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Chapter 1

Exercises

1.1 Tutorial

1. • Can you all hear me?

• If you are uncomfortable asking a question in English, just ask in Czech/Slovak and I
will translate.

• Have you all taken:

(a) a probability course (discrete probability, random variables, expected value, vari-
ance, Markov, Chernoff)

(b) a linear algebra course (matrix operations, linear maps, eigenvectors and eivenval-
ues, discriminant)

(c) a graph theory course (what a combinatorial graph is, bipartite, complete, coloring)

(d) a combinatorics course (factorial, binomial coefficients)

(e) an algorithms / programming course (big-O notation, possibly understanding Python
based on the other question)

• This class is heavy on theory. Are you interested in computer simulations and or
implementations? If so:

(a) Python

(b) R

(c) C++

Solution: 1

2. You are presented with two sealed envelopes. There are k$ in one of those and �$ in the
other (k, � ∈ N but you do not know k, � in advance). You may open an envelope and (based
on what you see) decide to take this one or the other (without looking into both).

(a) Is there a way how to walk away with the larger amoung of money with probability
strictly larger than 0.5?

(b) What is the expected value you walk away with (in terms of k, �)?

(c) Simulate.

Solution: 2

5
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3. Graph isomorphism. You have seen an interactive proof of graph non-isomorphism on the
class. Can you come up with an interactive proof of graph isomorphism?

Solution: 3

4. We will focus on random walks and their properties a lot.

(a) Random walks are useful when analysing algorithms – “two coloring without monochro-
matic triangle” of three-colorable graph.

(b) Random numbers in the computer are often expensive to generate, can we reduce
number of used random bits (expanders)? Or even get a deterministic algorithm?

(c) To sample from extremely large spaces.

Let n ∈ N, say n = 30. Let us the following problem we start with X0 = �n/2� and do the
following process:

• if Xi ∈ {0, n} we stop

• we set Xi+1 = Xi + δ where δ is picked uniformly at random from {−1, 1}

(a) Is this a Markov chain (Definition 2.2)? If so can you write it’s matrix?

(b) What is the expected number of steps until stopping?

Solution: 4

5. Think of some example MCs.

(a) Create a MC that is irreducible.

(b) Create a MC that is not irreducible.

(c) Create a MC that is periodic.

(d) Create a MC that is not periodic.

(e) Compute a stationary distribution of the following MC:

�
1/2 1/2
1/2 1/2

�

(f) Create a MC that has more stationary distributions.

Solution: 5

6. We are collectors and we want to collect all n kinds of coupons. Coupons are sold in packages
which all look the same. Thus when we buy an coupon, we buy one of n kinds uniformly at
random. This is known as the coupon collector problem.

(a) What is the expected number of coupons we need to buy to get all kinds?

(b) How many coupons do we need to buy to have probability at least 1 − q of collecting
all kinds?

(c) What is the Markov chain? Is this similar to a random walk on some graph?

(d) Simulate.

Solution: 6
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1.2 Tutorial

1. Find a family of oriented graphs of constant in-degree and constant out-degree and as large
hitting time as possible.

Note that similar situation could happen on undirected graphs where the probabilities of
traversing edge one way and the other way would not be the same. Which is in principle
almost an oriented graph.

Solution: 1

2. Let A ∈ Rn×n be a matrix with eigenvalues λ1, . . . ,λn. Show that the matrix A + dIn has
eigenvalues d+ λ1, . . . , d+ λn.

Solution: 2

3. Show Courant-Fisher: Let A ∈ Rn×n be a symmetric matrix (AT = A). Let λ1 ≥ λ2 ≥
. . . ≥ λn be its eigenvalues. Show

(a) λ1 = maxx∈Rn,�x�=1 x
TAx

(b) λn = minx∈Rn,�x�=1 x
TAx

(c) The eigenvalue λ2 can be computed similarly λ2 = maxx∈Rn,�x�=1,xTu1=0 x
TAx (where

u1 is the eigenvector corresponding to λ1). We can get other eigenvalues in a similar
manner. Moreover we could use this to prove the interlacing theorem. See https:

//en.wikipedia.org/wiki/Min-max_theorem

Solution: 3

4. Show that a connected d-regular graph is bipartite iff the least eigenvalue of its adjacency
matrix is −d.

Solution: 4

5. Compute the eigenvalues and eigenvectors of the following graphs:

(a) Kn, the complete graph on n vertices.

(b) Kn,n, the complete bipartite graph with partites of size n each.

(c) Cn, the cycle on n vertices.

Solution: 5

1.3 Tutorial

1. You are given two coins. One is fair and the other one has Pr[tails] = 1/4. We use the
following algorithm to distinguish those:

• Pick a coin and toss it n times.

• Let p̂ be the probability of getting a tails (number of tails over n).

• If p̂ ≥ 3/8 we say this coin is fair.

Show that if n ≥ 32 ln(2/δ) then our algorithm answers correctly with probability at least
1− δ.

Solution: 1

2. You have seen that ZPP = RP ∩ co-RP.

(a) Recall definitions of:
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• RP

• ZPP

• co-RP

• BPP

• NP

(b) Show that RP ⊆ NP (and thus co-RP ⊂ co-NP).

(c) Decide if BPP = co-BPP.

(d) Show that if NP ⊆ BPP then NP=RP.

Solution: 2

3. How to simulate a fair coin using a tipped coin and wice versa.

(a) We are given a fair coin Pr[tails] = 0.5. Show how to generate a random bit with
Pr[1] = p for a given p ∈ (0, 1) (both p = 0 and p = 1 are a bit boring).

(b) We are given a tipped coin – we do not even know p = Pr[tails]. We are sure that
Pr[tails] ∈ (0, 1). Generate a fair coin toss.

Solution: 3

4. Show that the expected number of comparisons a quick-sort algorithm does is roughly n ln(n).
Show that probability of it making at least 32n ln(n) comporisons is at most 1/n3.

Solution: 4

1.4 Tutorial

1. We have k servers that are supposed to handle n � k jobs. But the jobs come online and
there is no single computer that knows the loads of servers (otherwise we would have a lot of
communication). How do we distribute the jobs? We distribute the jobs each independently
uniformly at random. How to bound the maximum load?

Solution: 1

2. Distributed discrete logarithm algorithm (Breaking the Circuit Size Barrier for Secure Com-
putation Under DDH, Boyle, Gilboa, Ishai linked on the website).

Solution: 2

3. Let A,B be two disjoint sets of vertices where |A| = |B| = n. Let d ≥ 5 be a constant. We
choose d uniformly at random edges from each vertex from A. We show that with constant
positive probability each set S ⊆ A of size |S| ≤ n/d has at least β|S| neighbors where
β = d/4.

Solution: 3

1.5 Tutorial

1. Let us define the edge expansion for a given graph G by:

h(G) = min
|S|≤n/2

e(S, V \ S)
|S|
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For any S ⊆ V (G) we denote

e(S) = E(G) ∩ S × S = number of edges inside S

e(S, V (G) \ S) = E(G) ∩ (S × (V (G) \ S)) = number of edges going from S to the complement

Let us show that if λ2 is the second largest eigenvalue of the adjacency matrix of a d-regular
graph G then:

h(G) ≥ d− λ2

2

Solution: 1

2. Show that for any v ∈ Rn it holds that

1√
n
�v�1 ≤ �v�2 ≤ �v�1

Solution: 2

3. Let µ be a probability distribution, that is �µ�1 = 1 and µj ≥ 0 (for each j ∈ Ω). Let us
define d(µ, ν) the distance of two probability distributions as:

d(µ, ν) =
1

2

�

x∈Ω

|µ(x)− ν(x)|

Show that:

d(µ, ν) = max
A⊆Ω

µ(A)− ν(A)

where µ(A) =
�

x∈A µ(x).

Solution: 3

4. Let M be a Markov chain on the set of states S. We say that a Markov chain Zt = (Xt, Yt)
on the set of states S × S is a coupling iff

Pr[Xt+1 = x� | Zt = (x, y)] = Pr[Mt+1 = x� | Mt = x]
(where Xt+1 is the first coordinate of Zt+1)

Pr[Yt+1 = y� | Zt = (x, y)] = Pr[Mt+1 = y� | Mt = y]
(where Yt+1 is the second coordinate of Zt+1)

So one can imagine a coupling as a Markov chain, that in both coordinates behaves in the
same way as the original Markov chain (but the coordinates might be dependent on each
other).

Let Zt = (Xt, Yt) be a coupling of a Markov chain M on the state space S. Suppose there
is a T such that:

Pr[XT �= YT | X0 = x, Y0 = y] ≤ ε (for all x, y ∈ S)

then

τ(ε) ≤ T

Where formally the mixing time τ(ε) is defined as

ptx = the distribution when starting at x and doing t steps
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τ(ε) = max
x∈S

min
�
t | d(ptx,π) ≤ ε

�

Notice that when we prove that Pr[XT �= YT | X0 = x, Y0 = y] ≤ ε for all x, y ∈ S, we
know that we are close to the stationary distribution (without even knowing the stationary
distribution).

Solution: 4

5. We define the hypercube graph of dimension d as follows: the vertices are binary strings of
length d and two vertices are connected by an edge iff they differ in exactly one coordinate.
For instance d = 2 the graph is

({00, 01, 10, 11} , {(00, 01), (00, 10), (11, 01), (11, 10)})

(the edges are not oriented).

We start at Od and do the following random walk:

• With probability 1/2 we stay at the current vertex.

• With probability 1/2 we choose uniformly at random and index j ∈ [d] and change the
corresponding bit.

The Markov chain is nice (it converges to a single stacionary distribution, namely the uniform
distribution on all vertices). Our question is how many steps do we need to take until we are
“close enough” to the uniform distribution. Show that the random walk has τ(ε) ≤ d ln(d/ε).

Solution: 5

1.6 Tutorial

1. Definition: a random variable – our estimate A > 0 is an ε − δ approximation of a value
g > 0 if

Pr [(1− ε)g ≤ A ≤ (1 + ε)g] ≥ 1− δ

Prove the Estimator Theorem: Let U be a finite set and G ⊆ U its subset. We know |U |
and wish to estimate |G|. If we take n uniformly random and independent samples from U
where

n ≥ 3

ε2 |G|
|U |

ln (2/δ)

X = number of samples inside of G

and output A = X |U |
n then A is ε− δ approximation of |G|.

Solution: 1

2. We say that x̂ is an ε-aproximation of x iff

(1− ε)x ≤ x̂ ≤ (1 + ε)x

Show that for ε < 1/2 if we have ε-aproximation ŝ of a number s and ε-aproximation t̂ of a
number t then ŝ/t̂ is an 4ε-aproximation of s/t.

Solution: 2
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3. Let ε > 0 be fixed. Find a suitable choice of ε such that if we take (âi)
n
i=1 of numbers (ai)

n
i=1

then
�n

i=1 âi is an ε-aproximation of
�n

i=1 ai.

Solution: 3

4. Show an algorithm that given a bipartite graph G (partites consisting of the same number
of vertices) determines if the number of perfect matchings is even or odd.

Solution: 4

5. Let A ∈ {0, 1}n×n
be a matrix. Let εi,j be independent random ±1 variables. Let B ∈

{−1, 0, 1}n×n
be a matrix such that Bi,j = εi,jAi,j (uniformly randomly independently

assign signs to entries of A).

(a) Show that E[det(B)] = 0

(b) Show that E[det(B)2] = perm(A) (permanent of A)

Solution: 5

6. Let G = (U ∪ V,E) be a bipartite graph such that |U | = |V | = n and δ(G) > n/2 (the least
degree). Show that for any matching of size at most n − 1 there is an augmenting path of
length at most 3.

Solution: 6

7. Let G = (U ∪ V,E) be a bipartite graph such that |U | = |V | = n and δ(G) > n/2 (the least
degree). Show that for any 2 ≤ k ≤ n and a matching m of size k there are at most n2

matchings m� of size k − 1 such that we can get from m� to m using an augmenting path of
length at most 3.

Solution: 7

1.7 Tutorial

1. Let ε > 0 be fixed. Find a suitable choice of ε such that if we take (âi)
n
i=1 of numbers (ai)

n
i=1

then
�n

i=1 âi is an ε-aproximation of
�n

i=1 ai.

Solution: 1

2. Let G = (U ∪ V,E) be a bipartite graph where |U | = |V | = n and δ(G) > n/2. Let rk
be the fraction of k-matchings to k − 1-matchings in G. Let α ≥ 1 be a real number such
that 1/α ≤ rk ≤ α. Pick N = n7α elements from Mk ∪ Mk−1 independently uniformly
at random. Set r̂k to the fraction of observed k-matchings to k − 1-matchings. Show that�
1− 1/n3

�
rk ≤ r̂k ≤

�
1 + 1/n3

�
rk with probability at least 1− c−n for some constant c.

