
Chapter 6

Representability of matroids

6.1 Matroid representations

Recall that a matroid M is F-representable if there exists a matrix A with columns
one-to-one corresponding to the elements of M such that a set of columns if
linearly independent over F if and only if the set of corresponding elements of M
is independent in M. A matroid is representable if it is representable over some
field F and it is regular if it is representable over all fields F.

Not all matroids are representable. Let E = {1, 2, . . . , 8} and

T1 = {{1, 2, 3, 4}, {1, 4, 5, 6}, {1, 4, 7, 8}, {2, 3, 5, 6}, {2, 3, 7, 8}}

. Further, let

T = T1 ∪ {T ⊆ E, |T | = 3, T 6⊆ T1, ∀T1 ∈ T1} .

It is straightforward (but little bit tedious) to verify that there exists a matroid
M on E such that T is the family of the hyperplanes of M, i.e., inclusion-wise
maximal sets of rank r(M)− 1 = 3. This matroid, denoted by V8 and called the
Vámos matroid, is depicted in Figure 6.1. We show that the Vámos matroid is
not representable over any field.

Proposition 6.1. The Vámos matroid V8 is not representable over any field.

Proof. Assume that the matroid V8 is representable over a field F. Since the
rank of V8 is four, there exists a mapping ψ : E(V8) → F4 such that r(X) =
dim L(ψ(X)) for any subset X ⊆ E(V8) where L(Z) denotes the linear hull
of the vectors of Z. For {x1, . . . , xk} ⊆ E(V8), W (x1, . . . , xk) will denote the
subspace L({ψ(x1), . . . , ψ(xk)}). It holds that

dim (W (5, 6) ∩W (1, 2, 3, 4)) = dim W (5, 6) + dim W (1, 2, 3, 4)

−dim L(W (5, 6) ∪W (1, 2, 3, 4))

= 2 + 3 − 4 = 1 .
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Figure 6.1: The diagram of the Vámos matroid.

Hence, W (5, 6) ∩W (1, 2, 3, 4) = L({v}) for some non-zero vector v ∈ F4.
Again

dim (W (1, 4, 5, 6) ∩W (1, 2, 3, 4)) = dim W (1, 4, 5, 6) + dim W (1, 2, 3, 4)

−dim L(W (1, 4, 5, 6)∪W (1, 2, 3, 4))

= 3 + 3 − 4 = 2 .

Since W (1, 4) is 2-dimensional subspace of W (1, 4, 5, 6)∩W (1, 2, 3, 4), we obtain
that

L({v}) = W (5, 6) ∩W (1, 2, 3, 4) ⊆W (1, 4, 5, 6) ∩W (1, 2, 3, 4) = W (1, 4) .

A symmetric argument (see Figure 6.1 for visualization) yields that L({v}) ⊆
W (2, 3).

The dimension of the intersection of W (1, 4) and W (2, 3) which is

dim (W (1, 4) ∩W (2, 3)) = 2 + 2 − 3 = 1

implies that W (1, 4) ∩W (2, 3) = L({v}).
By symmetry, we obtain that L({v}) = W (5, 6)∩W (7, 8) which implies that

dim W (5, 6, 7, 8) = dim L(W (5, 6) ∪W (7, 8))

= dim W (5, 6) + dim W (7, 8) − dim (W (5, 6) ∩W (7, 8))

≤ 2 + 2 − 1 = 3 .

However, dim W (5, 6, 7, 8) cannot be equal to three since the set {5, 6, 7, 8} is
independent in V8.

To present another example of a matroid that is not representable over any
field, we will need an operation of relaxing a circuit-hyperplane in a matroid.
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Proposition 6.2. Let M be a matroid that contains a subset X of its elements
that is both a circuit and a hyperplane. Let B′ = B(M) ∪ {X}. The family B′ is
a family of bases of a matroid. Moreover, the family of circuits of this matroid is

(C(M) \ {X}) ∪ {X + e : e ∈ E(M) \X} .

