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Definition of ARRIVAL

1. Each city. . . two out-going

tracks even and odd

2. Each visit alternate

outgoing edge

Question: If the train starts in

origin o will it ever arrive to the

destination d?

o d
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Known results

1. Arrival Dohrau et al.’17:

• Exponentially long route

• Solvable in NP ∩ coNP

2. Karthik C. S.’17:

• Finding NP or coNP certificate is in PLS

• Conjecture: search version of Arrival is FPSPACE-complete

3. Fearnley et al.’17:

• Decision version is NL-hard
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Our results

Our results:

1. Arrival is in UP ∩ coUP

2. Search version in CLS

3. Randomized O(1.4143n)

algorithm for ARRIVAL

FP

CLS

PPAD

PPADS

PLS PPP PPA

TFNP

Daskalakis and Papadimitriou’11
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Switching flow and Run profile
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Switching flow and Run profile

Many slides later. . .
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Switching flow and Run profile
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Switching flow and Run profile

Def: f ∈ N2n is a switching flow if it satisfies:

1. Kirchhoff’s Law (flow conservation)

2. Parity Condition

• A Run profile. . . route of the train

• (Dohrau et al.’17) Switching flow ⇒ run profile

• NP certificate = switching flow

• coNP certificate = switching flow to dead-end destination d
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UP ∩ coUP

From a switching flow we get:

1. Position of the train

2. Last used edge for each

vertex

3. Previous run profile o d
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Graph of last used edges G ∗f and UP ∩ coUP
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Run profile verification

Theorem: A switching flow f is a run profile iff the train never

left d or d̄ and either:

1. There is no cycle in G ∗f .

2. Or there is exactly one cycle in G ∗f which contains the

end-vertex of f .

Run profile is unique and we can verify for given vector

⇒ Arrival is in UP.
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Continuous Local Search

CLS (Daskalakis and Papadimitriou’11)

• Finding approximate fixed points of contraction maps

• PLCP

• Finding min-max strategy in simple stochastic games

• . . .
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End of Metered Line

V (000) = 1

V (001) = 2

V (010) = 3

V (011) = 4

V (100) = 1

V (101) = 2

V (110) = 4

V (111) = 5 Types of solutions:

1. End of some line

2. Non-trivial beginning of

some line

3. Broken valuation:

• non-trivial V (x) = 1

• or increase by > 1

Theorem (Hubáček and

Yogev’17)

EOML is in CLS.
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Yogev’17)

EOML is in CLS.

11



End of Metered Line

V (000) = 1

V (001) = 2

V (010) = 3

V (011) = 4

V (100) = 1

V (101) = 2

V (110) = 4

V (111) = 5 Types of solutions:

1. End of some line

2. Non-trivial beginning of

some line

3. Broken valuation:

• non-trivial V (x) = 1

• or increase by > 1

Theorem (Hubáček and
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Reduction ARRIVAL to EOML

Reduction Arrival to EOML:

• Vertices – integer vectors of length 2n

• If not run profile selfloop and V (x) = 0

• Successor/predecessor – next/previous step of the train

• Valuation = sum of the vector

Very special instance of EOML – just one line.
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Aldous’ Algorithm

EOML algorithm (Aldous’83):

Given EOML instance over strings {0, 1}m:

1. Let xm be maximizing V (x) among 2m/2 random strings.

2. Start from xm, move to the successor until a solution is found.

Expected number of steps is O(m2m/2).
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Aldous’ Algorithm

EOML algorithm (Aldous’83):

Given EOML instance over strings {0, 1}m:

1. Let xm be maximizing V (x) among 2m/2 random strings.

2. Start from xm, move to the successor until a solution is found.

Expected number of steps is O(m2m/2).

The obvious encoding of f (for each edge remember a number that

is at most 2n takes Θ(n2) bits) is slower than the trivial simulation.
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Aldous’ Algorithm

EOML algorithm (Aldous’83):

Given EOML instance over strings {0, 1}m:

1. Let xm be maximizing V (x) among 2m/2 random strings.

2. Start from xm, move to the successor until a solution is found.

Expected number of steps is O(m2m/2).

Our tool: The switching flow f can be efficiently decoded from the

parities of visits of vertices and the position of the train.

m = n + log n gives us O
(
poly(n)2

n+log n
2

)
∈ O(1.4143n).
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Open questions

1. Is Arrival polynomial time solvable?

2. Is there any evidence for not being polynomial time solvable?

Thank you for your attention!
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Formal definitions.
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Continuous Local Search

Definition (Daskalakis and Papadimitriou’11)

CLS is the class of total search problems reducible to the following

problem called CLOpt.

Given two arithmetic circuits f : [0, 1]3 → [0, 1]3 and

p : [0, 1]3 → [0, 1], and two real constants ε, λ > 0, find either a

point x ∈ [0, 1]3 such that p(f (x)) ≤ p(x) + ε or a pair of points

x , x ′ ∈ [0, 1]3 certifying that either p or f is not λ-Lipschitz.

Reminder: Arithmetic circuits are like polynomials but we can

reuse intermediate results.
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End of Metered Line

Definition (EOML)

Given circuits S ,P : {0, 1}m → {0, 1}m, and

V : {0, 1}m → [2m] ∪ {0} such that P(0m) = 0m 6= S(0m) and

V (0m) = 1, find a string x ∈ {0, 1}m satisfying one of the

following:

1. either P(S(x)) 6= x or S(P(x)) 6= x 6= 0m,

2. x 6= 0m and V (x) = 1,

3. either V (x) > 0 and V (S(x))− V (x) 6= 1 or V (x) > 1 and

V (x)− V (P(x)) 6= 1.

The circuits P and S implicitly represent a graph.

The circuit V is a counter of distance from the all zeroes string.
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Switching flow and Run profile

We say that f ∈ N2n is a switching flow if the following holds:

1. Kirchhoff’s Law (flow conservation):

∀v ∈ V :
∑

e=(u,v)∈E

f e −
∑

e=(v ,w)∈E

f e = [v = d ]− [v = o] ,

where [·] is the indicator variable of the event in brackets.

2. Parity Condition:

∀v ∈ V : f s1(v) ≤ f s0(v) ≤ f s1(v) + 1 .

18