Solution: 2

3. Let G = (U ∪ V,E) be a bipartite graph where |U | = |V | = n and δ(G) > n/2. Show that
1/n2 ≤ rk ≤ n2.

Solution: 3

4. Let Gk be the graph constructed from G = (U ∪ V,E) such that we add n − k vertices to
each partite and connect each new vertex with all old vertices in the opposite partite. Show
that if R is the fraction of perfect matchings to the number of almost perfect matchings (all
but one vertex in each partite is matched) in the new graph Gk then

R =
mk

mk+1 + 2(n− k)mk + (n− k + 1)2mk−1

Solution: 4
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5. Show that permanent is in IP.

We say that a language L ⊆ {0, 1}∗ is in IP if

• The verifier V gets a word w ∈ {0, 1}∗, works in polynomial time in |w| and can use
random bits.

• The verifier V can communicate with the prover P (which is unbounded).

• We say that L ∈ IP if there is a prover P and a verifier V such that:

– Completeness: for each w ∈ L we have

Pr[V (w) accepts the proof of P ] ≥ 2/3

– Soundness: for any x �∈ L and any prover Q we have

Pr[V (x) accepts the proof of Q] ≤ 1/3

Show that the decision problem whether perm(A) = k for a given matrix A ∈ {0, 1}n×n
and

k ∈ N is in IP.

Our plan: Denote M1,i the matrix M without the first row and i-th column. Denote
D(x) the matrix (n − 1) × (n − 1) where elements are polynomials of degree n such that
∀i ∈ [n] : D(i) = A1,i. Then permanent of D(x) is a polynomial of degree n(n−1) in variable
x.

Notice that:

• We can construct D(x) using interpolation.

• perm(M) =
�n

i=1 perm(M1,i)

• perm(M) ≤ n! ≤ 2n
2

The protocol:

• If n ≤ 2 check the answer.

• Let the prover generate a prime p such that 2n
2

< p < 22n
2

and check that it is really
a prime.

• Request polynomial g ∈ Zp[x] of degree at most n2 such that g(x) = perm(D(x)).
Check k =

�n
i=1 M

1,iperm(D(i)).

• Pick a ∈ Zp uniformly at random and recursively check that perm(D(a)) = g(a).

Observe that if g(x) �= perm(D(x)) then Pra∈Zp
[g(a) = perm(D(a))] ≤ n2/p.

Solution: 5

1.8 Tutorial

1. There are 52 cards. Let us determine how long does it take to shuffle a deck of cards using
the following procedure: Mt+1 pick a random card and put it on top.

• Determine a suitable coupling.

• Determine after T steps probability of not converging.

Solution: 1

2. • Let us consider the game of Tick-Tack-Toe on 3 × 3 grid. Think of an algorithm that
plays this game.
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• Consider a special case of such a tree: a full binary tree of depth 2k where there are
boolean variables x1, x2, . . . , x22k in leaves and odd level vertices compute AND and
even level vertices compute OR.

– Show that for any deterministic evaluation algorithm there is an assignment such
that our deterministic evaluation needs to query all input variables.

– Show that using short circuiting (if one of inputs of AND is fals return false without
querying the other, similarly for OR if one input is true return true immediatelly)
we can create an algorithm with better expected running time.

Solution: 2

3. We will work in a streaming model. That means we are getting data dj ∈ U online (we get
d1, then d2, . . . , dn, but we do not know n in advance) and we can use only a very limited
amount of memory (say O(log(|U |)) or poly(|U |)). Say U = [N ] = {0, 1, 2, . . . , N − 1}.
Create an algorithm to compute each of the following functions and state how many bits of
memory you need (each dj is represented using log(N) bits):

• maxj∈[n] dj

•
�

j∈[n] dj

• The average
��

j∈[n] dj

�
/n (preferrably without knowing n).

Solution: 3

4. Again one-pass streaming model. Do one pass along the data d1, d2, . . . , dn ∈ U to find the
most frequently occuring element given that it occurs > n/2 times. Use as little memory as
possible.

Solution: 4

1.9 Tutorial

1. A boolean circuit https://en.wikipedia.org/wiki/Boolean_circuit

• We say that a circuit is randomized if it also receives m(n) independent random bits
as inputs.

• We say that a family of boolean circuits (Cn)n∈N computes a function f : {0, 1}∗ →
{0, 1} if ∀n ∈ N ∀x ∈ {0, 1}n : Cn(x) = f(x).

• We say that a family of randomized circuits computes a function if f(x) = 0 then the
circuit outputs zero no matter the random bits, if f(x) = 1 then the circuit outputs
one with probability at least 1/2 (over its random bits).

Show Adleman’s theorem: if a boolean function has a randomized polynomial-sized boolean
family, then it has a polynomial-sized boolean family.

Solution: 1

2. Given an array a ∈ Nn which is sorted (that is a[i] ≤ a[i + 1] for any 0 ≤ i ≤ n − 2) and a
number k ∈ N determine whether there is index 0 ≤ i ≤ n− 1: a[i] = k.

(a) Show a fast algorithm.

(b) Recall Yao’s Minmax Principle.

(c) Show a lower bound for the expected number of steps of a randomized algorithm for
search in sorted array.
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(d) Can we do better if we assume something about the distribution of the numbers inside
the array?

Solution: 2

3. You will use hashing functions in the next lecture. Let us mention few definitions.

• The intuition is that we do not consider a single hash function but rather a set of
functions and choose uniformly at random one hash function.

• We cannot store a random function (too much Shannon entropy, so technically we can
but it is never practical) and sampling random function is also not practical.

• Thus we often choose functions that are very simple to store, evaluate, and sample
from.

Let [m] = {0, 1, 2, . . . ,m− 1}.
• A system H of functions from U to [m] is called c-universal for a constant c ≥ 1 if for
each two different x �= y ∈ U we have

Pr
h←H

[h(x) = h(y)] = c/m

(When H is the set of all functions then it is 1 universal.)

Let p be a prime and Zp be a field. Let D be the system of functions from Zd
p to Zp:

D =
�
ht(x) = �t | x� | t ∈ Zd

p

�

Show that D is 1-universal.

• A system H of functions from U to [m] is called strongly c-universal (also called 2-
independent) for a constant c ≥ 1 if for each two different x �= y ∈ U and each two slots
a, b ∈ [m] we have

Pr
h←H

[h(x) = a ∧ h(y) = b] = c/m2

– Why don’t we just quantify for each x ∈ U and each a ∈ [m]

Pr
h←H

[h(x) = a] = c/m

– Let ha,b(x) = ((ax + b) mod p) mod m. Then the system L = {ha,b | a, b ∈ [p]}
is strongly 4-universal.

Solution: 3

1.10 Tutorial

1. We have routers (small computers that are sending packets). We want to know what is
going on in the network but the routers are not powerful enough to log each packet that
goes through them.

(a) What if each router logs the incomming packets at random?

(b) What kind of family of hash functions do we want to use?

(c) It is possible that each packet will be either logged on each router it visits or nowhere?
At the same time we wish to log just a predefined fraction of packets (with high prob-
ability).
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Solution: 1

2. Let n,m ∈ N be constants and let U = Zn
2 . Show that

H =
�
hA,b | A ∈ Zm×n

2 , b ∈ Zm
2

�
(where hA,b(x) = Ax+ b)

is a 2-universal family of hash-functions.

Solution: 2

3. Let us show few useful facts:

(a) Let X,Y be two random variables which are independent. Show that

E[XY ] = E[X]E[Y ]

(b) Let X,Y be two random variables which are independent. Show that

var(X + Y ) = var(X) + var(Y )

(c) Let X1, X2, . . . , Xn be random variables which are pairwise-independent. Show that

var




n�

j=1

Xj


 =

n�

j=1

var(Xj)

(d) Show that for any two real numbers a, b ∈ R we have:

var(aX + b) = a2var(X)

(e) Show that if µ,σ ∈ R and X1, X2, . . . , Xn are random variables with E[Xj ] = µ and
var(Xj) = σ2 then

X =
1

n

n�

j=1

Xj

E[X] = µ

var[X] = σ2/n

(f) Median trick: let X1, X2, . . . , Xn be independent identically distributed such that
Pr[Xj < c] ≤ 1/4 and Pr[Xj > C] ≤ 1/4 (for some constants c, C ∈ R). Prove
that the median M of X1, X2, . . . , Xn satisfies

Pr[M < c] ≤ 2e−n/8

Pr[M > C] ≤ 2e−n/8

(g) Median of means trick: let X1, X2, . . . , Xn are pairwise-independent random variables
with variance so high we are unable to use the median trick because we cannot mean-
ingfully bound Pr[Xj < c ∨Xj > C].

Solution: 3

4. Hash functions have also quite some applications in cryptography. Suppose you have a family
of hash functions H where each function is easy to evaluate, but it is hard to find a preimage
(or a collision). We review some applications of this notion.

• Signing using hashes or checksums using hashes.

• Blockchain.

• Merkle tree https://en.wikipedia.org/wiki/Merkle_tree

Solution: 4
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1.11 Tutorial

1. Analyse the Count-Min Sketch (Section 5.4 in https://www.cs.dartmouth.edu/~ac/Teach/
data-streams-lecnotes.pdf)

Section 5.4 https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

Solution: 1

2. Let us consider approximation of MAX-SAT:

(a) Define MAX-3SAT and MAX-E3SAT:

(b) Think of the simplest randomized algorithm to solve MAX-E3SAT.

(c) What is the least fraction of satisfiable clauses in a E3SAT?

(d) What is the least fraction of satisfiable clauses in a 3SAT (not E3SAT)?
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(e) If we are promised we are given a formula of 3SAT where either at most half or all of
the clauses are satisfiable can you determine which case this is?

(f) If we are promised we are given a formula of 3SAT where either at most 94% or at least
95% of the clauses are satisfiable can you determine which case this is?

Definition (Gap-preserving reduction). Let Π,Π� be two optimization problems. Then we
say that we have an L-reduction from Π to Π�, if there are two real numbers a, b such that:

(a) For any instance I ∈ Π we can in polynomial time output an instance I � ∈ Π�,

(b) OPT(I �)≤ aOPT(I) and

(c) if we get a solution S� for I � (of value V �) we can in polynomial time output a solution
S of the instance I (of value V ) such that

|OPT (I)− V | ≤ b |OPT (I �)− V �| .

Solution: 2

3. Using the theorem that there is no α-approximation of MAX-E3SAT for any α > 7/8 unless
P=NP prove that there is no β-approximation for any β > 23/24 for MAX-LABEL-COVER
unless P=NP.

Max Label Cover
Input: bipartite graph G = (V1, V2, E), sets of labels L1, L2 ⊆ N a collection of relations
(Re)e∈E ⊆ L1 × L2

Goal: find labelings �i : Vi → Li.
Maximize: |{e ∈ E : e = {v1, v2} , {�1(v1), �2(v2)} ∈ Re}|

Section 16.4 http://www.designofapproxalgs.com/book.pdf

Solution: 3
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1.12 Tutorial

1.

Definition. PCP [r(n), q(n)] is the class of languages L for which there is a randomized
polynomial time algorithm A(x,Π) such that:

• On any input x of length n the algorithm A(x,Π) uses at most r(n) random bits and
accesses non-adaptively at most q(n) bits of the proof Π.

• If x ∈ L then A(x,Π) = 1 always.

• If x �∈ L then Pr[A(x,Π) = 1] ≤ 1/2.

We define PCP = PCP [O(log(n)),O(1)].

Show that:

(a) P = PCP [0, 0]

(b) NP = PCP [0, nO(1)]

(c) co−RP = PCP [nO(1), 0]
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Solution: 1

2. Show that

(a) If SAT ∈ PCP [log log(n), 1] then P = NP

(b) If SAT ∈ PCP [o(log(n)), 1] then P = NP

Solution: 2
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Chapter 2

Theory

2.1 Probability 101

Probability 101

2.2 Markov Chain

Definition. A discrete-time Markov chain is a sequence of random variables X0, X1, X2, . . . with
the Markov property:

Pr[Xn+1 = x | X0 = x0, X1 = x1, . . . , Xn = xn] = Pr[Xn+1 = x | Xn = xn]
(if both are defined, i.e., Pr[X0 = x0, X1 = x1, . . . , Xn = xn] > 0)

and the possible values of Xi form a countable set called the state space of the Markov chain.