Proof. Let I ′ be the family of all subsets of B′. We verify that I ′ has the prop-
erties (I1), (I2) and (I3). Since (I1) and (I2) are trivial to verify, we focus on
(I3). Let I1 and I2 be two members of I ′ with |I1| < |I2|. Clearly, we can assume
that |I1| = |I2| − 1. If I2 6= X, the claim follows from the fact that the family
of independent sets of M has the property (I3). If I1 ⊆ I2 = X, the claim also
holds. Otherwise, I1 + x is dependent in M for every x ∈ X which implies that
r(I1 ∪ I2) = r(I1) ≤ r(M) − 1 by Lemma 1.10. In other words, I1 ∪ I2 ⊆ X
since X is a hyperplane which violates our assumption that I1 is not a subset of
I2 = X.

Let M′ be the matroid whose bases are those subsets contained in B′. Clearly,
any circuit of M distinct from X is a circuit of M′. So, we have to investigate
which supersets of X are circuits in M′. Consider a set X+e for e 6∈ X. This set
is dependent and removing any element e′ of it results in an independent set; this
follows from the fact that X is a hyperplane for e′ 6= e and is trivial for e′ = e.
Hence, the family of circuits of M′ is the family described in the statement of
the proposition.

The operation described in Proposition 6.2 is called relaxing of a circuit-
hyperplane in a matroid.

Another example of a matroid that is not representable is the non-Pappus
matroid. The construction is based on relaxing one 3-element set in the Pap-
pus matroid. Both the Pappus and the non-Pappus matroids are depicted in
Figure 6.2. We omit the proof of the non-representability of the non-Pappus
matroid.

Figure 6.2: The diagrams of the Pappus and the non-Pappus matroids.

Proposition 6.3. The non-Pappus matroid is not representable over any field.
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We will now study representability of the Fano matroid F7, which was intro-
duced in Section 1.3, and the matroid F−

7 , called the non-Fano matroid , that is
obtained from F7 by relaxing a circuit-hyperplane (the circuit-hyperplane {2, 4, 6}
in Figure 6.3).

Figure 6.3: The diagrams of the Fano and the non-Fano matroids.

Let M be a matroid with a base B. For every element e of M not contained in
B, the set B+ e contains a unique circuit by the property (C3) from Lemma 1.1.
This circuit is called the fundamental circuit of e with respect to the base B.

Consider a standard representation A of a matroid M over a field F such
that A = [Ir|D] where r is the rank of M and the first r columns correspond
to the elements of the base B. The elements of B correspond in a natural ways
to the rows of A, too. Observe that the fundamental circuit of e with respect
to B is formed by those elements of B that have in the column corresponding
to e non-zero entries in the corresponding rows. Let D# be the matrix obtained
from D by replacing each non-zero entry by a 1. The columns of D# are now
the incidence vectors of the fundamental circuits with respect to B restricted
to B. This matrix D# is called the B-fundamental-circuit incidence matrix of
M. The fundamental-circuit incidence matrix for the matroids F7 and F−

7 is
the same and can be found in Figure 6.4. The matrix [Ir|D#] is called a partial
representation of M. Note that a partial representation and the B-fundamental-
circuit incidence matrix D# is also well-defined for non-representable matroids
and is unique because of the uniqueness of fundamental circuits with respect to
a chosen base. Let us state this fact as a separate proposition.

X =





0 1 1 1
1 0 1 1
1 1 0 1





Figure 6.4: The fundamental-circuit incidence matrix for F7 and F−
7 .
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Proposition 6.4. Let M be a matroid of rank r. If [Ir|D1] and [Ir|D2] are two
representations of M over a field F such that their columns correspond to the
elements of M in the same way, then D#

1 = D#
2 .

Theorem 2.14 and Proposition 6.4 combine to the following.

