for the line
segments.

Lemma 82. The intersection representations via axis aligned rectangles have
ciocp at most 2. Furthermore, axis aligned rectangles can represent a graph
of ciocp at least 2.

Proof. Let G be a graph represented by axis aligned rectangles, and for contra-
diction assume that C1, C2, C3 are complements of cycles, disjoint subgraphs of G
showing that ciocp(G) ≥ 3. Let x1, x2 be two consecutive vertices on C1 and
w1, w2 two consecutive vertices on C2. Note that these four vertices induce a K2,2
in G. Let Ai be the rectangle representing vi and Bj the rectangle representing
wj. By convexity, we have two lines p1 separating A1 from A2 and p2 separating
B1 from B2. By the assumption on axis alignment, we may choose each of p1, p2
to be either horizontal or vertical and without loss of generality let p1 be vertical.
If p2 is also vertical, without loss of generality let p2 be to the right of p1. Then
one of A1, A2 is to the left of p1 and one of B1, B2 is on the right of p2. This is
a contradiction, as each Ai intersects each Bj. We conclude that p2 is horizontal
and intersects p1 in some point p. Let z be a vertex of C3. As it is complete to all
v1, v2, w1, w2, it must intersect both p1 and p2. By the alignment assumption, the
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point p must belong to the rectangle representing z. As z was chosen arbitrar-
ily from C3, all rectangles representing vertices from C3 contain p and therefore
pairwise intersect. This is a contradiction with the choice of C3 as a complement
of a cycle.

To observe that ciocp 2 is obtainable for axis aligned rectangles, we use a con-
struction adapted from Lemma 81. Consider three horizontal and three vertical
line segments arranged so that they represent a K3,3 (every non-parallel pair
of line segments intersecting). Clearly the same structure may be represented by
rectangles.

Lemma 83. The following intersection representations have ciocp at most 1.

• disks

• unit spheres (in 3D-space)

• unit circles

• axis aligned unit squares

Proof. The first two cases were shown by Bonamy et al. [66]. For the rest of the
proof, let us use the following notation. Let v be a vertex of the represented
graph, then s(v) is the shape representing v.

To show the second case, observe that by completing every ring into a full
circle (of the same radius) we obtain a representation by circles such that two
rings in the original representation intersect if and only if their respective circles
intersect.

For the case of unit squares, let us first assume that the complement of G con-
tains a packing of size 2 with one triangle, represented by three non-intersecting
unit squares. Using convexity, consider three lines, each separating distinct pair
of squares, by alignment, all lines can be chosen as either horizontal or vertical.
Similarly to the aligned rectangle representation, if we can choose the lines so
that at least one is horizontal and at least one is vertical, then their intersection
must belong to every square representing the second odd cycle, which is a contra-
diction. Without loss of generality, let all three lines be forced to be vertical by
the arrangement. Fix any pair of squares and note that if the third square was
entirely below or above all y-coordinates shared by the pair of squares, one of the
lines could be chosen as horizontal. We conclude that there exists a horizontal
line intersecting all three squares, and therefore the horizontal distance between
two of the squares is more than 1. This shows that no unit square can intersect
all three, contradicting the existence of second odd cycle.

Let us consider the case of unit squares and a packing with a C cycle of length
at least 7. Let a, b, x, y be four vertices of C such that a, b and x, y are pairs
of consecutive vertices and together a, b, x, y induce a C4 (that is, there is no
edge of C between these pairs). Consider a line p separating s(a) and s(b),
without loss of generality p is vertical. Since {x, y} is complete to {a, b}, both
s(x), s(y) intersect p, but not each other. We conclude that any axis-aligned line
q separating s(x) and s(y) must be horizontal. Consequently, square representing
any vertex complete to C must contain p ∩ q, which contradicts existence of the
second cycle in the packing.
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(a) Example of unit-square argument in Lemma 83
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(b) Examples of intersection-represented K3,3 in Lemma 84

Figure 3.1: Examples of constructions

Finally, if the packing contains a 5-cycle C, we adjust the argument slightly.
See Figure 3.1a for illustration. Let abcde be the vertices of C in order as they
appear on C. Without loss of generality, s(a) and s(b) are separated by a vertical
line p. Observe that s(d) intersects s(a), s(b) and therefore also intersects p.
Consider now together the union U = s(c) ∪ s(e). For the same reason as s(d),
U intersects p. This implies that either s(c) or s(e) intersects p. As both are
also disjoint from s(d), we have two disjoint squares intersecting p and therefore
separable by a horizontal line. As before, this contradicts existence of any other
cycle in the packing.

Lemma 84. The following intersection representations allow ciocp at least 2.

• unit squares

• isosceles triangles with one side horizontal, and side length in the range
[1 − ϵ, 1] for any ϵ.

Proof. See figure 3.1b for illustration of the constructions.
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In the first case, consider stacking three squares in a shape of symmetric
pyramid, negligibly close to touching. We refer to the squares as the tip square
and the two base squares according to their relative positions. Let p be the line
separating the tip square from the base squares, let q the half-line perpendicular
to p separating the two base squares and let x be their intersection. Note that
the positions of p, q fully describe the representation via pyramid. Consider a line
p′ with slight slope (rising towards the right side), intersecting p slightly to the
right of x so that it intersects all three squares. Define q′ as perpendicular to p′,
passing slightly to the left of x, thus pointing upward and intersecting all three
squares (q′ intersects a corner of left base square above p′). We observe that all
squares of the pyramid defined by p′, q′ pairwise intersect with all squares of the
original pyramid. Clearly, if the squares of the new pyramid were made large
enough, both new base squares intersect every square intersected by q′ and the
new tip square intersects every square intersected by p′. Since p′ ∩ q′ can be
constructed arbitrarily close to x, all of the pairwise intersections are witnessed
by points arbitrarily close to x and thus unit squares are sufficient.