The Markov property states that the process has no memory – the next state depends only on
the current state. We will deal with a special case where the state space of each random variable
will be the same and finite. Moreover we will deal with time-homogenous Markov chains, that is
Pr[Xn+1 | Xn] = Pr[Xn | Xn−1] (the transition probabilities are time independent). Thus we will
represent Markov chains by their transition matrices – if a Markov chain has n states its transition
matrix is P ∈ [0, 1]n×n such that Pi,j = Pr[Xn+1 = i | Xn = j] (thus column sums are equal to
one).

If we take a probability distribution π ∈ [0, 1]n and multiply it by the transition matrix we get
the probability distribution after one step Pπ.

There are several interesting properties of Markov chains:

• We say that a MC is irreducible iff for each pair of states i, j ∈ [n] there is a time k ∈ N
such that (P k)i,j > 0 (we can get from any state to any state).

• We say that a MC is periodic iff there is a state i ∈ [n] and a period p ∈ N, p > 1 such that
for each time k ∈ N we have (P k)i,i > 0 ⇒ p | k that is probability of staying at state i is
positive only for multiples of the period.

• We say that π ∈ [0, 1]n is a stationary distribution of a given MC iff Pπ = π (the distribution
is the same after one step).

Theorem 1. If a MC is aperiodic and irreducible it has a unique stationary distribution π.
Moreover for all pairs of states i, j ∈ [n] the we know that

lim
t→∞

(P t)i,j = πi

21



22 CHAPTER 2. THEORY



Chapter 3

Solutions

3.1 Tutorial

1.

• Can you all hear me?

• If you are uncomfortable asking a question in English, just ask in Czech/Slo-
vak and I will translate.

• Have you all taken:

(a) a probability course (discrete probability, random variables, expected
value, variance, Markov, Chernoff)

(b) a linear algebra course (matrix operations, linear maps, eigenvectors and
eivenvalues, discriminant)

(c) a graph theory course (what a combinatorial graph is, bipartite, com-
plete, coloring)

(d) a combinatorics course (factorial, binomial coefficients)

(e) an algorithms / programming course (big-O notation, possibly under-
standing Python based on the other question)

• This class is heavy on theory. Are you interested in computer simulations
and or implementations? If so:

(a) Python

(b) R

(c) C++

23
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2. You are presented with two sealed envelopes. There are k$ in one of those and
�$ in the other (k, � ∈ N but you do not know k, � in advance). You may open
an envelope and (based on what you see) decide to take this one or the other
(without looking into both).

(a) Is there a way how to walk away with the larger amoung of money with
probability strictly larger than 0.5?

Solution: Pick an envelope uniformly at random. If you see m$ toss a fair coin
until you get Tails. If the number of tosses was strictly less than m keep the envelope,
otherwise take the other. If k < � then the probability of keeping the envelope with k$
is strictly less than the probability of keeping the envelope with �$.

(b) What is the expected value you walk away with (in terms of k, �)?

Solution: Let us recall the sum of geometric series:

S =

n�

j=0

qj

= 1 + q + q2 + . . .+ qn

= 1 + q
�
1 + q + q2 + . . .+ qn−1

�

= 1 + q(S − qn)

thus

S = 1 + q(S − qn)

S − qS = 1− qn+1

S =
1− qn+1

1− q
(pokud q �= 1)

and for the infinite case:

∞�

j=0

qj = lim
n→∞

n�

j=0

qj

= lim
n→∞

1− qn+1

1− q

=
1

1− q
(pokud |q| < 1)

Thus exactly n tosses have probability for the general case where Tails has probability
p and Heads has probability 1− p:

Pr[n tosses] = (1− p)n−1p (for any n ∈ N+)

Probability of at most n tosses:

Pr[1, 2, . . . , n tosses] =

n�

j=1

p(1− p)j−1

= p

n�

j=1

(1− p)j−1

= p
1− (1− p)n

1− (1− p)
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= 1− (1− p)n

Probability that we keep k$ (fair coin):

Pr[tosses < k] =

k−1�

j=1

0.5j

= 1− 0.5k−1

Thus probability of walking away with k$ is

Pr[winning k$] =
1

2
(1− 0.5k−1) +

1

2
0.5�−1

=
1

2
− 0.5k + 0.5�

=
1

2
+ (0.5� − 0.5k)

Thus the expected win is

E[win] = k

�
1

2
+ (0.5� − 0.5k)

�
+ �

�
1

2
+ (0.5k − 0.5�)

�

(c) Simulate.

Solution:

# https://docs.python.org/3/library/random.html

# Do not use for cryptography!

from random import randint

from random import random

def geometric(pr: float = 0.5) -> int:

"""pr is success probability, return the number of tosses until

the first success."""

assert pr > 0

sample = 1

fail_pr = 1 - pr

while random() < fail_pr:

sample += 1

return sample

# Our unknown amounts.

envelopes = [5, 10]

N = 1000000 # Number of samples.

total_amount = 0 # Total sum that we got during all samples.

got_larger = 0 # Number of times we walked away with the larger sum.

for _ in range(N):

# Pick the first envelope at random.

chosen = randint(0, 1)
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if geometric() < envelopes[chosen]:

# Keep this one.

pass

else:

# Choose the other.

chosen = 1 - chosen

if envelopes[chosen] >= envelopes[1 - chosen]:

got_larger += 1

total_amount += envelopes[chosen]

k = envelopes[0]

l = envelopes[1]

pr_larger = 0.5 + abs(0.5**k - 0.5**l)

e_win = k * (0.5 + (0.5**l - 0.5**k)) + l * (0.5 + (0.5**k - 0.5**l))

print(f'Pr[selected larger] = {got_larger / N} (={pr_larger})')

print(f'E[win] = {total_amount / N} (={e_win})')

# Possible outcome:

# Pr[selected larger] = 0.529865 (=0.5302734375)

# E[win] = 7.649325 (=7.6513671875)
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3. Graph isomorphism. You have seen an interactive proof of graph non-isomorphism
on the class. Can you come up with an interactive proof of graph isomorphism?

Solution:

• Both the prover P and the verifier V know two graphs G1, G2.

• The prover knows an isomorphism π such that π(G1) = G2. Formally π : V (G1) →
V (G2) such that

(u, v) ∈ E(G1) ⇔ (π(u),π(v)) ∈ E(G2).

And by π(G1) we mean the graph (π(V (G1)), {(π(u),π(v)) | (u, v) ∈ E(G1)}).
• For ease of presentation we set V (G1) = V (G2) = [n] = {1, 2, 3, . . . , n}.
• The prover picks uniformly random permutation σ ∈ Sn and sends the graph G =
σ(G1).

• The verifier picks uniformly random number i ∈ {1, 2} and asks verifier to present a
permutation τ such that τ(G) = Gi.

• If i = 1 then the prover sends τ = σ−1. If i = 2 then the prover sends τ = (σ ◦ π)−1.

This is indeed an interactive proof:

• If the prover knows the isomorphism π, then all answers are correct.

• If G1, G2 are not isomorphic, then the verifier will pick a graph (either G1 or G2) which
is not isomorphic with G with probability 1/2.

Again the prover learns nothing about the isomorphism. If you find these interactive proofs
interesting, take a look at “Zero Knowledge Proofs”.

Also note that our prover can be implemented efficiently as opposed to the case of graph
non-isomorphism. In fact in some sense the prover proves that it knows the isomorphism
(this can be made formal, see “Zero Knowledge Proofs of Knowledge”).

It is natural to repeat this protocol more times in order to boost the probabilities. This is
called probability amplification. We will investigate this much more during the semester.



28 CHAPTER 3. SOLUTIONS

4. We will focus on random walks and their properties a lot.

(a) Random walks are useful when analysing algorithms – “two coloring without
monochromatic triangle” of three-colorable graph.

(b) Random numbers in the computer are often expensive to generate, can we
reduce number of used random bits (expanders)? Or even get a determin-
istic algorithm?

(c) To sample from extremely large spaces.

Let n ∈ N, say n = 30. Let us the following problem we start with X0 = �n/2� and
do the following process:

• if Xi ∈ {0, n} we stop

• we set Xi+1 = Xi + δ where δ is picked uniformly at random from {−1, 1}
(a) Is this a Markov chain (Definition 2.2)? If so can you write it’s matrix?

Solution: Yes (see the lecture video).

(b) What is the expected number of steps until stopping?

Solution: Let us set

Sk = E[number of steps untill stopping, when starting at k]

We know the following:

S0 = Sn = 0

Sk = 1 +
1

2
(Sk−1 + Sk+1) (by linearity of expectation)

The above is so-called difference equation. It is not terribly complicated, but not super
easy to solve (hint try to consider equations for d(k) = Sk−Sk−1 to get rid of the “1+”
term). You may look at https://en.wikipedia.org/wiki/Recurrence_relation.
Luckily when dealing with asymptotics thus we do not need exact estimates. And you
will see some nice theoretical results tomorrow.

But it can be shown that

Sk = k(n− k)

which we can easily check that this is indeed a solution (note that we would also need
that this is a unique solution, see solution methods on Wikipedia for this part):

Sk = 1 +
1

2
(Sk−1 + Sk+1)

Sk = 1 +
1

2
((k − 1)(n− (k − 1)) + (k + 1)(n− (k + 1)))

Sk = 1 +
1

2
((k − 1)n− (k − 1)2 + (k + 1)n− (k + 1)2)

Sk = 1 +
1

2
(2kn− (k − 1)2 − (k + 1)2)

Sk = 1 +
1

2
(2kn− 2k2 − 2)

Sk = k(n− k)
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5. Think of some example MCs.

(a) Create a MC that is irreducible.

Solution: Two states:
�
1/2 1/2
1/2 1/2

�

(with probability 1/2 stay at the current state, with probability 1/2 switch to the other
state).

(b) Create a MC that is not irreducible.

Solution: Two states:
�
1 1
0 0

�

(always stay at the first state or immediatelly go there).

(c) Create a MC that is periodic.

Solution: Three states:


0 1 0
0 0 1
1 0 0




(from the first state go always to the third, from the second always to the first and
from the third always to the second).

(d) Create a MC that is not periodic.

Solution: Two states:
�
1/2 1/2
1/2 1/2

�

(with probability 1/2 stay at the current state, with probability 1/2 switch to the other
state).

(e) Compute a stationary distribution of the following MC:

�
1/2 1/2
1/2 1/2

�

Solution: One eigenvalue is 1, the only stationary distribution (1/2, 1/2)T . The
other eigenvalue is 0 with the corresponding eigenvector (1,−1)T (this is not a distri-
bution).

(f) Create a MC that has more stationary distributions.

Solution: Two states:
�
1 0
0 1

�

(always stay where we are).
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6. We are collectors and we want to collect all n kinds of coupons. Coupons are
sold in packages which all look the same. Thus when we buy an coupon, we
buy one of n kinds uniformly at random. This is known as the coupon collector
problem.

(a) What is the expected number of coupons we need to buy to get all kinds?

Solution: Let ti be the time to collect the i-th coupon kind after we have collected
i− 1 coupons. The probability of buying the i-th coupon is

Pr[getting i-th coupon when already having i− 1 coupons] =
n− (i− 1)

n

Thus ti has geometric distribution (we are tossing the same probability and waiting for
the first success). The expected value of ti is:

E[ti] =
n

n− (i− 1)

By linearity of expectation:

E[collecting] = E[t1 + t2 + . . .+ tn]

= E[t1] + E[t2] + . . .+ E[tn]

=
n

n
+

n

n− 1
+

n

n− 2
+ . . .+

n

n− (n− 1)

= nHn

= n log(n) + n · 0.577 . . .+ 1/2 +O(1/n) (source Wikipedia)

(b) How many coupons do we need to buy to have probability at least 1 − q of
collecting all kinds?

Solution: We can use Markov inequality Pr[T > nHn/q] ≤ q (here T is the random
variable telling us how many tosses are necessary).

(c) What is the Markov chain? Is this similar to a random walk on some graph?

Solution: There might be more Markov chains corresponding to this problem. The
states could be all subsets of [n] = {1, 2, 3, . . . , n} (too big – not that nice to work with)
or how many coupons have we collected so far (much smaller).

This corresponds to the cover time of a complete graph (when we have loops in each
vertes).

(d) Simulate.

