Practicals for Introduction to Approximation and Randomized Algorithms

WS2324 - 3. practical

1 Trading

A trader is trying to make as much money as possible by transporting goods. The budget is $10\,000\,000\,\mathrm{K}\check{\mathrm{c}}$ and the maximal weight of the load is $1000\,\mathrm{kg}$. Try and design a linear program.

Material	Price per kilo	Profit per kilo
Gold	100 000	100
Silver	14 000	200
Cowry	4000	150
Cocoa	700	10

2 More linear programs

Formulate linear programs for the following problems:

- Shortest s-t path
- Maximal s-t flow

3 ILP

Formulate an integer linear program for load balancing on identical machines.

HW5: Maximal k-cut

For a given graph, partition the vertices into k (disjoint) partitions such that the number of edges connecting vertices from different partitions is as large as possible. The goal is to get a deterministic (k-1)/k-approximation algorithm.

Hint: Start with a randomized algorithm for 2-cut.

HW6: Messages on a cycle

We have a ring topology network with n computers and need to send messages between them without overloading any link.

We are given the number of computers n, number of messages m and a list of m pairs (s_i, t_i) which tells us that the i-th message is to be sent from computer s_i to computer t_i .

For each message decide which direction ("clockwise or anti-clockwise") is should be sent so that the maximum number of messages sent over any link is as low as possible. The goal is a deterministic 2-approximation algorithm.

Information

- There will be ten homework tasks in total, each worth four points.
- You have two weeks to solve it.
- You need at least 25 points to pass.
- Submit homework via Owl.

Link: https://kam.mff.cuni.cz/owl/c/zs2324/apxr/

Enroll token: 6 de 8 d 9714087