For the second construction, let h be the height of a unit-side triangle. For
convenience we take ϵ′ = ϵ/5. We describe a touching representation and argue
it can be turned into an intersection representation. We define each triangle by
its horizontal base and the direction its tip points to. For the first triples, we
choose two triangles T1, T3 with bases [(−1, 0), (0, 0)] and [(0, 0), (1, 0)], point-
ing upwards, and a triangle T2 with base [(−1/2, h), (1/2, h)] pointing down-
wards. For the second triplet, let us have triangles with TA, TB, TC with bases
[(−1/2, h), (1/2, h)];[(−1/2, 0), (1/2, 0)] and [(−h,−1/2), (−h, 1/2)], and all three
triangles pointing upwards. By shifting T1, T3 to the left and right respectively by
a small shift ϵ′, the triangles T1, T2, T3 no longer touch. By shifting the triangle
TA down by 2ϵ′ and TC up by 2ϵ′ they now intersects all three of T1, T2, T3. The
triangle TB already intersects T1, T2, T3, so it remains to shrink it in order to avoid
intersections with TA and TC . We shrink TB so that its height is less than h− 5ϵ′

(e.g. set scale down by a factor of 1 − 5ϵ′) and shift it so its base is at height
of 5/2ϵ′.

3.1.4 IOCP Representation Conjecture
Conjecture 85. There exists a constant c such that if G has simple representa-
tion with weak non-pass property (and possibly all intersections are assumed to be
connected), then ciocp(G) ≤ 2, in particular, if G is represented by pseudocircles,
then ciocp(G) ≤ 2.

We further conjecture, that the bound in both cases is in fact 1. From our
investigation we believe that a constant upper-bound exists, and though upper
bound 1 seems as a very strong claim, we have reasons to believe that an upper
bound of 2 holds. Some of the evidence boils down to a sharp cut-off when
relaxing conditions in the geometric classes, where we do not know of any class
that would allow ciocp at least 3 but not arbitrary ciocp, unless the class achieves
this somewhat artificially (for example lines with 3 different slopes).

An example of rotable and stretchable rectangles, according to Lemma 81,
shows that violation of weak non-pass property (even with convexity, connected
intersections, and no hidden intersections) admits arbitrary ciocp. Similarly,
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every example of representation with ciocp ≥ 2 given in Section 3.1.3 violates the
non-pass property and we do not know of any such example that would satisfy
the non-pass property, even artificial or exploiting some wild class of shapes.
Conversely, the examples from Lemma 84 are such where the chosen shapes are
able to violate non-pass property while otherwise very constrained geometrically;
still a representation admitting ciocp ≥ 2 is easily obtained. It would therefore
seem that very low ciocp (in particular ciocp ≤ 1) is closely tight to the non-pass
property, and not directly dependent on any other considered properties.

We now show that a rather straight-forward argument can be used to show
that if in the conjecture above we assume that one of the odd cycles in the packing
is a triangle, then the conjecture holds.

Observation 86. Let {A,B,C} and {X, Y } be two sets of simple shapes such
that two shapes are non-intersecting if and only if they are from the same set.
Furthermore, let the shapes satisfy the non-pass property. Then the boundaries
of X and Y intersect shapes A,B,C in opposite (cyclic) permutations.

Proof. For contradiction and without loss of generality, let both X, Y follow per-
mutation of intersection ABC. We proceed similarly to the construction of draw-
ing in Observation 77. We obtain an planar drawing of the intersection graph G
of A,B,C,X, Y with vertices a, b, c, x, y such that the cyclic clockwise permuta-
tion of neighbors around both x and y is abc. Consider clockwise walk around
a face of G, starting on the left side of edge going from a to x, by the permutation
of neighbors the walk visits vertices in the (cyclic) order axbycxaybxcy. Clearly,
this face is the only face of G. However G has 5 vertices and 6 edges and therefore
by Euler’s formula must have exactly 3 faces. This contradicts X and Y inter-
secting A,B,C in the same order. Since only two cyclic permutations are possible
on three elements, the permutations of intersections must be opposite.

Lemma 87. If G is representable with a non-pass property, then its complement
allows no induced odd cycle packing of size at least two where one of the cycles is
a triangle.

Proof. Let a, b, c and x1, x2, . . . , xk represent two induced independent cycles
in the complement of G, cycle C of length 3 and X of length k. Each (cyclically)
consecutive pair xi, xi+1 of vertices of X together with a, b, c form a configuration
satisfying the assumption of Observation 86, implying that shapes representing xi
and xi+1 can be described by opposite permutations of intersection with shapes
representing a, b, c. We conclude that k is necessarily even.

There are various ways similar arguments can be used to achieve the same
result. However none was successfully extended to the general case. The main
difficulty here seem to be hidden intersections. In the case of one triangle T
present in the packing, T itself cannot exhibit hidden intersections. It is pos-
sible to extend the proof to arbitrary length of T when assuming that no pairs
of shapes from T have hidden intersections. However, this assumption is rather
unreasonable when the cycles in question get long (≥ 7).
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3.2 Induced Odd Cycle Packing Number, Inde-
pendent Sets and Chromatic Number

The graph classes defined by forbidden cycles or induced cycles of certain lengths
figure prominently in the structural graph theory, motivated in particular by the
Strong Perfect Graph Theorem [38] which shows that perfect graphs are char-
acterized by forbidden odd holes and their complements. The most interesting
graph parameters in the context of these graph classes are the chromatic number,
the independence number, and the clique number: while they are NP-hard to
approximate within any fixed precision [41] in general graphs, using semidefinite
programming they can be determined in polynomial time for perfect graphs [40].

Perfect graphs also motivate the concept of χ-boundedness. A class of graphs
is χ-bounded if the chromatic number of the graphs from the class can be bounded
by a function of the clique number (of course, there is no such function in general,
due to numerous known constructions of triangle-free graphs of arbitrarily large
chromatic number). The notion of χ-boundedness was introduced by Gyarfás [68],
who also proposed a number of influential questions on this topic. As an example,
he conjectured that graphs without odd holes are χ-bounded; this conjecture was
only recently confirmed by Scott and Seymour [69]. In a similar vein, Bonamy,
Charbit, and Thomassé [70] showed that graph classes that forbid induced cycles
of length that is a multiple of 3 have bounded chromatic number. Unlike the
study of perfect graphs, we work with all odd cycles, not just with odd holes (i.e.,
iocp takes into account also triangles).

The main motivation for our work comes from recent algorithmic results ex-
ploiting low ciocp appearing in the context of geometric graph classes. Specifi-
cally, Bonnet et al. [65] proved that the intersection graphs of disks in the plane
have the complement induced odd cycle packing number at most 1 and gave
a QPTAS and an exact subexponential-time algorithm for the independence num-
ber of graphs with iocp ≤ 1. In combination, this gives a QPTAS and an ex-
act subexponential-time algorithm for the clique number of intersection graphs
of disks. Bonnet et al. [65] only explicitly give the algorithms for intersection
graphs of disks, but the inspection of their algorithms shows that they only use
the above mentioned property, and no other properties specific to intersection
graphs of disks.