Proposition 6.5. Let M be a representable matroid with a ground set E and B
a base of M. If D# is the B-fundamental-circuit incidence matrix of M, then
(D#)T is the (E \B)-fundamental-incidence matrix of M∗.

Let us remark that the assumption that M is representable can be omitted
in Proposition 6.5.

We now study representability of the matroids F7 and F−
7 over different fields.

Let us start with the following proposition whose proof lies a routine check of
linear dependencies of vectors over a field and is left to a reader.

Proposition 6.6. Let F be a field and X the matrix given in Figure 6.4. If the
characteristic of F is two, then [I3|X] is a representation of the matroid F7 and if
the characteristic of F is not two, then it is a representation of the matroid F−

7 .

Complementing the previous proposition, we prove the following.

Proposition 6.7. Let M be one of the matroids F7 and F−
7 . If [I3|X] is a

representation of M over a field F, then X is the matrix in Figure 6.4.

Proof. We can choose a base B of M such that the matrix X is the B-funda-
mental-circuit base. In particular, since [I3|D] is an F-representation of M, D#

is the matrix X. By multiplying rows and columns with non-zero elements of F,
we can assume D to be of the following form

D =





0 1 1 1
1 0 c 1
a b 0 1



 .

Since the third, last but one and last column of [I3|D] correspond to a circuit of
M, we obtain c = 1. Similarly, we get that b = 1 and a = 1. In particular, D
must be equal to X.

We infer from Propositions 6.6 and 6.7 the following.

Proposition 6.8. (i) The matroid F7 is F-representable for a field F if and
only if the characteristics of F is two.

(ii) The matroid F−
7 is F-representable for a field F if and only if the charac-

teristics of F is different from two.

Corollary 6.9. The matroid F7 ⊕ F−
7 is not representable over any field.
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6.2 Representability over finite fields

A classical approach to finding necessary and sufficient conditions for a matroid
to be F-representable is to determine minimal obstructions to F-representability.
Since the class of F-representable matroids is closed under taking minors one way
to characterize such class is by listing all minor-minimal matroids that do not be-
long to the class. These matroids are called excluded minors for F-representability.
Finding the complete set of excluded minors for representability over a partic-
ular field is a notorious difficult problem and has, in fact, only been solved for
2-element and 3-element fields. GF(2)-representable matroids are called binary
and GF(3)-representable matroids are called ternary. Nevertheless, it is still
possible to find some properties of excluded minors for other fields, too. For
example, since the class of F-representable matroids is closed under duality, we
have the following.

Proposition 6.10. If a matroid M is an excluded minor for F-representability,
then so is its dual M∗.

Excluded minors for F-representability falls loosely into two categories: those
that are excluded because the field is too small, and those that are excluded for
structural reasons. A class of matroids of the first type is the class of rank-two
uniform matroids.

Proposition 6.11. Let F be a finite field and k ≥ 2. The matroid U2,k is F-
representable if and only if |F| ≥ k − 1.

Proof. Let [I2|D] be an F representation of U2,k. Without lost of generality, all
the entries of the first row of D are equal to one. The entries of the second row of
D have to be mutually distinct non-zero elements of F and thus k − 2 ≤ |F| − 1.
In the other direction, if D is a matrix with all the entries of the first row equal
to one and the entries of the second row equal to mutually distinct non-zero
elements of F, then [I2|D] is an F-representation of D.

Propositions 6.10 and 6.11 combine to the following. Recall that all minors
of uniform matroids are uniform matroids.

Corollary 6.12. If q is a prime number, then the matroids U2,q+2 and Uq,q+2 are
excluded minors for GF(q)-representability.

We can now characterize excluded minors for binary matroids.

Theorem 6.13. A matroid is binary if and only if it does not contain U2,4 as a
minor.

