Tutorials: NDMI025 - Randomized Algorithms

Karel Kral

March 11, 2021



This text is a work in progress, do not distribute. All errors in this text are on purpose. Please
report them to my email kralka@iuuk.mff.cuni....



Contents

1 _Exercises

2 eor

[2.1 Probability 101f . . . . . . ...

12.2  Markov Chaln|. . . . . . . . .

[B_Solutions|

13.1  Tutorial 1.]. . . . . . .

3



CONTENTS



Chapter 1

Exercises

1.1 Tutorial

1. e Can you all hear me?

e If you are uncomfortable asking a question in English, just ask in Czech/Slovak and I
will translate.

e Have you all taken:

(a) a probability course (discrete probability, random variables, expected value, vari-
ance, Markov, Chernof)

(b) a linear algebra course (matrix operations, linear maps, eigenvectors and eivenval-
ues, discriminant)

(c) a graph theory course (what a combinatorial graph is, bipartite, complete, coloring)
(d) a combinatorics course (factorial, binomial coefficients)

(e) an algorithms / programming course (big-O notation, possibly understanding Python
based on the other question)

e This class is heavy on theory. Are you interested in computer simulations and or
implementations? If so:

(a) Python

(b) R

(c) C++
Solution:

2. You are presented with two sealed envelopes. There are k$ in one of those and ¢$ in the
other (k, ¢ € N but you do not know k, ¢ in advance). You may open an envelope and (based
on what you see) decide to take this one or the other (without looking into both).

(a) Is there a way how to walk away with the larger amoung of money with probability
strictly larger than 0.57

(b) What is the expected value you walk away with (in terms of k, £)?
(c) Simulate.

Solution:



CHAPTER 1. EXERCISES

. Graph isomorphism. You have seen an interactive proof of graph non-isomorphism on the
class. Can you come up with an interactive proof of graph isomorphism?

Solution: [3]
. We will focus on random walks and their properties a lot.

(a) Random walks are useful when analysing algorithms — “two coloring without monochro-
matic triangle” of three-colorable graph.

(b) Random numbers in the computer are often expensive to generate, can we reduce
number of used random bits (expanders)? Or even get a deterministic algorithm?

(¢) To sample from extremely large spaces.

Let n € N, say n = 30. Let us the following problem we start with Xy = |[n/2] and do the
following process:

o if X; € {0,n} we stop

e we set X;11 = X; +  where ¢ is picked uniformly at random from {—1,1}
(a) Is this a Markov chain (Definition|2.2)? If so can you write it’s matrix?
(b) What is the expected number of steps until stopping?
Solution: []
. Think of some example MCs.
(a) Create a MC that is irreducible.
(b
(c
(d
(e) Compute a stationary distribution of the following MC:

1/2 1/2
1/2 1/2
(f) Create a MC that has more stationary distributions.
Solution:

Create a MC that is not irreducible.
Create a MC that is periodic.
Create a MC that is not periodic.

)
)
)
)

. We are collectors and we want to collect all n kinds of coupons. Coupons are sold in packages
which all look the same. Thus when we buy an coupon, we buy one of n kinds uniformly at
random. This is known as the coupon collector problem.

(a) What is the expected number of coupons we need to buy to get all kinds?

(b) How many coupons do we need to buy to have probability at least 1 — ¢ of collecting
all kinds?

(¢) What is the Markov chain? Is this similar to a random walk on some graph?
(d) Simulate.
Solution: [6]



Chapter 2

Theory

2.1 Probability 101

Probability 101

2.2 Markov Chain

Definition. A discrete-time Markov chain is a sequence of random variables Xo, X1, Xo, ... with
the Markov property:

PriXppi =2 | Xo=20, X1 =21,..., Xy = 2] = Pr[Xp 11 =2 | X;, = 2]
(if both are defined, i.e., Pr[Xg = zg, X1 = 21,..., X,y = 2] > 0)

and the possible values of X; form a countable set called the state space of the Markov chain.