Solution:

import matplotlib.pyplot as plt

from collections import Counter

from random import randint

def catch_them_all(n: int = 50) -> int:

coupons = [False] * n

coupons_collected = 0

coupons_bought = 0

while coupons_collected < len(coupons):

new_coupon = randint(0, len(coupons) - 1)
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coupons_bought += 1

if not coupons[new_coupon]:

coupons[new_coupon] = True

coupons_collected += 1

return coupons_bought

cnt = Counter(catch_them_all(50) for _ in range(10000))

plt.bar(cnt.keys(), cnt.values())

plt.xlabel("Steps untill collecting all 50 coupons")

plt.ylabel("How many times did we take this many steps")

# plt.show()

plt.savefig('coupon_collector.pdf')
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Figure 3.1: A histogram of how many steps were necessary (say 200 steps was necessary around
80 times).
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3.2 Tutorial

1. Find a family of oriented graphs of constant in-degree and constant out-degree
and as large hitting time as possible.

Solution: Let us first do constant out-degree and unbounded in-degree. We will later use
a tree to achieve constant in-degree.

1 2 3 4 5 6 7

Figure 3.2: Oriented path with backwards arcs (oriented edges).

The expected hitting time from

hn,n = 0

hn−1,n = 1 + 0.5h1,n

hn−2,n = 1 + 0.5(h1,n + hn−1,n)

= 1 + 0.5(h1,n + (1 + 0.5h1,n))

= 1.5 + 0.75h1,n

hn−3,n = 1 + 0.5(h1,n + (1 + 0.5(h1,n + (1 + 0.5h1,n))))

hn−k,n =




k−1�

j=0

0.5j


+


h1,n

k�

j=1

0.5j




= 2− 21−k + h1,n(1− 2−k)

Thus in particular when k = n− 1:

h1,n = 2− 21−(n−1) + h1,n(1− 2−(n−1))

2−(n−1)h1,n = 2− 21−(n−1)

h1,n = 2n−1(2− 21−(n−1))

= 2n − 2

Note that similar situation could happen on undirected graphs where the prob-
abilities of traversing edge one way and the other way would not be the same.
Which is in principle almost an oriented graph.
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2. Let A ∈ Rn×n be a matrix with eigenvalues λ1, . . . ,λn. Show that the matrix
A+ dIn has eigenvalues d+ λ1, . . . , d+ λn.

Solution: Eigenvalues and eigenvectors recap:

• We are interested in the limit of a Markov chain. When π0 is the initial distribution,
then Pnπ0 is the distribution after n steps.

• When we are iteratively multiplying a vector by a matrix from left, the simplest form
we can hope for are eigenvectors, which satisfy

Ax = λx

Where A is a square matrix, λ is a real number called the eigenvalue, x is called the
eigenvector. Then

Anx = A
�
An−1x

�
= λnx

• For small matrices we usually use the characteristic polynomial:

det (A− λI) = 0

the roots of this polynomial are the eigenvalues and we find the corresponding eigen-
vectors as:

A− λI = �0

• For an eigenvalue λ we define its algebraic multiplicity to be the multiplicity of λ as
the root of the characteristic polynomial.

• For an eigenvalue λ we define its geometric multiplicity to be the dimension of

Ker(A− λI).

• We know that for any eigenvalue algebraic multiplicity is at least the geometric multi-
plicity.

• For each eigenvalue there is at least one eigenvector.

• It is usually infeasible to find roots of the characteristic polynomial when the matrix A
is large. There are however computationally efficient methods of computing eigenvalues
and eigenvectors (usually iterative multiplication converges to the eigenvector).

We use the definition, let λ be an eigenvalue in question and x its corresponding eigenvector:

Ax = λx

(A+ dI)x = Ax+ dIx

= λx+ dx

= (λ+ d)x

Note that this can be rather useful when computing eigenvalues of a given matrix.
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3. Show Courant-Fisher: Let A ∈ Rn×n be a symmetric matrix (AT = A). Let
λ1 ≥ λ2 ≥ . . . ≥ λn be its eigenvalues. Show

(a) λ1 = maxx∈Rn,�x�=1 x
TAx

Solution: Since A is Hermitian, we know that it is diagonalizable and we can choose
an ortonormal basis of eigenvectors u1, u2, . . . , un. That is for any j we have uT

j uj = 1

and Auj = λjuj , and for any i �= j we have uT
j ui = 0.

We show two inequalities:

max
x∈Rn,�x�=1

xTAx ≥ uT
j Auj

= uT
j λjuj

= λj

On the other hand we may write x = α1u1 + α2u2 + . . .+ αnun and thus get

max
x∈Rn,�x�=1

xTAx = (α1u1 + α2u2 + . . .+ αnun)
T
A (α1u1 + α2u2 + . . .+ αnun)

= (α1u1 + α2u2 + . . .+ αnun)
T
(λ1α1u1 + λ2α2u2 + . . .+ λnαnun)

= λ1α
2
1 + λ2α

2
2 + . . .+ λnα

2
n (since uT

j ui = 0 and uT
j uj = 1)

≤ λ1

Where the last equation follows from the fact that if Q is ortogonal matrix (QTQ = I)
then �x� = �Qx� since �x� = xTx and �Qx� = xTQTQx.

(b) λn = minx∈Rn,�x�=1 x
TAx

Solution: Consider −A and use the previous result.

(c) The eigenvalue λ2 can be computed similarly λ2 = maxx∈Rn,�x�=1,xTu1=0 x
TAx

(where u1 is the eigenvector corresponding to λ1). We can get other eigenval-
ues in a similar manner. Moreover we could use this to prove the interlacing
theorem. See https://en.wikipedia.org/wiki/Min-max_theorem
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4. Show that a connected d-regular graph is bipartite iff the least eigenvalue of its
adjacency matrix is −d.

Solution: We know that the largest eigenvalue of the adjacency matrix of a d-regular
graph is d and there is a corresponding eigenvector (1, 1, . . . , 1)T .

If the graph is bipartite (that is V (G) = A ∪B and E(G) ⊆ A×B), we may use the vector
defined as follows:

xv =

�
−1 if v ∈ A

1 if v ∈ B

Then x is an eigenvector corresponding to −d.

Let (x1, x2, . . . , xn)
T be the eigenvector corresponding to −d. Thus

−dxi =
�

j∈N(i)

xj

LetM = maxi |xi| and P = {i | xi = M} andN = {i | xi = −M}. Without loss of generality
let P be non-empty. For any i ∈ P we have

−dM =
�

j∈N(i)

xj

thus xj = −M for each j ∈ N(i) (since each |xk| ≤ M).

Since the graph is connected we eventually get that for any i it holds that |xi| = M .

Eigenvalues of the graph of neurons in human brain have been considered in epilepsy – they
studied “how much” is the brain bipartite, which can be expressed by the difference between
the smalles eigenvalue and the negative degree.
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5. Compute the eigenvalues and eigenvectors of the following graphs:

(a) Kn, the complete graph on n vertices.

Solution: It will be easier to determine eigenvalues and eigenvectors of a complete
graph with selfloops (we add unit matrix). We may subtract ones if we mind the
selfloops.

The adjacency matrix of a complete graph with selfloops is:

A =




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




By the observation from the lecture we know that this is a regular graph and the matrix
above has eigenvalue n with eigenvector (1, 1, 1, 1, 1)T . By Hamiltonicity we know that
all other eigenvectors are perpendicular to the one above. Thus all their entries sum
up to zero.

We guess other eigenvectors (we need to guess n− 1 of them).



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1







1
−1
0
0
0




=




0
0
0
0
0







1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1







1
0
−1
0
0




=




0
0
0
0
0







1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1







1
0
0
−1
0




=




0
0
0
0
0







1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1







1
0
0
0
−1




=




0
0
0
0
0




Thus geometric (and thus also the algebraic) multiplicity of eigenvalue 0 is n− 1.

(b) Kn,n, the complete bipartite graph with partites of size n each.

Solution: Here we are happy with no selfloops (otherwise the graph would not even
be bipartite).




0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0






3.2. TUTORIAL 2. 37

The graph is bipartite and regular, thus we know that the largest eigenvalue is n
with the eigenvector (1, 1, 1, 1, 1, 1)T the smallest eigenvalue is −n with the eigenvector
(−1,−1,−1, 1, 1, 1)T . As with the complete graph with selfloops it is easy to show that
the rest is zero eigenvalues with corresponding vectors.

(c) Cn, the cycle on n vertices.

Solution: If we knew circular matrices we could use their properties. We will write
the adjacency matrix as a sum of two simpler matrices:




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0




=




0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




+




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0




Observe that moreover the two matrices are inverse to each other, thus their eigenvalues
are inverses as:

Ax = λx

x = Ix

= A−1Ax

= λA−1x

Let ω ∈ C be the primitive n-th root of unity. Thus ω = e2iπ/n.




0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0







ω0

ω1

ω2

ω3

ω4

ω5




=




ω5

ω0

ω1

ω2

ω3

ω4




= ω5




ω0

ω1

ω2

ω3

ω4

ω5




Similarly for the even powers




0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0







ω0

ω2

ω4

ω0

ω2

ω4




=




ω4

ω0

ω2

ω4

ω0

ω2




= ω4




ω0

ω2

ω4

ω0

ω2

ω4




And so on. A particular eigenvector is an eigenvector of the eigenvalue ωj with respect to
this matrix and of eigenvalue ω−j with respect to the inverse matrix. Thus when we sum
the two matrices we get that the eigenvalue is ωj+ω−j . Observe that ωj+ω−j ∈ R.
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3.3 Tutorial

1. You are given two coins. One is fair and the other one has Pr[tails] = 1/4. We
use the following algorithm to distinguish those:

• Pick a coin and toss it n times.

• Let p̂ be the probability of getting a tails (number of tails over n).

• If p̂ ≥ 3/8 we say this coin is fair.

Show that if n ≥ 32 ln(2/δ) then our algorithm answers correctly with probability
at least 1− δ.

Solution: Each coin is independent 0, 1 random variable. We could have used the statement
to get a similar bound:

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3

but the following is a bit more convenient for us here:

Pr[X ≥ µ+ δn] ≤ e−2nδ2

Pr[X ≤ µ− δn] ≤ e−2nδ2

• If we were tossing the fair coin the probability of failure is

µ = n/2

δ = 1/8

Pr[X ≤ n/2− n/8] ≤ e−2·32 ln(2/δ)(1/8)2

Pr[X ≤ 3n/8] ≤ e− ln(2/δ)

≤ δ/2

• If we were tossing the tipped coin the probability of failure is

µ = n/4

δ = 1/8

Pr[X ≥ n/4 + n/8] ≤ e−2·32 ln(2/δ)(1/8)2

Pr[X ≥ 3n/8] ≤ e− ln(2/δ)

≤ δ/2
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2. You have seen that ZPP = RP ∩ co-RP.

(a) Recall definitions of:

• RP

Solution: A language L ⊆ {0, 1}∗ is in RP (L ∈ RP ) iff there is a probabilistic
Turing machine A such that:

– A works in polynomial time in the input length (that is A(x) works in time |x|
for any x ∈ {0, 1}∗).

– If x �∈ L then A(x) = 0 always.

– If x ∈ L then Pr[A(x) = 1] ≥ 1/2 (the randomness is over the random bits of
A).

• ZPP

Solution: A language L ⊆ {0, 1}∗ is in RP (L ∈ RP ) iff there is a probabilistic
Turing machine A such that:

– A(x) = 1 if and only if x ∈ L

– A works in expected polynomial time (expectation is over the random bits of
A).

• co-RP

Solution: L is in co-RP iff {0, 1}∗ \ L is in RP.

• BPP

Solution: L is in BPP iff there is a probabilistic Turing machine A such that:

– A works in polynomial time

– If x ∈ L then Pr[A(x) = 1] ≥ 3/4.

– If x �∈ L then Pr[A(x) = 0] ≥ 3/4.

• NP

Solution: L is in NP if there is a deterministic Turing machine A such that:

– A works in polynomial time in the input length (sum of input length and
certificate length).

– If x ∈ L then there is c ∈ {0, 1}∗ such that |c| is polynomial in |x| and A(x, c) =
1.

– If x �∈ L then for any c ∈ {0, 1}∗ we have A(x, c) = 0.

(b) Show that RP ⊆ NP (and thus co-RP ⊂ co-NP).

Solution: The random bits can serve as the certificate.

(c) Decide if BPP = co-BPP.

Solution: Yes, we can create B that on any x answers 1−A(x).

(d) Show that if NP ⊆ BPP then NP=RP.

Solution: We already know that RP ⊆ NP (unconditionally), we thus need the other
inclusion.
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We know that 3SAT is NP-complete (if we can solve 3SAT, we can solve anything in
NP). Thus it is enough to show that given A which is the BPP Turing machine for
3SAT we can do the following:

• If A rejects, reject.

• If A accepts, we hope the given formula is satisfiable and try to find an assignment:

– Say the given formula ϕ has n variables.