Proof. By Corollary 6.12, U2,4 is not binary. Hence, it is enough to prove that
any matroid that is not binary contains U2,4 as a minor. Let M be an arbitrary
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minor-minimal non-binary matroid. Since M∗ is also a minor-minimal non-binary
matroid, thus we can assume that 2r(M) ≤ |E(M)|. Moreover, the choice of M
implies that M has neither loops nor parallel edges.

Let B be a base of M and D the B-fundamental-circuit incidence matrix of
M. If M were binary, then [Ir|D] would be its representation. Since M is not
binary, the matroid Mb represented by [Ir|D] differs from M. In particular, there
exists a base B′ of M such that the B′-fundamental-circuits are not properly
represented in [Ir|D]. By pivoting operations which preserve the represented
matroid, we can assume that the bases B and B′ differ in one element, say
B′ = (B − x) + y.

Assume that x corresponds to the first column of Ir and y to the first column
of D. Clearly, the first entry in the first row of D is non-zero (otherwise, B′

would not be a base of M). Add the first row of [Ir|D] to every row having a
non-zero entry in the first column of D. After switching the first columns of Ir
and D, we obtain a matrix [Ir|Db] still representing the matroid Mb where Db

differs from the partial representation D′ of M with respect to B′. Without loss
of generality, we can assume that the matrices Db and D′ differ in the second
entry of the second row (otherwise, permute the rows and columns). By the
choice of M as a minor-minimal matroid that is not binary, the matrices Db and
D′ have only two rows and two columns. Moreover, since M has no loops or
parallel elements, M must be isomorphic to U2,4.

Now, we show two interesting properties of binary matroids.

Lemma 6.14. Let M be a binary matroid. The symmetric difference of any two
circuits of M is a disjoint union of circuits.

Proof. Fix a representation A of M over GF(2). Let C1 and C2 be two circuits
of M. Since Ci, i = 1, 2, is a circuit, the columns of A corresponding to the
elements of Ci sum to the zero vector. Let C be the symmetric difference of C1

and C2. Since the columns corresponding to the elements of C1 ∩C2 are counted
in the sums twice, we obtain that the sum of the columns corresponding to the
elements of C is the zero vector.

Let C1, . . . , Ck be inclusion-wise minimal subsets of C such that the columns
corresponding to the elements of Ci, i = 1, . . . , k, sum to the zero vector. Observe
that all Ci, i = 1, . . . , k, are disjoint and their union is equal to C. Clearly, each
Ci is a circuit. The lemma now follows.

We now study intersections of circuits and cocircuits of binary matroids.

Lemma 6.15. Let M be a binary matroid. If C is a circuit of M and C∗ is a
cocircuit, then the size of C ∩ C∗ is even.

Proof. If the intersection of C and C∗ is empty, the lemma holds. Hence, we can
assume that there exists an element x contained in both C and C∗. Consequently,
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there exists a base B∗ of M∗ such that C∗ − x ⊆ B∗. Let B = E \ B∗ be the
complementary base of M, and let [Ir|D] be the representation of M with the
first r columns corresponding to B and we can assume that x ∈ B corresponds to
the first column of Ir. Hence, [DT |In−r] is a representation of M∗. Since C is a
circuit of M, the corresponding columns of [Ir|D] sum to the zero-vector. Since
x ∈ C, there is an odd number of columns of D having non-zero entry in the first
row. However, these columns are precisely the columns of corresponding to the
elements of C∗ since such non-zero entries correspond to the non-zero entries of
the first column of DT . Hence, C−x and C∗−x have an odd number of common
elements. Consequently, the intersection of C and C∗ has an even number of
elements.

The properties given in Lemmas 6.14 and 6.15 actually give different charac-
terizations of binary matroids whose proof we omit.

Theorem 6.16. Let M be a matroid. The following statements are equivalent:

(i) The matroid M is binary.

(ii) Every circuit C and every cocircuit C∗ of M have intersection of even size.

(iii) The symmetric difference of any two circuits of M contains a circuit.