Building upon these results, Bonamy et al. [66] proved that the intersection
graphs of unit balls in 3-dimensional space also satisfy ciocp ≤ 1. Moreover,
they gave a randomized algorithm to approximate the clique number arbitrarily
well in polynomial time (a randomized efficient polynomial-time approximation
scheme) for intersection graphs of disks and of unit balls; however, in addition to
the limited ciocp, they use further properties derived from the geometry of the
problems, namely bounded VC dimension and a linear lower bound on the inde-
pendence number.

Theorem 88 (Bonamy et al. [66]). There exists a randomized algorithm taking
as an input integers k, b, c, a ≥ 1 and graph G of VC dimension at most c such
that iocp(G) ≤ k and α(G) ≥ |V (G)|/b, and in time Ok,b,c,a(|V (G)|2) returns
an independent set of G of size at least (1 − 1/a)α(G).

In unpublished results, they further proved that one can remove the assump-
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tion that the VC dimension is bounded, at the expense of making the exponent
in the time complexity depend on the desired precision, i.e., obtaining a PTAS
with time complexity O(|V (G)|f(k,b,a)) for some function f rather than an EPTAS.
In this section we show that it is not necessary to make this sacrifice, obtaining
an EPTAS without the assumption of bounded VC dimension.

Then we focus our attention on coloring. We show that graph classes with
bounded iocp are χ-bounded by a function polynomial in the clique number
(with the degree of the polynomial depending linearly on the iocp parameter).
Furthermore, our proof of this fact can be turned into a coloring algorithm running
in polynomial time for fixed maximum clique size. We complement this result
partially by a lower bound on the χ-bounding function for the case when k = 1.

Finally, we apply the χ-boundedness to show how these results can be com-
bined to obtain a QPTAS for the maximum independent set in graphs with
bounded iocp and no other assumptions. This generalizes a result of Bonnet
et al. [65], who gave such a QPTAS for graphs with induced odd cycle packing
number at most one. It needs to be noted that their approach easily generalizes
to the more general case of bounded induced odd cycle packing number; indeed,
the joint journal version [71] of the conference papers [66] and [65], which was
published while these results were in the review process, states this generalization
explicitly. Still, we believe the alternate approach we provide could be of interest;
let us note that the time complexity of our algorithm is O(exp(log2 n)), while the
algorithm of [71] has time complexity O(exp(log6 n)).

3.2.1 EPTAS for High Odd-Girth
It is a well known result that a largest independent set in a bipartite graph can
be found in polynomial time (by reduction to a maximum-flow problem). The
natural approach to solving the problem when odd cycles are present is to remove
the odd cycles without distorting the optimal solution too much. When the iocp
parameter is fixed the structure of odd cycles allows a simple approach; whenever
an odd cycle together with its neighborhood is removed from a graph, the iocp
parameter decreases, eventually reaching the bipartite case.

Our EPTAS is structured as follows. First, we deal with the case of high odd-
girth as a base case. Then we investigate graphs that cannot be reduced to this
base case without distorting the solution too much due to many disjoint short
odd cycles. We show that in such case, it is possible to either reduce iocp or (with
high probability) the number of vertices of the input graph without distorting the
solution too much, producing a recursive algorithm.

The odd girth of a graph G is the length of shortest odd cycle appearing in G.
Let us start with a mild variation on a crucial part of the argument of Bonamy et
al. [66]; we describe it here in detail, as they do not state the result separately, only
as a part of a longer argument. We also give the result in larger generality than
we actually need, in a weighted setting, as this is quite natural (unfortunately,
the rest of our argument only works in unweighted setting). Essentially, we show
that it is possible to remove a small “wedge” from the close neighborhood of the
cycle (destroying the odd cycle in the process) so that the remainder of the
neighborhood is bipartite.
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Lemma 89. Let g be an odd integer, let G be a graph of odd girth at least g, and
let C be a shortest odd cycle in G. Let t ≤ (g − 1)/2 be a non-negative integer,
and suppose that every vertex of G is at distance at most t from C. Let z be
a vertex of C, let A = Nt[z] ∩ C, and let R = Nt[A]. Then G−R is bipartite.

Proof. Note that C is geodesic in G, i.e., the distance between any two vertices
of C is the same in C as in G (otherwise, G would contain a path Q between two
vertices x and y of C shorter than the distance between x and y in C, and C ∪Q
would contain an odd cycle shorter than C), and in particular C is an induced
cycle.

Let F be a forest of shortest paths from vertices in G to V (C), and for each
v ∈ V (G), let f(v) denote the vertex in which the component of F containing v
intersects C. Note that for each v ∈ V (G), the distance in F from v to f(v) is
at most t. Observe that (F ∪ C) − z is also a forest, and thus it has a proper
2-coloring ψ.

We claim that the restriction of ψ is a proper 2-coloring of G − R. Suppose
for a contradiction there exists an edge uv ∈ E(G−R) with ψ(u) = ψ(v). Since
u, v ̸∈ R, we have f(u) ̸= z ̸= f(v), and thus there exists a unique path P between
u and v in (F ∪ C) − z. Since ψ(u) = ψ(v), the cycle P + uv has odd length,
and since C is a shortest odd cycle in G, we have |E(P )| + 1 ≥ |C| ≥ g ≥ 2t+ 1.
In particular, P contains both f(u) and f(v). Let P ′ be the subpath of P between
f(u) and f(v); we have |E(P ′)| ≥ |E(P )|−2t ≥ |C|−2t−1. Since P ′ is a subpath
of the path C−z and |E(C−z)| = |C|−2, we can by symmetry assume that the
distance between f(u) and z is at most t, and thus f(u) ∈ A. But then u ∈ R,
which is a contradiction.

Note that if |C| ≫ t, then the above lemma can be used to obtain many
disjoint sets whose removal makes the graph bipartite, and thus one of them must
contain only a small fraction of vertices, or, in a weighted setting, contain only
a small fraction of the total weight. We now use this observation to decrease the
induced odd cycle packing number without decreasing the weight of the heaviest
independent set too much.