– If ϕ is satisfiable even if we set x1 = True, we set it to True (otherwise to
False).

– We continue with x2, x3, . . . , xn.

– Return ϕ(x1, x2, . . . , xn).

We need to be certain-enough when deciding the variables. Thus we run A multiple
times – O(log(n)) times and take the majority answer to get probability 1−1/100n
of correct answer. By union bound we get that probability of an error in any fixing
of x1, x2, . . . , xn is at most 1/100.

Determine the constant before the log(n) using a Chernoff bound.
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3. How to simulate a fair coin using a tipped coin and wice versa.

(a) We are given a fair coin Pr[tails] = 0.5. Show how to generate a random bit
with Pr[1] = p for a given p ∈ (0, 1) (both p = 0 and p = 1 are a bit boring).

Solution: Note that if the given p does not have finite binary representation there is
no number T such that it would be enough to do at most T tosses. If at most T tosses
would suffice, then imagine a tree of toss results. Any leaf is at depth at most T . In
any leaf we output either 1 or 0. Probability of getting to a leaf is a multiple of 2−T

(not all leafs might be at the same depth).

Say that p = 0.p1p2p3 . . . where pj are binary digits. We treat the fair coin tosses as
digits of a random number q. We toss until q > p in which case we output 0 or we are
sure that q ≤ p no matter the following tosses in which case we output 1.

After each toss the probability of outputting is one half. Thus the expected number of
tosses is constant.

(b) We are given a tipped coin – we do not even know p = Pr[tails]. We are sure
that Pr[tails] ∈ (0, 1). Generate a fair coin toss.

Solution: Algorithm:

• We toss twice.

• If the outcome was Heads, Tails we output 0.

• If the outcome was Tails, Heads we output 1.

• If the outcome was Heads, Heads or Tails, Tails we repeat.

We know that:

• Probability of outputting 0 is p (1− p).

• Probability of outputting 1 is (1− p) p = p (1− p).

• Probability of outputting is 2p(1− p) > 0. Thus the expected number of rounds is
1

2p(1−p) , which is finite for any p ∈ (0, 1).
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4. Show that the expected number of comparisons a quick-sort algorithm does is
roughly n ln(n). Show that probability of it making at least 32n ln(n) comporisons
is at most 1/n3.

Solution: Our plan is to:

• Observe that if the total depth of recursion is k then the number of comparisons is
upper bounded by kn (since each level of recursion causes at most n comparisons).

• Compute the probability that a fixed element is present in > 32 ln(n) levels of recursion.

• Use union bound to bound the probability there is an element which is present in
> 32 ln(n) levels of recursion.

Let us do the second item.

• Let us fix an element s.

• Let S1 = n, Sj be the size of the array containing s on the j-th level of recursion.
Observe that at the end of recursion Sk = 1.

• We say that the j-th recursion is “lucky” if Sj+1 ≤ (3/4)Sj .

• Let us define an indicator variable Xj to denote if the j-th recursion is “lucky.” Observe
that Pr[Xj ] = 1/2 and Xi, Xj are independent for any i �= j.

• After r lucky recursions in the first k levels we know that Sk ≤ (3/4)rn.

• So after 4 ln(n) ≥ log3/4(n) lucky recursions the element s is contained in an array of
length one (and thus the recursion stops).

• Number of lucky rounds is equal to X =
�32 ln(n)

j=1 Xj . The expected number of lucky
rounds is µ = 16 ln(n). Let us set δ = 3/4 and use Chernoff bound (independent
indicator variables):

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 (the form we are using)

Pr[X ≤ 4 ln(n)] ≤ e−(3/4)216 ln(n)/2

≤ e−9 ln(n)/2

≤ n−4
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3.4 Tutorial

1. We have k servers that are supposed to handle n � k jobs. But the jobs come
online and there is no single computer that knows the loads of servers (otherwise
we would have a lot of communication). How do we distribute the jobs? We
distribute the jobs each independently uniformly at random. How to bound the
maximum load?

Solution:

• Let Xi be the load of the i-th server.

• We know that Xi =
�n

�=1 Xi,� where Xi,� indicates if the �-th job lands on the i-th
server. And Xi,1, Xi,2, . . . , Xi,n are independent for each i (that does not hold for Xi).

• Pr[Xi,�] = 1/k

• E[Xi] = n/k

• We use Chernoff bound:

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3

We set δ = 3
�
k ln(k)/n.

Pr[Xi ≥ n/k + 3
�
n ln(k)/k)] = Pr[Xi ≥ (1 + 3

�
k ln(k)/n)n/k]

≤ e−(3
√

k ln(k)/n)2n/3k (Chernoff bound)

≤ e−3 ln(k)

= k−3

• We use the union bound to bound the probability that there exists a server with that
load:

Pr[exists i ∈ [k]: Xi ≥ n/k + 3
�
n ln(k)/k)] = k−2

• To be concrete:

k = 1000

n = 1000000

n/k = 1000

Pr[exists a server with at least n/k + 3
�
n ln(k)/k jobs] ≤ k−2

Pr[exists a server with at least 1250 jobs] ≤ 1/1000000
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2. Distributed discrete logarithm algorithm (Breaking the Circuit Size Barrier for
Secure Computation Under DDH, Boyle, Gilboa, Ishai linked on the website).

Solution: We say that a group G is cyclic iff any of its element can be generated using a
single generator. Say we have the group (Z∗

5, ·) with its generator 3:

Z∗
5 = {1, 2, 3, 4}
30 = 1

31 = 3

32 = 4

33 = 2

When we fix a group G and its generator g we may ask what is the discrete logarithm of a
given group element:

DLogG,g(x) = min
n∈N

gn = x

So for instance DLogZ∗
5 ,3

(4) = 2.
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3. Let A,B be two disjoint sets of vertices where |A| = |B| = n. Let d ≥ 5 be a
constant. We choose d uniformly at random edges from each vertex from A. We
show that with constant positive probability each set S ⊆ A of size |S| ≤ n/d has
at least β|S| neighbors where β = d/4.

Solution:

• For each S ⊆ A and for each T ⊆ B we denote XS,T the indicator variable that is equal
to one iff all the neighbors of S are contained in T .

•

Pr[XS,T = 1] =

� |T |
n

�d|S|

• We use the estimate that
�
n
k

�
≤

�
ne
k

�k
.

•

Pr[∃S ⊆ A, T ⊆ B : |S| ≤ n/d, |T | ≤ β|S|, XS,T ] ≤
n/d�

s=1

�
n

s

��
n

βs

��
βs

n

�ds

≤
n/d�

s=1

�
n

βs

�2 �
βs

n

�ds

(as
�
n
s

�
≤

�
n
βs

�
)

≤
n/d�

s=1

�
ne

βs

�2βs �
βs

n

�ds

=

n/d�

s=1

�
4ne

ds

�ds/2 �
ds

4n

�ds

=

n/d�

s=1

�
eds

4n

�ds/2

≤
n/d�

s=1

�e
4

�ds/2

(as ds ≤ n)

≤ (e/4)d/2

1− (e/4)d/2
(geometric series)

< 1

• What would happen if the graph was a union of d perfect matchings?
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3.5 Tutorial

1. Let us define the edge expansion for a given graph G by:

h(G) = min
|S|≤n/2

e(S, V \ S)
|S|

For any S ⊆ V (G) we denote

e(S) = E(G) ∩ S × S = number of edges inside S

e(S, V (G) \ S) = E(G) ∩ (S × (V (G) \ S)) = number of edges going from S to the complement

Let us show that if λ2 is the second largest eigenvalue of the adjacency matrix
of a d-regular graph G then:

h(G) ≥ d− λ2

2

Solution:

• The idea is to use Courant-Fisher of Problem 3 from the second tutorial. If u1 is the
eigenvector corresponding to the first eigenvalue λ1, we have:

λ2 = max
x∈Rn,xTu1=0

xTAx

xTx

• Recall that u1 = (1, 1, 1, . . . , 1)T and our vector x should be orthogonal to it so that we
can use the Courant-Fisher (�x | u1� = 0). Moreover it should correspond to our set S.

• Let S ⊆ V (G) of size s = |S| ≤ n/2. Let us define the vector

xv =

�
n− s v ∈ S

−s v �∈ S

• Let us determine the norm squared of x:

xTx = xTx

= (n− s)2s+ s2(n− s)

= s(n− s)n

• Let us determine the nominator from Courant-Fischer for our vector x as defined above:

xTAx = 2
�

(u,v)∈E(G)

xuxv

= 2(n− s)2e(S)− 2s(n− s)e(S, V (G) \ S) + 2s2e(V (G) \ S)

Note that:

ds = 2e(S) + e(S, V (G) \ S)
d(n− s) = 2e(V (G) \ S) + e(S, V (G) \ S)
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we plug that into the above:

xTAx = 2
�

(u,v)∈E(G)

xuxv

= 2(n− s)2e(S)− 2s(n− s)e(S, V (G) \ S) + 2s2e(V (G) \ S)
= (n− s)2 (ds− e(S, V (G) \ S))− 2s(n− s)e(S, V (G) \ S) + s2 (d(n− s)− e(S, V (G) \ S))
= e(S, V (G) \ S)

�
−(n− s)2 − 2s(n− s)− s2

�
+ ds

�
(n− s)2 + s(n− s)

�

= −n2e(S, V (G) \ S) + dsn(n− s)

and we plug our vector x into the Courant-Fisher:

λ2 ≥ xTAx

xTx

=
−n2e(S, V (G) \ S) + dsn(n− s)

s(n− s)n

= d− e(S, V (G) \ S) n

s(n− s)

Finally we use that s ≤ n/2 and thus n−s
n ≥ 1/2 and rearrange the former inequality:

e(S, V (G) \ S)
|S| ≥ n− s

n
(d− λ2)

≥ d− λ2

2
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2. Show that for any v ∈ Rn it holds that

1√
n
�v�1 ≤ �v�2 ≤ �v�1

Solution: We use the Cauchy-Schwarz inequality:

�u | v� ≤ �u�2�v�2 (for any u, v and norm �v�2 =
�

�v | v�)

The first inequality can be done by a clever choice of u:

ui =

�
1 if vi ≥ 0

−1 if vi < 0

�v�2 ≥ �u | v�
�u�2

=

�n
i=1 |vi|��n
i=1 u

2
i

=
�v�1√

n

The second inequality can be proven as follows:

�v�21 =

�
n�

i=1

|vi|
��

n�

i=1

|vi|
�

=

�
n�

i=1

|vi|2
�

+




n�

i=1

�

j �=i

|vi||vj |




≥
�

n�

i=1

|vi|2
�

= �v�22

Let us just note that inequalities with norms are very useful and there are many of those.
One well known is for instance the Hölder inequality: https://en.wikipedia.org/wiki/

H%C3%B6lder%27s_inequality
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3. Let µ be a probability distribution, that is �µ�1 = 1 and µj ≥ 0 (for each j ∈ Ω).
Let us define d(µ, ν) the distance of two probability distributions as:

d(µ, ν) =
1

2

�

x∈Ω

|µ(x)− ν(x)|

Show that:

d(µ, ν) = max
A⊆Ω

µ(A)− ν(A)

where µ(A) =
�

x∈A µ(x).

Solution: Set the set A = {x ∈ Ω | µ(x) ≥ ν(x)} and we get:

1

2

�

x∈Ω

|µ(x)− ν(x)| = 1

2

��

x∈A

|µ(x)− ν(x)|
�

+
1

2


 �

x∈Ω\A
|µ(x)− ν(x)|




=
1

2

��

x∈A

µ(x)− ν(x)

�
+

1

2


 �

x∈Ω\A
ν(x)− µ(x)




=
1

2
(µ(A)− ν(A)) +

1

2
(ν(Ω \A)− µ(Ω \A))

=
1

2
(µ(A)− ν(A)) +

1

2
((1− ν(A))− (1− µ(A)))

= µ(A)− ν(A)

≤ max
A⊆Ω

µ(A)− ν(A)

We are left to realize that our set A maximizes the right hand side.
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4. Let M be a Markov chain on the set of states S. We say that a Markov chain
Zt = (Xt, Yt) on the set of states S × S is a coupling iff

Pr[Xt+1 = x� | Zt = (x, y)] = Pr[Mt+1 = x� | Mt = x]
(where Xt+1 is the first coordinate of Zt+1)

Pr[Yt+1 = y� | Zt = (x, y)] = Pr[Mt+1 = y� | Mt = y]
(where Yt+1 is the second coordinate of Zt+1)

So one can imagine a coupling as a Markov chain, that in both coordinates
behaves in the same way as the original Markov chain (but the coordinates
might be dependent on each other).