(iv) The symmetric difference of any two circuits is a disjoint union of circuits.

(v) The symmetric difference of any set of circuits of M is either empty or
contains a circuit.

(vi) The symmetric difference of any set of circuits is M a disjoint union of
circuits (which includes the case that it is empty).

(vii) Let B be an arbitrary base of M. Every circuit C of M is the symmetric
difference of e-fundamental circuits of M with respect to B where e runs
over all the elements of C.

(viii) There exists a base B such that every circuit C of M is the symmetric
difference of e-fundamental circuits of M with respect to B where e runs
over all the elements of C.

Let us turn our attention to matroids representable over fields with charac-
teristic different from two.

Proposition 6.17. The matroids F7 and F ∗
7 are excluded minors for F-repre-

sentability for any field F with characteristic different from two.
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Proof. By Proposition 6.8, F7 is not F-representable. Observe that for an arbi-
trary element e, the matroids F7 \ {e} and F ∗

7 \ {e} are representable over any
field. Hence, both F7 \ {e} and F7/{e} are representable over F for any element
and F7 is an excluded minor for F-representability. By Proposition 6.10, the
matroid F ∗

7 is also an excluded minor for F-representability.

Without proof, we give a list of excluded minors for ternary matroids.

Theorem 6.18. A matroid is ternary if and only if it has no minor isomorphic
to any of the matroids U2,5, U3,5, F7, and F ∗

7 .

Though the concept of excluded minors for matroids is similar to that for
graphs, there are substantial differences. One of the most important theorems
in the theory of graph minors is the following deep theorem of Robertson and
Seymour [20].

Theorem 6.19. For every proper class G of graphs closed under taking minors,
there exists a finite set of graphs excl(G) such that G ∈ G if and only if G has no
minor isomorphic to any graph of excl(G). In particular, the number of excluded
minors is finite for every proper minor-closed class of graphs.

Theorems 6.13 and 6.18 could suggest that the same might be true for ma-
troids. However, this is far from being true [17].

Theorem 6.20. There is infinite family of matroids such that each of them is
an excluded minor for Q-representability. Moreover, there is such a family of
matroids that each its member is representable over a field with characteristic
two (different members can be representable over different fields).

6.3 Regular matroids

In the final section of this chapter, we study regular matroids, i.e., matroids that
can be represented over any field. A totally unimodular matrix is a matrix A over
R such that every square submatrix of A has determinant in {0, 1,−1}. We say
that a matroid M is unimodular if it can be represented by a totally unimodular
matrix over R. We show in this section that the classes of unimodular and regular
matroids coincide.

We now describe a matrix operation called pivoting which we already used in
the proof of Theorem 6.13. Let A be an m× n-matrix and ast a non-zero entry
of it. The matrix A′ obtained by pivoting on ast is the matrix obtained from A
by the following two operations (applied in the given order):

(i) multiply the s-th row with the inverse of ast, and

(ii) subtract from the s′-th row, s′ 6= s, the multiple of as′t of the s-th row.
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An important property of pivoting is that it preserves unimodularity of a matrix.

Lemma 6.21. Let A be a totally unimodular matrix. If a matrix B is obtained
from A by pivoting on a non-zero entry ast of A, then the matrix B is also totally
unimodular.

Proof. Let B′ be a square submatrix of B, A′ the corresponding submatrix of A,
and Jr and Jc the indices of the rows and columns forming B′. If s ∈ Jr, then
| detA′| = | detB′|. Hence, the determinant of B′ is 0, +1 or −1. Otherwise, if
t ∈ Jc, then the B′ has an all-zero column and detB′ = 0. Hence, we may assume
that s 6∈ Jr and t 6∈ Jc. Let A′′ and B′′ be the submatrices of A and B formed by
rows and columns indexed with Jr∪{s} and Jc∪{t}. Clearly, | detA′′| = | detB′′|.
Since the only non-zero of the t-th column of B′′ is bst, the determinants B′ and
B′′ can differ in signs only. We conclude that the determinant of any square
submatrix of B is 0, +1 and −1, i.e., the matrix B is totally unimodular.