Given an assignment w : V (G) → Z+ of weights to vertices of G, let for each
set X ⊆ V (G) define w(X) = ∑︁

v∈X w(v) and let αw(G) be the maximum of w(X)
over all independent sets X in G.

Lemma 90. There exists an algorithm that, given an integer b ≥ 1, an n-vertex
non-bipartite graph G of odd girth at least 2b(8b − 3), and an assignment w :
V (G) → Z+ of weights to vertices, returns in time O(bn2 +n3) induced subgraphs
G1, . . . , G2b of G such that iocp(Gi) ≤ iocp(G) − 1 for i ∈ {1, . . . , 2b}, and

max{αw(Gi) : i ∈ {1, . . . , 2b}} ≥ (1 − 1/b)αw(G), and
max{w(V (Gi)) : i ∈ {1, . . . , 2b}} ≥ (1 − 1/b)w(V (G)).

Proof. We find (in time O(n3) by BFS from each vertex) a shortest odd cycle
C in G, necessarily of length at least 2b(8b − 3). The argument from the proof
of Lemma 89 shows that C is geodesic in G. Let Z = {z1, . . . , z2b} be a set
of vertices of C at distance at least 8b−3 from one another and for i ∈ {1, . . . , 2b},
let Ri = N4b−2[zi] denote the set of vertices of G at distance at most 4b−2 from zi
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(the choice of z1, . . . , z2b implies these sets are pairwise disjoint). Let Li denote
the set of vertices of G at distance exactly i from C. Let Gi = G− Li −Ri.

Consider any i ∈ {1, . . . , 2b}. We claim that iocp(Gi) ≤ iocp(G) − 1. Indeed,
let G1 be the subgraph of G induced by vertices at distance less than i from C
and G2 the subgraph induced by vertices at distance greater than i from C, so
that G−Li is the disjoint union of G1 and G2. Since G1 contains the odd cycle C
whose vertices have no neighbors in G2, we have iocp(G2) ≤ iocp(G− Li) − 1 ≤
iocp(G) − 1. Furthermore, by Lemma 89 (for t = 4b − 2), the graph G1 − Ri is
bipartite, and thus iocp(Gi) = iocp(G1 −Ri) + iocp(G2 −Ri) ≤ iocp(G) − 1.

Consider a heaviest independent set I in G. Since the sets L1, . . . , L2b are
pairwise disjoint, and the sets R1, . . . , R2b are pairwise disjoint as well, we have

2b∑︂
i=1

w(I ∩ (Li ∪Ri)) ≤ 2w(I),

and thus there exists i ∈ {1, . . . , 2b} such that w(I ∩ (Li ∪Ri)) ≤ w(I)/b. Hence,
αw(Gi) ≥ (1 − 1/b)αw(G). Similarly,

2b∑︂
j=1

w(Lj ∪Rj) ≤ 2w(V (G)),

and thus there exists j ∈ {1, . . . , 2b} such that w(Lj ∪ Rj) ≤ w(V (G))/b and
w(V (Gj)) ≥ (1 − 1/b)w(V (G)).

Let us remark on a lower bound on αw(G) in graphs satisfying the assumptions
of Lemma 90.

Corollary 91. Let k ≥ 0 and b ≥ 1 be integers and let G be a graph of induced
odd cycle packing number at most k and odd girth at least 2b(8b − 3). For any
assignment w : V (G) → Z+ of weights to vertices, we have

αw(G) ≥ (1 − 1/b)kw(V (G))
2 ≥ (1 − k/b)w(V (G))

2 .

Proof. We prove the claim by induction on k. If G is bipartite, then one of the
parts of bipartition of G has weight at least w(V (G))/2. Hence, we can assume
that G is not bipartite, and thus k ≥ 1. By Lemma 90, there exists an induced
subgraph G′ of G of induced odd cycle packing number at most k − 1 such that
w(V (G′)) ≥ (1 − 1/b)w(V (G)), and by the induction hypothesis,

αw(G) ≥ αw(G′) ≥ (1 − 1/b)k−1w(V (G′))
2 ≥ (1 − 1/b)kw(V (G))

2 .

Similarly, iterating Lemma 90, we obtain an approximation for the maximum-
weight independent set in graphs of bounded induced odd cycle packing number.

Lemma 92. There exists an algorithm that, given integers k ≥ 0 and b ≥ 1,
an n-vertex graph G of induced odd cycle packing number at most k and odd girth
at least 2b(8b − 3), and an assignment w : V (G) → Z+ of weights to vertices,
returns in time O((2b)kn3) an independent set X ⊆ V (G) such that

w(X) ≥ (1 − 1/b)kαw(G) ≥ (1 − k/b)αw(G).
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Proof. We prove the claim by induction on k. If G is bipartite, then we can
find an independent set in G of largest weight via a maximum flow algorithm
in time O(n3); and considering the heavier of the two color classes of G, we
have αw(G) ≥ w(V (G))/2. Hence, we can assume that G is not bipartite, and
in particular k ≥ 1.

Let G1, . . . , G2b be the induced subgraphs of G of induced odd cycle packing
number at most k − 1 obtained using the algorithm from Lemma 90. We now
recurse on G1, . . . , G2b (with k replaced by k − 1) obtaining by the induction
hypothesis in time 2b · O((2b)k−1n3) = O((2b)kn3) independent sets X1, . . . , X2b
such that w(Xi) ≥ (1 − 1/b)k−1αw(Gi) for each i ∈ {1, . . . , 2b}. We return the
heaviest of these independent sets; we have

max{w(Xi) : i ∈ {1, . . . , 2b}}
≥ (1 − 1/b)k−1 max{αw(Gi) : i ∈ {1, . . . , 2b}}
≥ (1 − 1/b)k−1 · (1 − 1/b)αw(G) = (1 − 1/b)kαw(G)

3.2.2 EPTAS assuming linear independence number
Let us now move on to the general case of graphs with bounded induced odd
cycle packing number. From now on, we work in unweighted setting. In order
to make use of Lemma 92, it is necessary to destroy all short odd cycles in the
input graph graph. We show that unless simply deleting a maximum packing
of such cycles erases only a small portion of the graph (and hence yields a useful
approximation), there exist other algorithmically useful structures. Either there
exists a cycle which can be used to decrease iocp without decreasing the size
of the largest independent set too much or there are many high-degree vertices
which can be used to guess part of the solution while significantly reducing the
remainder of the graph.