Let Zt = (Xt, Yt) be a coupling of a Markov chain M on the state space S. Suppose
there is a T such that:

Pr[XT �= YT | X0 = x, Y0 = y] ≤ ε (for all x, y ∈ S)

then

τ(ε) ≤ T

Where formally the mixing time τ(ε) is defined as

ptx = the distribution when starting at x and doing t steps

τ(ε) = max
x∈S

min
�
t | d(ptx,π) ≤ ε

�

Notice that when we prove that Pr[XT �= YT | X0 = x, Y0 = y] ≤ ε for all x, y ∈ S,
we know that we are close to the stationary distribution (without even knowing
the stationary distribution).

Solution: Pick any set of states A ⊆ S and try to bound the probability that after T steps
XT is in A and let Y0 be selected accoding to the stationary distribution π:

Pr[XT ∈ A] ≥ Pr[XT ∈ A ∧XT = YT ]

= Pr[XT = YT ∧ YT ∈ A]

= 1− Pr[XT �= YT ∨ YT �∈ A] (probability of complement)

≥ 1− Pr[XT �= YT ]− Pr[YT �∈ A] (union bound)

= (1− Pr[YT �∈ A])− Pr[XT �= YT ]

≥ (1− Pr[YT �∈ A])− ε (assumption)

= Pr[YT ∈ A]− ε (probability of complement)

= π(A)− ε

So for any A ⊆ S we have
Pr[XT ∈ A] ≥ π(A)− ε

and the same argument for S \A gives us

Pr[XT �∈ A] ≥ π(S \A)− ε

so

Pr[XT �∈ A] ≥ π(S \A)− ε

1− Pr[XT ∈ A] ≥ 1− π(A)− ε

−Pr[XT ∈ A] ≥ −π(A)− ε
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Pr[XT ∈ A] ≤ π(A) + ε

Thus together we have:
π(A)− ε ≤ Pr[XT ∈ A] ≤ π(A) + ε

so
max
x∈S

d(pTx ,π) = max
x∈S,A⊆S

|pTx (A)− π(A)| ≤ ε
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5. We define the hypercube graph of dimension d as follows: the vertices are binary
strings of length d and two vertices are connected by an edge iff they differ in
exactly one coordinate. For instance d = 2 the graph is

({00, 01, 10, 11} , {(00, 01), (00, 10), (11, 01), (11, 10)})

(the edges are not oriented).

We start at Od and do the following random walk:

• With probability 1/2 we stay at the current vertex.

• With probability 1/2 we choose uniformly at random and index j ∈ [d] and
change the corresponding bit.

The Markov chain is nice (it converges to a single stacionary distribution, namely
the uniform distribution on all vertices). Our question is how many steps do we
need to take until we are “close enough” to the uniform distribution. Show that
the random walk has τ(ε) ≤ d ln(d/ε).

Solution: We do coupling (Xt, Yt) where

• X0 = Od

• Y0 is chosen according to the uniform distribution (that is the stationary distribution)

• Zt = (Xt, Yt) where the moves are as follows, let Xt = x ∈ {0, 1}d and Yt = y ∈ {0, 1}d
(that is Zt = (x, y)):

– Pick uniformly at random a coordinate i ∈ [d] (the same for both)

– If xi = yi then with probability 1/2 we keep the i-th bit the same Zt+1 =
(Xt+1, Yt+1) = (x, y) and with probability 1/2 we change it Zt+1 = (x⊕ ei, y⊕ ei).

– If xi �= yi then with probability 1/2 we keep the i-th bit of x the same and change
the i-th bit of y Zt+1 = (Xt+1, Yt+1) = (x, y ⊕ ei) and with probability 1/2 we
change the i-th bit of x and keep the i-th bit of y Zt+1 = (x⊕ ei, y).

Thus after picking the coordinate j we know for sure that (Xt)j = (Yt)j and it stays the
same (the j-th bit is the same from that point on). Thus we have coupon collector problem.
Probability of not picking all coordinates after d ln(d/ε) can be bounded by:

Pr[there is a coordinate that has not been picked] ≤ d · Pr[coordinate d has not been picked]
(union bound)

≤ d (1− 1/d)
d ln(d/ε)

≤ de− ln(d/ε) (1− x ≤ e−x)

≤ ε
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3.6 Tutorial

1. Definition: a random variable – our estimate A > 0 is an ε− δ approximation of
a value g > 0 if

Pr [(1− ε)g ≤ A ≤ (1 + ε)g] ≥ 1− δ

Prove the Estimator Theorem: Let U be a finite set and G ⊆ U its subset.
We know |U | and wish to estimate |G|. If we take n uniformly random and
independent samples from U where

n ≥ 3

ε2 |G|
|U |

ln (2/δ)

X = number of samples inside of G

and output A = X |U |
n then A is ε− δ approximation of |G|.

Solution: We will use a Chernoff bound.

• Observe that E[X/n] = |G|/|U | as

X =

n�

j=1

Xj (Xj is the indicator if j-th sample was in G)

Pr[Xj ] =
|G|
|U |

E[Xj ] =
|G|
|U |

E[X] = n
|G|
|U | (linearity of E)

E[A] = |G|

• All of Xj are independent and 0 ≤ Xj ≤ 1.

• We may use Chernoff bounds, we use the following form:

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 ≤ e−δ2µ/3

Pr[X ≥ (1 + δ)µ or X ≤ (1− δ)µ] ≤ 2e−δ2µ/3

• Plugging all of the above:

Pr

�
X ≥ (1 + �)n

|G|
|U | or X ≤ (1− �)n

|G|
|U |

�
≤ 2e−ε2n

|G|
3|U|

≤ 2e
−ε2

�
3

ε2
|G|
|U|

ln(2/δ)

�
|G|
3|U|

≤ 2e−(3 ln(2/δ))/3

= δ
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2. We say that x̂ is an ε-aproximation of x iff

(1− ε)x ≤ x̂ ≤ (1 + ε)x

Show that for ε < 1/2 if we have ε-aproximation ŝ of a number s and ε-aproximation
t̂ of a number t then ŝ/t̂ is an 4ε-aproximation of s/t.

Solution: We have

(1− ε)s ≤ ŝ ≤ (1 + ε)s

thus

ŝ

t̂
≤ (1 + ε)s

(1− ε)t

and we need the following inequality to hold

1 + ε

1− ε
≤ 1 + 4ε

1 + ε ≤ (1 + 4ε)(1− ε) (1− ε > 0)

1 + ε ≤ 1 + 3ε− 4ε2

0 ≤ 2ε− 4ε2

which holds for any ε ∈ (0, 1/2).

The other inequality follows the same way:

1− ε

1 + ε
≥ 1− 4ε

1− ε ≥ (1− 4ε)(1 + ε) (1 + ε > 0)

1− ε ≥ 1− 3ε− 4ε2

0 ≥ −2ε− 4ε2

which holds for any ε ∈ (0, 1/2).
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3. Let ε > 0 be fixed. Find a suitable choice of ε such that if we take (âi)
n
i=1 of

numbers (ai)
n
i=1 then

�n
i=1 âi is an ε-aproximation of

�n
i=1 ai.

Solution: We know that

n�

i=1

âi ≤
n�

i=1

(1 + ε)ai

≤
�

n�

i=1

(1 + ε)

��
n�

i=1

ai

�

≤ (1 + ε)

�
n�

i=1

ai

�

Thus we want

(1 + ε)n ≤ 1 + ε

1 + ε ≤ n
√
1 + ε

ε ≤ n
√
1 + ε− 1

The same way we want

(1− ε)n ≥ 1− ε

1− ε ≥ n
√
1− ε

−1 + ε ≤ − n
√
1− ε

ε ≤ 1− n
√
1− ε

More useful solution (added): We use the following inequalities:

1 + x ≤ ex

ln(1 + x) ≤ x

1− x ≤ e−x

1− x ≥ e−2x (0 ≤ x ≤ 1/2)

If we set ε = ε/2n we get:

(1− ε)n ≥ e−2εn (if ε ≤ 1/2)

= e−ε

≥ 1− ε

If we set ε = ε/2n ≥ ε/n ≥ ln(1 + ε)/n we get:

(1 + ε)n ≤ eεn

= eln(1+ε)

= 1 + ε
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4. Show an algorithm that given a bipartite graph G (partites consisting of the
same number of vertices) determines if the number of perfect matchings is even
or odd.

Solution: Let us recall the definitions:

det(A) =
�

π∈Sn

sgn(π)

n�

i=1

Ai,π(i)

perm(A) =
�

π∈Sn

n�

i=1

Ai,π(i)

If A is the part of the adjacency matrix of G corresponding to the different partites (thus
rows of A correspond to one partite and columns to the other and Au,v = 1 iff u belongs to
one partite, v to the other one and are connected together by an edge) and a permutation
π determines a perfect matching (that is (j,π(j)) ∈ E(G)) then the product is equal to one
(and to zero otherwise). Thus perm(A) is the number of perfect matchings. But remember
that over Z2 we have 1 = −1, thus specially det(A) = perm(A) over Z2.

We know how to compute determinant in polynomial time. Permanent is thought to be hard
to compute, but its parity is easy.
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5. Let A ∈ {0, 1}n×n
be a matrix. Let εi,j be independent random ±1 variables.

Let B ∈ {−1, 0, 1}n×n
be a matrix such that Bi,j = εi,jAi,j (uniformly randomly

independently assign signs to entries of A).

(a) Show that E[det(B)] = 0

Solution: Let us remind that

det(A) =
�

π∈Sn

sgn(π)

n�

i=1

Ai,π(i)

perm(A) =
�

π∈Sn

n�

i=1

Ai,π(i)

We use linearity of expectation (it holds even when the variables are dependent):

E[det(B)] = E

� �

π∈Sn

sgn(π)

n�

i=1

Bi,π(i)

�

=
�

π∈Sn

sgn(π)E

�
n�

i=1

Bi,π(i)

�

=
�

π∈Sn

sgn(π)E

�
n�

i=1

εi,π(i)Ai,π(i)

�

=
�

π∈Sn

sgn(π)0

Here we could have used that for independent variables we have E[XY ] = E[X]E[Y ],
but I believe the above is clear enough.

We could have probably used the Laplace expansion

det(A) =
n�

j=1

(−1)i+jAi,jMi,j (for any i)

Mi,j = determinant of the matrix A without i-th row and without j-th column

perm(A) =

n�

j=1

Ai,jNi,j (for any i)

Ni,j = permanent of the matrix A without i-th row and without j-th column

(b) Show that E[det(B)2] = perm(A) (permanent of A)

Solution: We could investigate two directions

det(B)2 = det(B2)

let us go with the first one:

E[det(B)2] = E

�� �

π∈Sn

sgn(π)

n�

i=1

Bi,π(i)

�� �

σ∈Sn

sgn(σ)

n�

i=1

Bi,σ(i)

��

= E


 �

(π,σ)∈Sn×Sn

sgn(π) sgn(σ)

n�

i=1

Bi,π(i)Bi,σ(i)



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= E


 �

π �=σ∈Sn

sgn(π) sgn(σ)

n�

i=1

Bi,π(i)Bi,σ(i)


+ E

� �

π∈Sn

n�

i=1

B2
i,π(i)

�

=
�

π �=σ∈Sn

sgn(π) sgn(σ)E

�
n�

i=1

Bi,π(i)Bi,σ(i)

�
+ E

� �

π∈Sn

n�

i=1

A2
i,π(i)

�

=
�

π �=σ∈Sn

sgn(π) sgn(σ)E

�
n�

i=1

εi,π(i)εi,σ(i)Ai,π(i)Ai,σ(i)

�
+ perm(A)

=
�

π �=σ∈Sn

sgn(π) sgn(σ)0 + perm(A)

= perm(A)

But it is not very concentrated.
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6. Let G = (U ∪ V,E) be a bipartite graph such that |U | = |V | = n and δ(G) > n/2
(the least degree). Show that for any matching of size at most n− 1 there is an
augmenting path of length at most 3.

Solution:

• Consider a vertex u ∈ U and a vertex v ∈ V that have no matching.

• Without loss of generality u, v is not an edge (otherwise we have an augmenting path
of length 1).

• Consider all neighbours of u, that is N(u), again all of those have a matching otherwise
we are done.

• We know that |N(v)| > n/2 and all of N(u) have a matched vertex and also |N(u)| >
n/2.

• Thus there is a vertex w ∈ m(N(v)) ∩ N(u) (where m(x) is the vertex matched with
the vertex x).

