ARRIVAL: Next stop in CLS

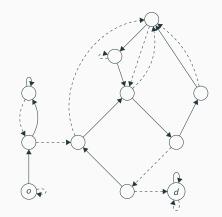
ICALP 2018

Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubáček, **Karel Král**, Hagar Mosaad, Veronika Slívová July 11th, 2018

Definition of ARRIVAL

- 1. Each city. . . two out-going tracks *even* and *odd*
- 2. Each visit alternate outgoing edge

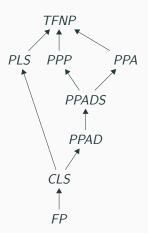
Question: If the train starts in origin *o* will it ever arrive to the destination *d*?



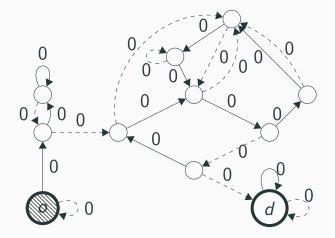
- 1. ARRIVAL Dohrau et al.'17:
 - Exponentially long route
 - Solvable in $NP \cap coNP$
- 2. Karthik C. S.'17:
 - Finding NP or coNP certificate is in PLS
 - \bullet Conjecture: search version of $\ensuremath{\operatorname{ARRIVAL}}$ is FPSPACE-complete
- 3. Fearnley et al.'17:
 - Decision version is NL-hard

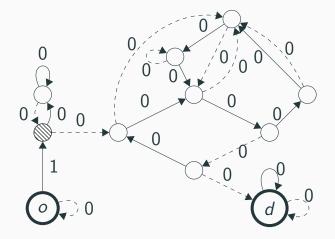
Our results:

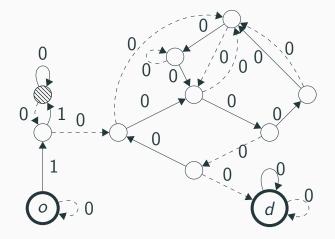
- 1. ARRIVAL is in $UP \cap coUP$
- 2. Search version in CLS
- 3. Randomized $\mathcal{O}(1.4143^n)$ algorithm for ARRIVAL

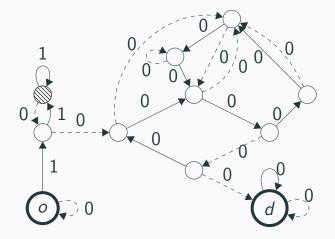


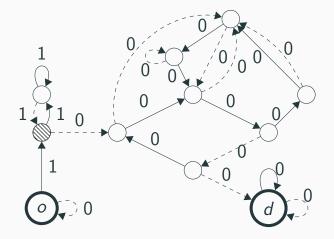
Daskalakis and Papadimitriou'11

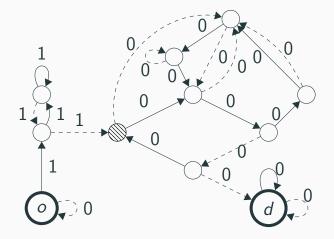




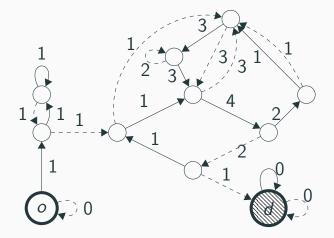








Many slides later...

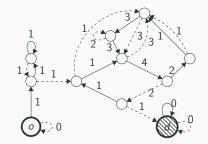


Def: $f \in \mathbb{N}^{2n}$ is a *switching flow* if it satisfies:

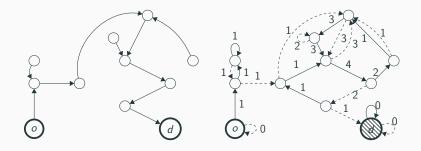
- 1. Kirchhoff's Law (flow conservation)
- 2. Parity Condition
 - A Run profile...route of the train
 - (Dohrau et al.'17) Switching flow \Rightarrow run profile
 - *NP* certificate = switching flow
 - coNP certificate = switching flow to dead-end destination \overline{d}

From a switching flow we get:

- 1. Position of the train
- 2. Last used edge for each vertex
- 3. Previous run profile



Graph of last used edges G_f^* and $UP \cap coUP$



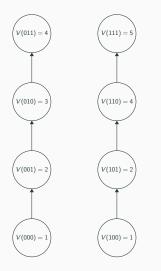
Theorem: A switching flow f is a run profile iff the train never left d or \overline{d} and either:

- 1. There is no cycle in G_f^* .
- 2. Or there is exactly one cycle in G_f^* which contains the end-vertex of f.

Run profile is unique and we can verify for given vector \Rightarrow ARRIVAL is in *UP*.

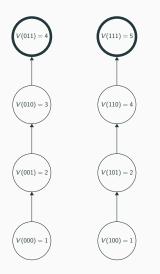
CLS (Daskalakis and Papadimitriou'11)

- Finding approximate fixed points of contraction maps
- PLCP
- Finding min-max strategy in simple stochastic games
- . . .