For a set S of graphs, an S-packing in a graph G is a set X of pairwise vertex-
disjoint induced subgraphs of G, each isomorphic to a graph belonging to S (note
that we allow edges between members of X , unlike in the definition of iocp). Let
V (X ) = ⋃︁

X∈X V (X). For an integer g ≥ 3, let Sg denote the set of all odd
cycles of length less than g. A maximal Sg-packing X in an n-vertex graph G can
be found in time O(n4) by repeatedly finding a shortest induced odd cycle and
deleting it from G; observe that G−V (X ) has odd girth at least g. Lemma 92 is
used to deal with graphs without odd cycles of length less than g; so, it remains
to handle the graphs containing an Sg-packing covering a large fraction of the
vertices.

Lemma 93. There exists an algorithm that, for input integers k, p ≥ 1 (with
p ≥ k) and an n-vertex graph G of induced odd cycle packing number at most k,
returns in time O(n4 + (4p)kn3) an independent set I and induced odd cycles C1,
. . . , Cm (for some m ≤ n) in G, such that at least one of the following claims
holds:

(a) |I| ≥ (1 − k/p)α(G), or

(b) there exists i ∈ {1, . . . ,m} such that α(G−N(Ci)) ≥ (1 − 1/p)α(G), or
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(c) there are at least k
81920p6α(G) vertices v ∈ V (G) of degree at least k

81920p6n

such that α(G−N(v)) = α(G).

Proof. Let g = 4p(16p − 3). Let X be a maximal Sg-packing in G. Let I be
an independent set in G−V (X ) found using the algorithm from Lemma 92 with
b = 2p. Let X = {C1, . . . , Cm} and for i ∈ {1, . . . ,m}, let Hi = G−N(Ci).

Suppose first that |V (X )| ≤ k
10pn. Since k

10p ≤ 0.1, Corollary 91 implies

α(G) ≥ α(G− V (X )) ≥ (1 − k/b)|V (G− V (X ))|/2 ≥ 0.45(1 − k/b)n ≥ 0.225n,

and thus |V (X )| ≤ k
10pn ≤ k

2pα(G). Consequently, α(G − V (X )) ≥ α(G) −
|V (X )| ≥

(︂
1 − k

2p

)︂
α(G), and thus the set I returned by the algorithm from

Lemma 92 satisfies

|I| ≥
(︂
1 − k

2p

)︂
α(G− V (X )) ≥ (1 − k/p)α(G),

implying that (a) holds.
Hence, we can assume |V (X )| > k

10pn. Let J be a largest independent set
in G. If there exists i ∈ {1, . . . ,m} such that |N(Ci) ∩ J | ≤ |J |/p, then (b)
holds. Hence, assume that |N(Ci) ∩ J | > |J |/p for every i ∈ {1, . . . ,m}; and
consequently, for each such i, there exists bi ∈ V (Ci) such that |N(bi) ∩ J | > |J |

pg
.

Let B = {b1, . . . , bm} and note that m ≥ |V (X )|/g > k
10pgn. By double-counting

the number of edges of G between B and J , we have∑︂
v∈J

deg v ≥
∑︂
v∈J

|N(v) ∩B| =
∑︂
b∈B

|N(b) ∩ J |

>
m|J |
pg

>
k

10p2g2 |J |n.

Let J ′ consist of vertices of J of degree greater than k
20p2g2n ≥ k

81920p6n. Since J
is a largest independent set in G, for every v ∈ J we have α(G−N(v)) = α(G).
Note that ∑︂

v∈J ′
deg v =

∑︂
v∈J

deg v −
∑︂

v∈J\J ′

deg v

>
k

10p2g2 |J |n− k
20p2g2n · |J \ J ′| ≥ k

20p2g2 |J |n,

and since each vertex has degree less than n, we have

|J ′| > k
20p2g2 |J | = k

20p2g2α(G) ≥ k
81920p6α(G)

The possible outcomes of Lemma 93 offer a natural recursive approximation
algorithm. Supposing a suitable setting of the parameters, if the case (a) holds,
then the algorithm provides a good independent set. If (b) holds, then we may
restrict the problem to an induced subgraph of lower iocp while preserving the
solution well enough. If (c) holds, then we are guaranteed many vertices of large
degree such that deleting their neighbors does not affect the solution. A random
sampling of vertices with high degree provides a good probability of hitting one
of these vertices. We show that this approach yields a randomized EPTAS under
assumption that α(G) = Ω(|V (G)|).
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Lemma 94. There exists a randomized algorithm that, for input integers k ≥ 0
and t ≥ 1 and an n-vertex graph G of induced odd cycle packing number at most k,
returns in time Ok,t(n4) an independent set of G whose size is at least α(G)−n/t
with probability at least Ωk,t(n−k).

Proof. Let p = kt, and when k ̸= 0, let q = 1
81920p6 and d ≥ 1 be the smallest

integer such that (1 − q)d < 1/p. Let us now describe a recursive procedure that,
applied to an induced subgraph G′ of G and a non-negative integer k′ ≤ k such
that iocp(G′) ≤ k′, returns an independent set of G′; as we will show later, this
set has size at least α(G′) − nk′/p with probability Ωk,t(n−k′).

If |V (G′)| ≤ nk′/p, then we return an empty set (or any other independent
set in G′). If k′ = 0, then G′ is bipartite and we can find a largest independent
set in G′ via a maximum flow algorithm in time O(n3). Hence, suppose that
k′ ≥ 1. Apply the algorithm from Lemma 93 to G′ (using k′ as k) to obtain
an independent set I and cycles C1, . . . , Cm. Then perform one of the following
actions, at random, each with probability 1/3:

(a) Return the set I.

(b) Choose i ∈ {1, . . . ,m} uniformly at random. Note that the induced sub-
graph Hi = G′ −N [Ci] satisfies iocp(Hi) ≤ k′ −1. Let I ′ be an independent
set in Hi obtained by a recursive call for Hi with k′ replaced by k′ − 1. Re-
turn the union of I ′ with an independent set of Ci of size α(Ci) = ⌊|Ci|/2⌋.

(c) Choose a vertex u ∈ V (G′) of degree at least k′q|V (G′)| uniformly at ran-
dom (if no such vertex exists, return an empty set, instead). Return the
independent set obtained by the recursive call for G′ −N(u), with the same
k′.