• u,w,m(w), v is an augmenting path of length at most three.
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7. Let G = (U ∪ V,E) be a bipartite graph such that |U | = |V | = n and δ(G) > n/2
(the least degree). Show that for any 2 ≤ k ≤ n and a matching m of size k there
are at most n2 matchings m� of size k−1 such that we can get from m� to m using
an augmenting path of length at most 3.

Solution: There are at most n2 edges. We can associate each augmenting path with its
middle edge (and an augmenting path uniquely determines both m and m�).
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3.7 Tutorial

1. Let ε > 0 be fixed. Find a suitable choice of ε such that if we take (âi)
n
i=1 of

numbers (ai)
n
i=1 then

�n
i=1 âi is an ε-aproximation of

�n
i=1 ai.

Solution: We know that

n�

i=1

âi ≤
n�

i=1

(1 + ε)ai

≤
�

n�

i=1

(1 + ε)

��
n�

i=1

ai

�

≤ (1 + ε)

�
n�

i=1

ai

�

Thus we want

(1 + ε)n ≤ 1 + ε

1 + ε ≤ n
√
1 + ε

ε ≤ n
√
1 + ε− 1

The same way we want

(1− ε)n ≥ 1− ε

1− ε ≥ n
√
1− ε

−1 + ε ≤ − n
√
1− ε

ε ≤ 1− n
√
1− ε

More useful solution (added): We use the following inequalities:

1 + x ≤ ex

ln(1 + x) ≤ x

1− x ≤ e−x

1− x ≥ e−2x (0 ≤ x ≤ 1/2)

If we set ε = ε/2n we get:

(1− ε)n ≥ e−2εn (if ε ≤ 1/2)

= e−ε

≥ 1− ε

If we set ε = ε/2n ≥ ε/n ≥ ln(1 + ε)/n we get:

(1 + ε)n ≤ eεn

= eln(1+ε)

= 1 + ε
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2. Let G = (U ∪V,E) be a bipartite graph where |U | = |V | = n and δ(G) > n/2. Let rk
be the fraction of k-matchings to k−1-matchings in G. Let α ≥ 1 be a real number
such that 1/α ≤ rk ≤ α. Pick N = n7α elements from Mk ∪ Mk−1 independently
uniformly at random. Set r̂k to the fraction of observed k-matchings to k − 1-
matchings. Show that

�
1− 1/n3

�
rk ≤ r̂k ≤

�
1 + 1/n3

�
rk with probability at least

1− c−n for some constant c.

Solution: We use Estimator Theorem from problem 1 of tutorial 6, restated for our
convenience:

Prove the Estimator Theorem: Let U be a finite set and G ⊆ U its subset. We know |U |
and wish to estimate |G|. If we take n uniformly random and independent samples from U
where

n ≥ 3

ε2 |G|
|U |

ln (2/δ)

X = number of samples inside of G

and output A = X |U |
n then A is ε− δ approximation of |G|:

Pr [(1− ε)g ≤ A ≤ (1 + ε)g] ≥ 1− δ

For our use:

• We know just bounds on rk = |G|
|U | and we do not know |U | itself. But luckily we wish

to estimate rk and not mk or mk−1.

• We will estimate X = mk

mk+mk−1
and Y = mk−1

mk+mk−1
and answer X/Y .

• ε = 1/n3

•

|U |
|G| =

mk +mk−1

mk

= 1 +
1

rk
≤ 1 + α

and

|U |
|G| =

mk +mk−1

mk

= 1 +
1

rk

≥ 1 +
1

α

thus

1 +
1

α
≤ |U |
|G| ≤ 1 + α

1

α
≤ 1 +

1

α
≤ |U |
|G| ≤ 1 + α ≤ 2α

• Our choice of N is N = αn7, thus

3 |U |
|G|
ε2

ln (2/δ) ≤ 2α

n−6
ln (2/δ)
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δ =
e−2n

2
(our choice of δ)

N = αn7 ≥ 2α

n−6
ln (2/δ)

• So our estimate X is quite precise. Similarly our estimate Y = 1 − X is also quite
precise. Thus even X/Y is quite precise estimate.
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3. Let G = (U ∪V,E) be a bipartite graph where |U | = |V | = n and δ(G) > n/2. Show
that 1/n2 ≤ rk ≤ n2.

Solution: Let us recall that rk = mk

mk−1
.

• rk ≤ n2 as there are at most n2 edges and each k − 1-matching can be extended by a
single edge to a k-matching (this is the case where each k−1-matching can be extended
to a larger one and all larger are different).

• The other inequality follows from last tutorial (recall alternating paths of length at
most three argument).
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4. Let Gk be the graph constructed from G = (U ∪ V,E) such that we add n − k
vertices to each partite and connect each new vertex with all old vertices in
the opposite partite. Show that if R is the fraction of perfect matchings to
the number of almost perfect matchings (all but one vertex in each partite is
matched) in the new graph Gk then

R =
mk

mk+1 + 2(n− k)mk + (n− k + 1)2mk−1

Solution: Draw an image.

• How many perfect matchings are there in Gk?

mk(n− k)!(n− k)!

• Can we extend Mk+2 or larger to get an almost perfect matching in Gk? No.

• Can we extend Mk−2 or smaller to get an almost perfect matching in Gk? No.

• In how many ways can we extend Mk+1 to get an almost perfect matching in Gk?

(n− k)(n− k − 1)!(n− k)(n− k − 1)!

• In how many ways can we extend Mk to get an almost perfect matching in Gk?

2(n− k)(n− k)!(n− k)!

• In how many ways can we extend Mk−1 to get an almost perfect matching in Gk?

(n− k + 1)2(n− k)!(n− k)!
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5. Show that permanent is in IP.

We say that a language L ⊆ {0, 1}∗ is in IP if

• The verifier V gets a word w ∈ {0, 1}∗, works in polynomial time in |w| and
can use random bits.

• The verifier V can communicate with the prover P (which is unbounded).

• We say that L ∈ IP if there is a prover P and a verifier V such that:

– Completeness: for each w ∈ L we have

Pr[V (w) accepts the proof of P ] ≥ 2/3

– Soundness: for any x �∈ L and any prover Q we have

Pr[V (x) accepts the proof of Q] ≤ 1/3

Show that the decision problem whether perm(A) = k for a given matrix A ∈
{0, 1}n×n

and k ∈ N is in IP.

Our plan: Denote M1,i the matrix M without the first row and i-th column.
Denote D(x) the matrix (n−1)× (n−1) where elements are polynomials of degree
n such that ∀i ∈ [n] : D(i) = A1,i. Then permanent of D(x) is a polynomial of
degree n(n− 1) in variable x.

Notice that:

• We can construct D(x) using interpolation.

• perm(M) =
�n

i=1 perm(M1,i)

• perm(M) ≤ n! ≤ 2n
2

The protocol:

• If n ≤ 2 check the answer.

• Let the prover generate a prime p such that 2n
2

< p < 22n
2

and check that it
is really a prime.

• Request polynomial g ∈ Zp[x] of degree at most n2 such that g(x) = perm(D(x)).
Check k =

�n
i=1 M

1,iperm(D(i)).

• Pick a ∈ Zp uniformly at random and recursively check that perm(D(a)) =
g(a).

Observe that if g(x) �= perm(D(x)) then Pra∈Zp [g(a) = perm(D(a))] ≤ n2/p.
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3.8 Tutorial

1. There are 52 cards. Let us determine how long does it take to shuffle a deck
of cards using the following procedure: Mt+1 pick a random card and put it on
top.

• Determine a suitable coupling.

Solution: (Xt, Yt) where X0 is any shuffling of the deck and Y0 is any shuffling of
the deck (possibly different than X0). We pick a random card (value and color) and
put it on top of both Xt and Yt. Thus both Xt and Yt behave according to the original
Markov chain.

• Determine after T steps probability of not converging.

Solution: After we have selected each card both decks have the same permutation.
This is just coupon collector problem. After T steps probability of not selecting each
card is:

Pr[not selecting a card] ≤ 52Pr[not selecting a particular card]

= 52(1− 1/52)T

≤ 52e−T/52 (as 1− x ≤ e−x)

So roughly �52 ln(52/δ)� rounds is sufficient.
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2.

• Let us consider the game of Tick-Tack-Toe on 3× 3 grid. Think of an algo-
rithm that plays this game.

• Consider a special case of such a tree: a full binary tree of depth 2k where
there are boolean variables x1, x2, . . . , x22k in leaves and odd level vertices
compute AND and even level vertices compute OR.

– Show that for any deterministic evaluation algorithm there is an assign-
ment such that our deterministic evaluation needs to query all input
variables.

– Show that using short circuiting (if one of inputs of AND is fals re-
turn false without querying the other, similarly for OR if one input is
true return true immediatelly) we can create an algorithm with better
expected running time.

Solution: If we wish to evaluate an AND node recursively evaluate a random
child and if it evaluates to false return false (without evaluating the other child)
otherwise also recursively evaluate the other child. If we wish to evaluate an OR
node recursively evaluate a random child and if it evaluates to true return true
(without evaluating the other child) otherwise also recursively evaluate the other
child.

By induction on k we show that it takes 3k variable queries (which is much smaller
than 22k).
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3. We will work in a streaming model. That means we are getting data dj ∈ U
online (we get d1, then d2, . . . , dn, but we do not know n in advance) and we
can use only a very limited amount of memory (say O(log(|U |)) or poly(|U |)).
Say U = [N ] = {0, 1, 2, . . . , N − 1}. Create an algorithm to compute each of the
following functions and state how many bits of memory you need (each dj is
represented using log(N) bits):

• maxj∈[n] dj

Solution: Just compute running maxima.

sk = max
j∈[k]

dj

sk+1 = max(sk, dj)

The variables sk do not need to be different, we can have just a single variable and
update it. We use log(N) bits of memory.

•
�

j∈[n] dj

Solution: We compute partial sums (again by updating a single variable). We need
log(nN) = log(n) + log(N) bits to represent the sum.

• The average
��

j∈[n] dj

�
/n (preferrably without knowing n).

Solution: We could compute the sum and divide, but it might be handy to compute
it the following way keep track of ak (single updated variable) and k the number of
elements seen so far:

a1 = d1

ak+1 =
kak + dk+1

k + 1

= ak +
dk+1 − ak
k + 1

The latter is a bit better way (essentially the same expression, but no need to multiply
and behaves better to the numbers). From the book The Art of Computer Programming
(Knuth):

mean = 0.0

k = 0

for x in data:

k += 1

mean += (x - mean) / k

This is used in the GNU Scientific Library https://savannah.gnu.org/git/?group=

gsl since 1998 (commit c91e4ff0dd04766f45cc899467b46a83ad06bd5d) until now (last
check April 2021).

We need a single counter log(n) and bits for the floating point result.
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4. Again one-pass streaming model. Do one pass along the data d1, d2, . . . , dn ∈ U
to find the most frequently occuring element given that it occurs > n/2 times.
Use as little memory as possible.

Solution: Classical interview question, https://en.wikipedia.org/wiki/Boyer%E2%80%
93Moore_majority_vote_algorithm Totally we have used log(|U |) + log(n) bits of mem-
ory.
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3.9 Tutorial

1. A boolean circuit https://en.wikipedia.org/wiki/Boolean_circuit

• We say that a circuit is randomized if it also receives m(n) independent
random bits as inputs.

• We say that a family of boolean circuits (Cn)n∈N computes a function f : {0, 1}∗ →
{0, 1} if ∀n ∈ N ∀x ∈ {0, 1}n : Cn(x) = f(x).

• We say that a family of randomized circuits computes a function if f(x) = 0
then the circuit outputs zero no matter the random bits, if f(x) = 1 then
the circuit outputs one with probability at least 1/2 (over its random bits).

Show Adleman’s theorem: if a boolean function has a randomized polynomial-
sized boolean family, then it has a polynomial-sized boolean family.

Solution:

• The main idea is to fix enough random bits so that the answer is always correct.

• Fix length n, given Cn,m (taking n bits of input and m random bits) we build Cn which
is deterministic.

• Consider just the inputs where f(x) = 1 (on other inputs the circuit answers zero no
matter the random bits).

• There are at most 2n inputs of length n where f(x) = 1.

• By averaging there is a random string r ∈ {0, 1}m such that C(x, r) = 1 for at least
half of the inputs where f(x) = 1. Let us denote this r by r1.

• Consider just the rest of strings where f(x) = 1 but C(x, r1) = 0.

• By the assumptions ∀x ∈ {0, 1}n : Prr←{0,1}m [C(x, r) = 1] ≥ 1/2.

• Again by averaging there is a string r2 such that for at least half of the left inputs
C(x, r2) = 1.