We now show that the class of unimodular matroids is closed under taking
duals.

Theorem 6.22. The dual of a unimodular matroid is unimodular.

Proof. Let M be a unimodular matroid and A a totally unimodular matrix rep-
resenting M over R. By pivoting non-zero elements in the columns of A corre-
sponding to a base of M, we obtain a totally unimodular standard representation
of M, i.e., a totally unimodular matrix [Ir|D] representing M. By Theorem 2.14,
the matrix [DT |In−r] is a standard representation of M∗. Clearly, [DT |In−r] is
totally unimodular and thus M∗ is unimodular.

Since deleting a column of a totally unimodular matrix does not affect its
total unimodularity, Theorem 6.22 immediately yields.

Corollary 6.23. Every minor of a unimodular matroid is unimodular.

We now show another property of total unimodular matrices which is related
to representation of binary matroids.

Lemma 6.24. Let M be a binary matroid and [Ir|D1] a representation of M
with all entries equal to 0, +1 or −1 over a field F with characteristic different
from 2. If a matrix [Ir|D2] is obtained from [Ir|D1] by pivoting on a non-zero
entry of D1, then every entry of D2 is equal to 0, +1 or −1.

Proof. Assume that we have pivoted on an element in the s-th row and t-th
column. Clearly, the entries of the s-th row and t-th column of [Ir|D2] are equal
to 0, +1 or −1. Consider an entry in the i-th row and j-th column for i 6= s and
j 6= t. If j ≤ r, the considered entry is clearly equal to 0, +1 or −1. Hence, we
assume that j > r. Pivoting replaces the entry dij with dij − (dit/dst) · dsj. Since
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all entries of D1 are equal to 0, +1 or −1, the difference dij −(dit/dst) ·dsj is equal
to 0, +1 or −1 unless |dstdij − ditdsj| = 2 in which case all the four entries dij,
dit, dsj and dst are non-zero and |dstdij − ditdsj| is the determinant of the matrix
(

dst dit

dsj dij

)

, which is a square submatrix of D1.

Since the matroid M is binary, [Ir|D
#
1 ] is a representation of M over GF(2).

However, the first r columns of [Ir|D
#
1 ] except for the s-th and the i-th columns

and the t-th and the j-th columns are linearly dependent over GF(2), but the
same columns of [Ir|D1] are linearly independent over F which is impossible.

We are now ready to show that the classes of regular and unimodular matroids
coincide.

Theorem 6.25. The following statements are equivalent for every matroid M:

(i) M is unimodular.

(ii) M is regular.

(iii) M is binary and F-representable for a field F of characteristic different
from two.

Proof. Clearly, it is enough to prove that the statements are equivalent for ma-
troids M with r(M) > 0. Suppose that (i) holds, i.e., there is a totally unimod-
ular matrix [Ir|D] representing M over R. Let X be a set of r elements of M.
The set X is a base of M if and only if the columns of [Ir|D] corresponding to
the elements of X are linearly independent. This is equivalent to the fact the
determinant of the square submatrix of [Ir|D] formed by these columns is non-
zero which must be either +1 or −1 since [Ir|D] is a totally unimodular matrix.
However, the determinant of this matrix is non-zero when [Ir|D] is viewed as a
matrix over any field F. Similarly, if X is not a base, the determinant of the
square submatrix of [Ir|D] formed by the columns corresponding to X is zero
and it is zero over any field F. We conclude that [Ir|D] is an F-representation of
M for any field F and thus (ii) holds.

Since (ii) implies (iii) by the definition of regular matroids, it remains to
prove that (iii) implies (i).