Let us analyze the running time of this procedure when applied to G with k′ = k.
Note that at each level of the recursion, we only perform one recursive call, and
either k′ decreases by one, or the number of vertices decreases by the factor
smaller or equal to 1 − 1

81920p6 . Moreover, the recursion stops when the number
of vertices is at most n/p (or earlier). Hence, the total depth of the recursion
is at most k + d, and since d only depends on k and t, the running time of the
algorithm is Ok,t(n4).

Let d(G′) be the smallest non-negative integer such that (1 − q)d(G′)|V (G′)| <
n/p; in particular, d(G) = d. Let a(G′, k′) = (3n)−k′

(︂
q
3p

)︂d(G′)
. Let us now show

that the set returned by the algorithm for G′ and k′ has size at least α(G′)−nk′/p
with probability at least a(G′, k′). Note that when applied to G′ = G and k′ =
k, this implies the algorithm returns an independent set of G of size at least
α(G) − n/t with probability Ωk,t(n−k), as required.

We prove the claim by induction on k′ + |V (G′)|. If k′ = 0, then we return
an optimal independent set, and if α(G′) ≤ nk′/p, then the claim is trivial. Hence,
we can assume that k′ > 0 and α(G′) > nk′/p. Let us now distinguish which
outcome of Lemma 93 holds.

• If (a) holds, then with probability 1/3 ≥ a(G′, 1) ≥ a(G′, k′), we return the
independent set I, which has size at least (1 − k′/p)α(G′) ≥ α(G′) − nk′/p.
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• If (b) holds, then with probability 1
3m ≥ 1

3n , the algorithm takes the branch
(b) and chooses i ∈ {1, . . . ,m} such that α(G′ −N(Ci)) ≥ (1 − 1/p)α(G′).
By the induction hypothesis, with probability a(Hi, k

′ − 1) ≥ a(G′, k′ − 1),
the independent set I ′ returned by the recursive call in Hi has size at least
α(Hi) − n(k′ − 1)/p. Hence, with probability at least 1

3n · a(G′, k′ − 1) =
a(G′, k′), we return an independent set of size at least α(Ci) + α(Hi) −
n(k′ − 1)/p = α(G′ −N(Ci)) − n(k′ − 1)/p ≥ α(G′) − n/p− n(k′ − 1)/p =
α(G′) − nk′/p.

• If (c) holds, then with probability at least k′qα(G′)
3n ≥ (k′)2q

3p ≥ q
3p , the al-

gorithm takes the branch (c) and chooses u ∈ V (G′) such that α(G′ −
N(u)) = α(G′). We return the independent set obtained by the recur-
sive call on G′ − N(u), which has size at least (1 − k′/p)α(G′ − N(u)) =
(1 − k′/p)α(G′) with probability at least a(G′ −N(u), k′) by the induction
hypothesis. Note that d(G′ − N(u)) ≤ d(G′) − 1, and thus the probability
we return an independent set of size at least (1 − k′/p)α(G′) is at least(︂
q
3p

)︂
· a(G′ −N(u), k′) ≥ a(G′, k′).

We now improve the probability by iteration.

Theorem 95. There exists a randomized algorithm that, for input integers k ≥ 0
and t ≥ 1 and an n-vertex graph G of induced odd cycle packing number at most k,
returns in time Ok,t(nk+4) an independent set of G whose size is at least α(G)−n/t
with probability at least 1 − 1/e.

Proof. Let q = Ωk,t(n−k) be the lower bound on the probability that the algorithm
from Lemma 94 succeeds. Run the algorithm ⌈1/q⌉ times (with independent
random choices), and return the largest of the obtained independent sets. The
probability that none of them has size at least α(G) −n/t is at most (1 − q)1/q ≤
e−1, and thus the algorithm succeeds with probability at least 1 − 1/e.

Of course, we can further iterate this algorithm a times, reducing the proba-
bility of a result worse than α(G) − n/t to at most e−a.

3.2.3 χ-boundedness
In this section we show that the classes of graphs with bounded induced odd
packing number are χ-bounded, that is, their chromatic number is bounded by
a function of their maximum clique size. Let us start with the triangle-free case,
where we need to show an absolute bound on the chromatic number.

Lemma 96. Every triangle-free graph G satisfies χ(G) ≤ 2 + 5iocp(G). Further-
more, if G has odd girth at least 7, then χ(G) ≤ 2 + 4iocp(G), and if G has girth
at least 7, then χ(G) ≤ 3 + iocp(G).

Proof. We prove the claim by induction on the induced odd cycle packing number.
If iocp(G) = 0, then G is bipartite and χ(G) ≤ 2, hence suppose that iocp(G) >
0 and the claim holds for all graphs with smaller induced odd cycle packing
number. Let C be a shortest odd cycle in G, which is necessarily induced. Since
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iocp(G − N [V (C)]) ≤ iocp(G) − 1, we can color G − N [V (C)] by the induction
hypothesis, and it suffices to show how to color G[N [V (C)]] using at most 5
additional colors, respectively 4 or 1 additional color in the special cases.

Let A = {z1, z2, z3} be a set consisting of three consecutive vertices of C and
let R = N [A]. By Lemma 89, G[N [V (C)]\R] is bipartite. Since G is triangle-free,
the neighborhood of any vertex is an independent set, and N({z1, z3}) is disjoint
from N(z2). If G has odd girth at least 7, then N({z1, z3}) is an independent set
as well; hence, we can use two new colors to color G[N [V (C)] \R], one color for
N(z2) (which includes z1 and z3) and one color for N({z1, z3}) (which includes
z2), using four extra colors in total. Otherwise, we use two new colors to color
G[N [V (C)] \ R], one color for each N(z2),N(z1), and N(z3) \ N(z1), using five
extra colors in total.

In the case that G has girth at least 7, we claim that N(V (C)) is an indepen-
dent set. Indeed, suppose for a contradiction vertices w, z ∈ N(C) are adjacent,
and let w′ and z′ be neighbors of w and z in C, respectively. Since G has girth
at least 7, the distance between w′ and z′ in C is greater than three. However,
then C +w′wzz′ contains an odd cycle shorter than C, which is a contradiction.
Hence, we can use three of the colors used on G − N [V (C)] to color C and one
extra color for N(V (C)). Note that in the base case where G − N [V (C)] is bi-
partite, we need one more color so that three colors are available to be reused
on N [V (C)].