• Using at most n such inputs we can construct the circuit as Cn(x) =
�n

j=1 C(x, rj)
(using nm fixed bits hardcoded inside Cn).
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2. Given an array a ∈ Nn which is sorted (that is a[i] ≤ a[i+ 1] for any 0 ≤ i ≤ n− 2)
and a number k ∈ N determine whether there is index 0 ≤ i ≤ n− 1: a[i] = k.

(a) Show a fast algorithm.

Solution: Binary search. https://en.wikipedia.org/wiki/Binary_search_algorithm

(b) Recall Yao’s Minmax Principle.

Solution: Let us suppose we have a finite set of inputs I and a finite set of determin-
istic algorithms A (we can view a randomized Las Vegas algorithm as a distribution
over deterministic algorithms).

For all distributions p over the set of inputs I, for all distributions q over the set of
deterministic algorithms A the following inequality holds:

min
A∈A

E[C(Ip, A)] ≤ max
I∈I

E[C(I, Aq)]

Where C(I, A) is the cost of algorithmA running on the input I (with input or algorithm
chosen from a distribution C(Ip, A) or C(I, Aq) becomes a random variable).

(c) Show a lower bound for the expected number of steps of a randomized
algorithm for search in sorted array.

Solution: When we suppose that an algorithm does not ask for the value at an index
twice, then the worst case complexity is n array queries and we may use Yao’s Minmax
Principle. For a given length there are finitely many algorithms.

Fix length n.

i. Can we use the input distribution 0j12n−j−1 (uniform over those strings)?

No! What would we ask for the key k? Deterministic algorithm would have constant
number of queries (single query if k = 0 or k = 2 and zero queries if k = 1).

ii. We use uniform distribution over inputs (and ask for k = 1):

I =
�
0j12n−j−1 | 0 ≤ j ≤ n

�
∪
�
0j2n−j | 0 ≤ j ≤ n

�

iii. We need to show that any deterministic algorithm has expected number of questions
at least log2(n) on the previous distribution.

(d) Can we do better if we assume something about the distribution of the
numbers inside the array?

Solution: Yes, there is interpolation sort https://en.wikipedia.org/wiki/Interpolation_
search which more closely follows searching in a dictionary than a binary sort. When
searching in a dictionary we can interpolate where we are expecting the element to be
(if it should start with the letter b it should be roughly in the second twentisixth of
entries). It can be shown that the expected number of steps (over the inputs being uni-
formly independently sampled from a linearly ordered universe) is O(log log(n)). But
the worst case is Ω(n).
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3. You will use hashing functions in the next lecture. Let us mention few defini-
tions.

• The intuition is that we do not consider a single hash function but rather a
set of functions and choose uniformly at random one hash function.

• We cannot store a random function (too much Shannon entropy, so techni-
cally we can but it is never practical) and sampling random function is also
not practical.

• Thus we often choose functions that are very simple to store, evaluate, and
sample from.

Let [m] = {0, 1, 2, . . . ,m− 1}.
• A system H of functions from U to [m] is called c-universal for a constant

c ≥ 1 if for each two different x �= y ∈ U we have

Pr
h←H

[h(x) = h(y)] = c/m

(When H is the set of all functions then it is 1 universal.)

Let p be a prime and Zp be a field. Let D be the system of functions from
Zd
p to Zp:

D =
�
ht(x) = �t | x� | t ∈ Zd

p

�

Show that D is 1-universal.

Solution: Fix x �= y ∈ Zd
p and focus on the coordinate where they differ.

But also observe that for each h ∈ D we have h(0d) = 0 which is not always desirable.

• A system H of functions from U to [m] is called strongly c-universal (also
called 2-independent) for a constant c ≥ 1 if for each two different x �= y ∈ U
and each two slots a, b ∈ [m] we have

Pr
h←H

[h(x) = a ∧ h(y) = b] = c/m2

– Why don’t we just quantify for each x ∈ U and each a ∈ [m]

Pr
h←H

[h(x) = a] = c/m

Solution: Family of constant functions would satisfy this definition.

– Let ha,b(x) = ((ax+b) mod p) mod m. Then the system L = {ha,b | a, b ∈ [p]}
is strongly 4-universal.

Solution: There is a bijection between (a, b) ∈ Z2
p and (r, s) = (ax mod p, bx

mod p).
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3.10 Tutorial

1. We have routers (small computers that are sending packets). We want to know
what is going on in the network but the routers are not powerful enough to log
each packet that goes through them.

(a) What if each router logs the incomming packets at random?

Solution: If each router logs the packet it sees at random (for each packet toss a coin
if it should be logged) then very few packets will be logged along their whole route.

(b) What kind of family of hash functions do we want to use?

Solution: We wish to use 2-independent (strongly universal) family of hash func-
tions. Otherwise some packets might be logged always (packet zero in our previous
problem).

(c) It is possible that each packet will be either logged on each router it visits
or nowhere? At the same time we wish to log just a predefined fraction of
packets (with high probability).

Solution: This is easy, all routers will share a random hash function h : P → [m] and
a packet p will be logged if h(p) ≤ t (thus with probability t/m).
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2. Let n,m ∈ N be constants and let U = Zn
2 . Show that

H =
�
hA,b | A ∈ Zm×n

2 , b ∈ Zm
2

�
(where hA,b(x) = Ax+ b)

is a 2-universal family of hash-functions.

Solution: A system H of functions from U to [m] is called strongly c-universal (also called
2-independent) for a constant c ≥ 1 if for each two different x �= y ∈ U and each two slots
a, b ∈ [m] we have

Pr
h←H

[h(x) = a ∧ h(y) = b] ≤ c/m2

So we wish to show that

∀x �= y ∈ Zn
2 , ∀u, v ∈ Zm

2 : Pr
A←Zm×n

2 ,b←Zm
2

[Ax+ b = u ∧Ay + b = v] ≤ 1/22m

• Since x �= y then at least one of those is nonzero. Without loss of generality let x �= �0.

• We know that b is a random vector thus Ay+ b is also a random vector (Ay is a vector
and we add uniformly at random chosen vector to it).

• Since x is not the zero vector thus Ax is a uniformly at random chosen vector which is
independent of b.
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3. Let us show few useful facts:

(a) Let X,Y be two random variables which are independent. Show that

E[XY ] = E[X]E[Y ]

Solution: For the sake of simplicity suppose the variables are discrete. We have
Pr[X = x ∧ Y = y] = Pr[X = x] Pr[Y = y] for any x, y ∈ R, thus

E[XY ] =
�

x∈ Im(X),y∈ Im(Y )

xyPr[X = x ∧ Y = y]

=
�

x∈ Im(X),y∈ Im(Y )

xyPr[X = x] Pr[Y = y]

=


 �

x∈ Im(X)

xPr[X = x]





 �

y∈ Im(Y )

yPr[Y = y]




= E[X]E[Y ]

(b) Let X,Y be two random variables which are independent. Show that

var(X + Y ) = var(X) + var(Y )

Solution:

var(X + Y ) = E[(X + Y )2]− E[X + Y ]2

= E[X2 + 2XY + Y 2]− (E[X] + E[Y ])2

= E[X2] + 2E[XY ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

= E[X2] + E[Y 2]− E[X]2 − E[Y ]2

(by independence E[XY ] = E[X]E[Y ])

= var(X) + var(Y )

(c) Let X1, X2, . . . , Xn be random variables which are pairwise-independent. Show
that

var




n�

j=1

Xj


 =

n�

j=1

var(Xj)

Solution: Similar argument as before, pairwise-independence is enough.

(d) Show that for any two real numbers a, b ∈ R we have:

var(aX + b) = a2var(X)

Solution: Recall again linearity of expected value: E[aX + b] = aE[X] + b for any
random variable X and any a, b ∈ R and E[X + Y ] = E[X] + E[Y ] for any two random
variables X,Y .

var(aX + b) = E[(aX + b)2]− E[aX + b]2
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= E[a2X2 + 2abX + b2]− (aE[X] + b)2

= a2E[X2] + 2abE[X] + b2 − a2E[X]2 − 2abE[X]− b2

= a2E[X2]− a2E[X]2

= a2var(X)

(e) Show that if µ,σ ∈ R and X1, X2, . . . , Xn are random variables with E[Xj ] = µ
and var(Xj) = σ2 then

X =
1

n

n�

j=1

Xj

E[X] = µ

var[X] = σ2/n

Solution: Trivial by linearity of expectation and pairwise-independence.

(f) Median trick: let X1, X2, . . . , Xn be independent identically distributed such
that Pr[Xj < c] ≤ 1/4 and Pr[Xj > C] ≤ 1/4 (for some constants c, C ∈ R).
Prove that the median M of X1, X2, . . . , Xn satisfies

Pr[M < c] ≤ 2e−n/8

Pr[M > C] ≤ 2e−n/8

Solution: Let Gj be the indicator variable for the event Xj > C and similarly
Sj be the indicator for Xj < c. If M > C then

�n
j=1 Xj > n/2. We know that

E[
�n

j=1 Xj ] ≤ n/4 and we use Chernoff bound. Similarly for the case when M < c.

(g) Median of means trick: let X1, X2, . . . , Xn are pairwise-independent random
variables with variance so high we are unable to use the median trick because
we cannot meaningfully bound Pr[Xj < c ∨Xj > C].

Solution: See https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.
pdf Lemma 4.4.1 for a bit different statement and formal proof.
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4. Hash functions have also quite some applications in cryptography. Suppose you
have a family of hash functions H where each function is easy to evaluate, but it
is hard to find a preimage (or a collision). We review some applications of this
notion.

• Signing using hashes or checksums using hashes.

• Blockchain.

• Merkle tree https://en.wikipedia.org/wiki/Merkle_tree
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3.11 Tutorial

1. Analyse the Count-Min Sketch (Section 5.4 in https://www.cs.dartmouth.edu/

~ac/Teach/data-streams-lecnotes.pdf)

Section 5.4 https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
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2. Let us consider approximation of MAX-SAT:

(a) Define MAX-3SAT and MAX-E3SAT:

(b) Think of the simplest randomized algorithm to solve MAX-E3SAT.

(c) What is the least fraction of satisfiable clauses in a E3SAT?

(d) What is the least fraction of satisfiable clauses in a 3SAT (not E3SAT)?
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(e) If we are promised we are given a formula of 3SAT where either at most
half or all of the clauses are satisfiable can you determine which case this
is?

(f) If we are promised we are given a formula of 3SAT where either at most
94% or at least 95% of the clauses are satisfiable can you determine which
case this is?

Definition (Gap-preserving reduction). Let Π,Π� be two optimization problems. Then we
say that we have an L-reduction from Π to Π�, if there are two real numbers a, b such that:

(a) For any instance I ∈ Π we can in polynomial time output an instance I � ∈ Π�,

(b) OPT(I �)≤ aOPT(I) and

(c) if we get a solution S� for I � (of value V �) we can in polynomial time output a solution
S of the instance I (of value V ) such that

|OPT (I)− V | ≤ b |OPT (I �)− V �| .
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3. Using the theorem that there is no α-approximation of MAX-E3SAT for any
α > 7/8 unless P=NP prove that there is no β-approximation for any β > 23/24
for MAX-LABEL-COVER unless P=NP.

Max Label Cover
Input: bipartite graph G = (V1, V2, E), sets of labels L1, L2 ⊆ N a collection of
relations (Re)e∈E ⊆ L1 × L2

Goal: find labelings �i : Vi → Li.
Maximize: |{e ∈ E : e = {v1, v2} , {�1(v1), �2(v2)} ∈ Re}|
Section 16.4 http://www.designofapproxalgs.com/book.pdf
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3.12 Tutorial

1.

Definition. PCP [r(n), q(n)] is the class of languages L for which there is a randomized
polynomial time algorithm A(x,Π) such that:

• On any input x of length n the algorithm A(x,Π) uses at most r(n) random bits and
accesses non-adaptively at most q(n) bits of the proof Π.

• If x ∈ L then A(x,Π) = 1 always.

• If x �∈ L then Pr[A(x,Π) = 1] ≤ 1/2.

We define PCP = PCP [O(log(n)),O(1)].

Show that:

(a) P = PCP [0, 0]

(b) NP = PCP [0, nO(1)]

(c) co−RP = PCP [nO(1), 0]
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2. Show that

(a) If SAT ∈ PCP [log log(n), 1] then P = NP

(b) If SAT ∈ PCP [o(log(n)), 1] then P = NP

Solution: This is the exercise 11.8 from the book of Arora, Barak (available online,
in my eyes a nice and available source for PCP theorem).

You can also refer to the text of prof Sgall http://iuuk.mff.cuni.cz/~sgall/pcp/