Suppose that (iii) holds and [Ir|D] is an F-representation of M for a field F of
characteristic different from two. Let us define a bipartite graph G such that the
vertices of G correspond to rows and columns of D and a vertex corresponding to
a row is adjacent to a vertex corresponding to a column if the corresponding entry
ofD is non-zero. Observe that by multiplying the rows and columns of [Ir|D] with
non-zero elements of F, we can always assume that the entries of D corresponding
to a fixed spanning forest (inclusion-wise maximal acyclic subgraph) T of G are
all equal to 1. For every edge ed not contained in T , we will argue that the
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corresponding entry d in D is equal to ±1. The argument will proceed by the
induction of the length ` of the fundamental cycle Ced

of ed with respect to a
spanning forest in G. Recall that the fundamental cycle Ced

of ed is the unique
cycle contained in the graph obtained from a spanning forest by adding the edge
ed.

There are exactly `/2 rows and columns of D corresponding to the vertices
of Ced

. Let Dd be the submatrix corresponding to these rows and columns.
In Dd, each row and each column contains at least two non-zero entries, those
corresponding to the edges of Ced

.
Assume first that the submatrix Dd contains non-zero entries not correspond-

ing to the edges of Ced
. Since the edge ed′ for every such entry d′ is a chord

of Ced
, it holds that d′ is either +1 or −1 by the induction. This allows us to

modify the spanning forest T to a spanning forest T ′, which does not contain
ed, by multiplying rows and columns by +1 and −1 only in such a way that the
fundamental cycle of ed with respect to T ′ is shorter. By the induction, the entry
d is either +1 or −1. Hence, we can assume that Dd has exactly two non-zero
entries in each row and in each column.

Evaluating the determinant ofDd, we obtain that det(Dd) ∈ {d+1, d−1,−d+
1,−d−1}. Since M is binary, [Ir|D#] is a GF(2)-representation for M and thus
the columns of Dd correspond to a circuit of M. Therefore, det(Dd) = 0 which
implies that d is either +1 or −1.

We now show that the matrix [Ir|D] represents M over R and it is totally
unimodular. Recall that the matrix [Ir|D] represents M over F and the matrix
[Ir|D#] represents M over GF(2). In order to archive our goal, we have to show
that the determinant of every regular square submatrix of [Ir|D] over F is +1 or
−1 over R and the determinant of every singular square submatrix over F is zero
over R.

Let us consider a square submatrix D′ of [Ir|D]. If D′ is 1 × 1-matrix, its
only entry is 0, +1 or −1 and the claim follows. If D′ has no non-zero entry, its
determinant is equal to zero both over F and R. Otherwise, we can pivot over any
non-zero element of D′ to obtain a unit column vector. Note that this pivoting
results in the same matrix both over F and R by Lemma 6.24. Let D′′ be the
matrix obtained from D′ by deleting the row containing the only non-zero entry
of the unit column and the unit column. Clearly, | det(D′)| = | det(D′′)|. Since
det(D′′) is equal to 0, +1 or −1 by the induction, the determinant of D′ is also
equal to 0, +1 and −1. Moreover, the induction yields thatD′′ is singular over F if
and only if it is singular over R which implies that D′ is singular over F if and only
if it is singular over R. We conclude that [Ir|D] is a totally unimodular matrix
which represents M over R. The proof of the theorem is now completed.

Theorem 6.25 immediately yields the following.

Corollary 6.26. A matroid M is regular if and only if it is binary and ternary.
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Theorems 6.13 and 6.18 together with Corollary 6.26 implies that a matroid
is regular if and only if it does not contain any of the matroids U2,4, U2,5, U3,5,
F7 and F ∗

7 as a minor. Since U2,4 is a minor of both matroids U2,5 and U3,5, we
can obtain a list of excluded minors for regular matroids.

Theorem 6.27. A matroid is regular if and only if it has no minor isomorphic
to any of the matroids U2,4, F7, and F ∗

7 .