For the general case with triangles, let us first define the bounding function f .
Let f(0, ω) = 2 for every positive integer ω. For k ≥ 1, let us inductively define
f(k, ω) = ω + (2 + 5k)

(︂
ω
2

)︂
+ f(k − 1, ω)

(︂
ω
3

)︂
.

Theorem 97. Every graph G satisfies χ(G) ≤ f(iocp(G), ω(G)).

Proof. We prove the claim by induction on the induced odd cycle packing number.
If iocp(G) = 0, then G is bipartite and χ(G) ≤ 2, hence suppose that iocp(G) > 0
and the claim holds for all graphs with smaller induced odd cycle packing number.
Let K be a largest clique in G, and for each v ∈ V (G) \ K, let A(v) denote the
set of vertices of K to which v is not adjacent; the maximality of K implies
A(v) ̸= ∅. Let A′(v) be an arbitrary subset of A(v) of size min(3, |A(v)|). For
a set X ⊆ K with |X| ∈ {1, 2, 3}, let B(X) = {v ∈ V (G) \ K : A′(v) = X}.
If |X| = 1, then the maximality of K implies B(X) is an independent set; for
each 1-element set X, we use one color for all vertices of X ∪ B(X). If |X| = 2,
then the maximality of K implies G[B(X)] is triangle-free, and by Lemma 96,
we can use 2 + 5iocp(G) colors to color G[B(X)]. Finally, if |X| = 3, then
iocp(G[B(X)]) ≤ iocp(G[B(X)]) − 1, since all vertices in B(X) are non-adjacent
to the triangle induced by X; hence, we can use f(iocp(G) − 1, ω(G)) colors to
color G[B(X)] by induction. Summing the numbers of colors over all choices
of X, we conclude that at most f(iocp(G), ω(G)) colors are used to color G.

Let us remark that we can obtain the coloring as in Theorem 97 in polynomial
time: instead of choosing K as a largest clique, the inspection of the proof shows
that it suffices to choose one which cannot be enlarged by adding at most three
and removing at most two vertices, and such a clique can be found in polynomial
time, e.g. by a straightforward greedy approach.
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3.2.4 Lower-bound for χ-bounding Function
We showed that every graph G has chromatic number at most f(iocp(G), ω(G)),
where f is of order roughly ω(G)3iocp(G). We do not know whether this upper
bound is tight. We show that there exist graphs with induced odd cycle packing
number one whose chromatic number is almost quadratic in ω(G) via a proba-
bilistic construction.

In order to carry out the probabilistic calculations, we will use the following
bounds.

Lemma 98 (See [72], Chernoff Bound). Suppose X is a sum of independent
{0, 1}-variables. For any δ > 0,

Prob [X ≤ (1 − δ) E [X]] ≤ e− δ2 E [X]
2 .

Lemma 99 (See [72], Talagrand’s Inequality II). Let X be a non-negative random
variable, not identically 0, which is determined by n independent trials T1, . . . ,
Tn, and satisfying the following for some integers c, r > 0:

• Changing the outcome of any one trial can change X by at most c.

• For any non-negative integer d, if X ≥ d, then there is a set of at most rd
trials whose outcomes certify that X ≥ d.

Then for every non-negative t ≤ E [X],

Prob
[︃
|X − E [X]| > t+ 60c

√︂
r E [X]

]︃
≤ 4e− t2

8c2r E [X] .

We are now ready to give the construction, which is a variation on a standard
construction of triangle-free graphs with no large independent set.

Theorem 100. There exists a family of graphs with induced odd cycle packing
number at most one and with arbitrarily large clique number such that every graph
H in this family satisfies χ(H) = Ω

(︃
ω2(H)

log2 ω(H)

)︃
.

Proof. Let G be a random G(n, p) graph for p = 1/k, where k is a sufficiently
large even integer and n = k2/2.

Suppose A1, A2 ⊂ V (G) are disjoint and have size three, and G contains all
nine edges with one end in A1 and the other end in A2; in this case, we say that
the set of these nine edges forms a K3,3. We say a set of edges of G is bad if it
can be partitioned into subsets of size 9, each of which forms a K3,3. Finally we
say a set of edges is subbad if it is a subset of a bad set.

We construct a graph G0 by deleting a maximal bad set B from G. By the
maximality of B, no set of edges of G0 forms a K3,3. Let H be the complement
of G0. Consider any disjoint (odd) cycles in H. If there were no edge between
these cycles, then any pair of triples of vertices taken one from each cycle would
induce a complement of a supergraph of K3,3 in G0, which is a contradiction.
Consequently iocp(H) ≤ 1. Furthermore, an analogous argument shows that
α(H) ≤ 5, and thus χ(H) ≥ n/5 = Ω(k2).
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Therefore, it suffices to argue that ω(H) = α(G0) = O(k log k) with non-zero
probability. Let us consider a set S ⊆ V (G) of size at least k and define the
following random variables.

X1 = |E(G[S])|
X2 = max

{︂
|Z| : Z ⊆ E(G[S]), Z is subbad in G

}︂
The probability that S is an independent set in G0 is at most Prob[X1 ≤ X2].
Indeed, if S is independent, then E(G[S]) ⊆ B is subbad, and thus X1 = X2. Let
s =

(︂
|S|
2

)︂
= Ω(k2), so that E [X1] = s/k. Using the Chernoff bound (Lemma 98),

we obtain

Prob
[︃
X1 ≤ s

2k

]︃
= Prob[X1 ≤ E [X1]/2] ≤ e− E [X1]

8 = e− s
8k .

Let Z2 = {e ∈ E(G[S]) : some set containing e forms a K3,3 in G}. Clearly, if
Z ⊆ E(G[S]) is subbad, then Z ⊆ Z2, and thus X2 ≤ |Z2|. For distinct vertices
x, y ∈ V (G), the probability that xy is an edge and some set containing xy
forms a K3,3 in G is at most n4

k9 = 1
16k , and thus E [X2] ≤ E [|Z2|] ≤ s

16k . Let
δ = s

16k −E [X2] ≥ 0 and let X ′
2 = X2 +δ, so that E [X ′

2] = s
16k . Note that flipping

the existence of a single edge in G changes X ′
2 by at most 9. Furthermore, when

X ′
2 ≥ d, there exist at most 9d edges in G whose presence certifies this is the

case. Hence, we can apply the Talagrand’s inequality (Lemma 99) with c = r = 9
for t = E [X ′

2] = s
16k . Note that 60c

√︂
r E [X ′

2] ≤ E [X ′
2] for k large enough, since

s = Ω(k2). Hence, we have

Prob
[︃
X ′

2 >
3s

16k

]︃
= Prob[X ′

2 > 3 E [X ′
2]] ≤ 4e−

E [X′
2]

5832 = 4e− s
93312k .