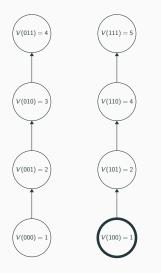
Types of solutions:

- 1. End of some line
- 2. Non-trivial beginning of some line
- 3. Broken valuation:
 - non-trivial V(x) = 1
 - $\bullet \ \, {\rm or \ increase \ \, by } > 1$



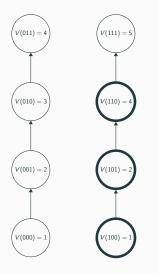
Types of solutions:

- 1. End of some line
- 2. Non-trivial beginning of some line
- 3. Broken valuation:
 - non-trivial V(x) = 1
 - $\bullet \ \, {\rm or \ increase \ \, by } > 1$



Types of solutions:

- 1. End of some line
- 2. Non-trivial beginning of some line
- 3. Broken valuation:
 - non-trivial V(x) = 1
 - $\bullet \ \, {\rm or \ increase \ \, by } > 1$



Types of solutions:

- 1. End of some line
- 2. Non-trivial beginning of some line
- 3. Broken valuation:
 - non-trivial V(x) = 1
 - or increase by > 1

Reduction Arrival to EOML:

- Vertices integer vectors of length 2n
- If not run profile selfloop and V(x) = 0
- Successor/predecessor next/previous step of the train
- Valuation = sum of the vector

Very special instance of EOML – just one line.

EOML algorithm (Aldous'83):

Given EOML instance over strings $\{0,1\}^m$:

- 1. Let x_m be maximizing V(x) among $2^{m/2}$ random strings.
- 2. Start from x_m , move to the successor until a solution is found.

Expected number of steps is $\mathcal{O}(m2^{m/2})$.

EOML algorithm (Aldous'83):

Given EOML instance over strings $\{0,1\}^m$:

- 1. Let x_m be maximizing V(x) among $2^{m/2}$ random strings.
- 2. Start from x_m , move to the successor until a solution is found.

Expected number of steps is $\mathcal{O}(m2^{m/2})$.

The obvious encoding of f (for each edge remember a number that is at most 2^n takes $\Theta(n^2)$ bits) is slower than the trivial simulation.

EOML algorithm (Aldous'83):

Given EOML instance over strings $\{0,1\}^m$:

- 1. Let x_m be maximizing V(x) among $2^{m/2}$ random strings.
- 2. Start from x_m , move to the successor until a solution is found.

Expected number of steps is $\mathcal{O}(m2^{m/2})$.

Our tool: The switching flow f can be efficiently decoded from the parities of visits of vertices and the position of the train.

$$m = n + \log n$$
 gives us $\mathcal{O}\left(\operatorname{poly}(n)2^{\frac{n+\log n}{2}}\right) \in \mathcal{O}(1.4143^n).$

- 1. Is A_{RRIVAL} polynomial time solvable?
- 2. Is there any evidence for not being polynomial time solvable?

- 1. Is A_{RRIVAL} polynomial time solvable?
- 2. Is there any evidence for not being polynomial time solvable?

Thank you for your attention!

Formal definitions.

Definition (Daskalakis and Papadimitriou'11)

CLS is the class of total search problems reducible to the following problem called *CLOpt*.

Given two arithmetic circuits $f: [0,1]^3 \to [0,1]^3$ and $p: [0,1]^3 \to [0,1]$, and two real constants $\varepsilon, \lambda > 0$, find either a point $x \in [0,1]^3$ such that $p(f(x)) \le p(x) + \varepsilon$ or a pair of points $x, x' \in [0,1]^3$ certifying that either p or f is not λ -Lipschitz.

Reminder: Arithmetic circuits are like polynomials but we can reuse intermediate results.

Definition (EOML)

Given circuits $S, P: \{0,1\}^m \to \{0,1\}^m$, and $V: \{0,1\}^m \to [2^m] \cup \{0\}$ such that $P(0^m) = 0^m \neq S(0^m)$ and $V(0^m) = 1$, find a string $x \in \{0,1\}^m$ satisfying one of the following:

- 1. either $P(S(x)) \neq x$ or $S(P(x)) \neq x \neq 0^m$,
- 2. $x \neq 0^{m}$ and V(x) = 1,
- 3. either V(x) > 0 and $V(S(x)) V(x) \neq 1$ or V(x) > 1 and $V(x) V(P(x)) \neq 1$.

The circuits P and S implicitly represent a graph.

The circuit V is a counter of distance from the all zeroes string.

We say that $f \in \mathbb{N}^{2n}$ is a *switching flow* if the following holds:

1. Kirchhoff's Law (flow conservation):

$$\forall v \in V \colon \sum_{e=(u,v)\in E} f_e - \sum_{e=(v,w)\in E} f_e = [v=d] - [v=o] ,$$

where [·] is the indicator variable of the event in brackets. 2. Parity Condition:

$$orall v \in V \colon oldsymbol{f}_{s_1(v)} \leq oldsymbol{f}_{s_0(v)} \leq oldsymbol{f}_{s_1(v)} + 1 \; .$$