It follows that

Prob[X1 ≤ X2] ≤ Prob[X1 ≤ X ′
2] ≤ Prob

[︃
X1 ≤ s

2k

]︃
+ Prob

[︃
X ′

2 >
3s

16k

]︃
≤ e− s

8k + 4e− s
93312k < e− |S|2

200000k

for k large enough.
Therefore, for any set S ⊆ V (G0) of size q ≥ k, the probability that S is

an independent set in G0 is at most e− q2
200000k . Hence, the probability that G0

contains an independent set of size q is less than(︄
n

q

)︄
e− q2

200000k ≤
(︄
ne

q

)︄q
e− q2

200000k

≤ (ke)qe− q2
200000k = exp

(︃
q log(ke) − q2

200000k

)︃
,

that is, smaller than 1 when q ≥ 200000k log(ke).

As noted in the proof, the probabilistic construction used is unnecessarily
restrictive, excluding all disjoint cycles regardless of parity. Similarly, all cycles
or paths of length ≥ 8 are excluded. From the point of view of vertex 6-tuples, all
of these structures exhibit very similar properties. It would seem that achieving
a distinction between these patterns and the ones that are necessary to avoid
requires more global conditions and thus a much more refined approach.
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3.2.5 QPTAS assuming only bounded iocp
The fact that triangle-free graphs with bounded iocp have bounded chromatic
number has the following easy consequence.

Lemma 101. For all integers p ≥ 1, every graph G with n vertices satisfies
at least one of the following conditions:

• G has an independent set of size at least n
4+10iocp(G) , or

• every maximal packing of triangles in G contains a triangle T such that
α(G−N(T )) ≥ (1 − 1/p)α(G), or

• G contains a vertex v of degree at least n
18p such that α(G−N(v)) = α(G).

Proof. Let X = {T1, . . . , Tm} be a maximal packing of triangles in G. The graph
G − V (X ) is triangle-free, and by Lemma 96, χ(G − V (X )) ≤ 2 + 5iocp(G).
Consequently, α(G) ≥ α(G− V (X )) ≥ n−3m

2+5iocp(G) . Suppose that G does not have
any independent set of size at least n

4+10iocp(G) , and thus m ≥ n/6. Let J be
a largest independent set in G. If |N(Ti) ∩ J | ≤ |J |/p for some i ∈ {1, . . . ,m},
then the second outcome of the lemma holds.

Otherwise, for each i ∈ {1, . . . ,m}, there exists vi ∈ V (Ti) satisfying that
|N(vi) ∩ J | > |J |

3p . Consequently, there exists a vertex v ∈ J such that |N(v) ∩
{v1, . . . , vm}| ≥ m

3p , and thus deg v ≥ m
3p ≥ n

18p . Since v ∈ J , we have α(G −
N(v)) = α(G).

Combining this lemma with Theorem 95, we obtain a QPTAS for the maxi-
mum independent set in graphs of bounded induced odd cycle packing number.

Theorem 102. There exists a randomized algorithm that, for input integers k ≥
0 and p ≥ 1 and an n-vertex graph G of induced odd cycle packing number at most
k, returns in time nO(k+p logn) an independent set of G whose size is at least
(1 − k/p)α(G) with probability at least 1/2.

Proof. If k = 0 (so G is bipartite), we return the largest maximum independent
set obtained via a maximum flow algorithm. Otherwise, we find a maximal
packing of triangles X in G greedily, and return the largest of the independent
sets obtained by

(a) running the algorithm from Theorem 95 n times with t = (4 + 10k)p,

(b) for each T ∈ X , running the algorithm recursively for G − N [T ] with k
replaced by k−1 and adding a vertex of T to the returned independent set,
and

(c) for each v ∈ V (G) of degree at least n
18p , running the algorithm recursively

for G−N(v).

Each recursive call either decreases k or decreases the number of vertices by
a factor of at most

(︂
1 − 1

18p

)︂
, implying the total number of the calls of the

procedure is at most nO(k+p logn). Iterating the algorithm from Theorem 95 n
times for an induced subgraph G′ of G ensures we fail to find an independent set
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of size at least α(G′) −n/t with probability at most 2−n. Hence, with probability
at least 1 − nO(k+p logn)2−n > 1/2 (for n large enough—for small n, we can just
find the largest independent set by brute force), we can assume that throughout
the run of the algorithm, in part (a) for an induced subgraph G′ of G, at least
one of the returned independent sets has size at least α(G′) − n/t.

If α(G) ≥ n
4+10k , then in (a) we return an independent set of size at least

α(G) − n/t ≥ α(G) − (4 + 10k)α(G)/t = (1 − 1/p)α(G). If G contains a vertex v
of degree at least n

18p such that α(G−N(v)) = α(G), then in (c) the corresponding
recursive call gives an independent set of size at least (1 − k/p)α(G − N(v)) =
(1 − k/p)α(G).

If neither of these conditions holds, Lemma 101 implies there exists a triangle
T ∈ X such that α(G−N(T )) ≥ (1−1/p)α(G). The recursive call in (b) returns
an independent set I of G − N [T ] of size at least (1 − (k − 1)/p)α(G − N [T ]),
and since α(G−N(T )) = α(G−N [T ]) + 1, the addition of a vertex of T turns I
into an independent set of size at least (1 − (k − 1)/p)(α(G−N(T )) − 1) + 1 ≥
(1 − (k − 1)/p)α(G − N(T )) ≥ (1 − (k − 1)/p)(1 − 1/p)α(G) ≥ (1 − k/p)α(G).
Hence, the algorithm is correct.

Considering Theorem 102, it is of course natural to ask whether the maximum
independent set problem admits a EPTAS on graphs with bounded induced odd
cycle packing number without any other assumptions.
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[30] Z. Dvořák, D. Král’, and R. Thomas. Three-coloring triangle-free graphs on
surfaces VI. 3-colorability of quadrangulations. ArXiv, 1509.01013, Septem-
ber 2015.
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