The Markov property states that the process has no memory — the next state depends only on
the current state. We will deal with a special case where the state space of each random variable
will be the same and finite. Moreover we will deal with time-homogenous Markov chains, that is
Pr[X, 1 | X»] = Pr[X,, | X;,_1] (the transition probabilities are time independent). Thus we will
represent Markov chains by their transition matrices — if a Markov chain has n states its transition
matrix is P € [0,1]"*" such that P, ; = Pr[X,+1 =i | X,, = j] (thus column sums are equal to
one).

If we take a probability distribution 7 € [0,1]™ and multiply it by the transition matrix we get
the probability distribution after one step P.

There are several interesting properties of Markov chains:

e We say that a MC is irreducible iff for each pair of states i,j € [n] there is a time k € N
such that (P*); ; > 0 (we can get from any state to any state).

e We say that a MC is periodic iff there is a state i € [n] and a period p € N, p > 1 such that
for each time k € N we have (P¥);; > 0 = p | k that is probability of staying at state i is
positive only for multiples of the period.

o We say that m € [0,1]™ is a stationary distribution of a given MC iff Pr = 7 (the distribution
is the same after one step).

Theorem 1. If a MC is aperiodic and irreducible it has a unique stationary distribution .
Moreover for all pairs of states i,j € [n] the we know that

lim (Pt),*’j = T;

t—o0



CHAPTER 2. THEORY



Chapter 3

Solutions

3.1

Tutorial

e Can you all hear me?

e If you are uncomfortable asking a question in English, just ask in Czech/Slo-
vak and I will translate.

e Have you all taken:

(a) a probability course (discrete probability, random variables, expected
value, variance, Markov, Chernoff)

(b) alinear algebra course (matrix operations, linear maps, eigenvectors and
eivenvalues, discriminant)

(c) a graph theory course (what a combinatorial graph is, bipartite, com-
plete, coloring)

(d) a combinatorics course (factorial, binomial coefficients)

(e) an algorithms / programming course (big-O notation, possibly under-
standing Python based on the other question)

e This class is heavy on theory. Are you interested in computer simulations
and or implementations? If so:

(a) Python
(b) R
(c) C++



e €N ¢
~2 2% 0% IE' (

10 CHAPTER 3. SOLUTIONS

2. You are presented with two sealed envelopes. There are k$ in one of those and
{$ in the other (k,¢{ € N but you do not know k,¢ in advance). You may open
an envelope and (based on what you see) decide to take this one or the other
(without looking into both).

(a) Is there a way how to walk away with the larger amoung of money with
probability strictly larger than 0.57

Solution: Pick an envelope uniformly at random. If you see m$ toss a fair coin
until you get Tails. If the number of tosses was strictly less than m keep the envelope,
otherwise take the other. If k < £ then the probability of keeping the envelope with k$
is strictly less than the probability of keeping the envelope with £$.

(b) What is the expected value you walk away with (in terms of k,¢)?

Solution: Let us recall the sum of geometric series:

n
5-3 0
=0
=l+q+¢+...+¢"
=1+q(1+q+P+...+¢"")
=1+4q(5—q")
thus
S=1+4+4q(S—-¢"
S_qS:]__qn—i-l

1— anrl
R (pokud ¢ # 1)
and for the infinite case:
Y o= lim > ¢
= n—oo =
T e
= lim ———
n—oo 1 — q
1
e (pokud g < 1)

Thus exactly n tosses have probability for the general case where Tails has probability
p and Heads has probability 1 — p:

o~

Pr[n tosses] = (1 —p)""'p = 2‘ (for any n € N*)
< A
~E2

Probability of at most n tosses:

LE_]
Pr[1,2,...,n tosses| = Zp(l -p) !
=1

:pi(l_p)jl %Q/\A-QHQ_Q Q&\Q

_1-(1-p"
I T Cy




3.1. TUTORIAL 1. 11

=1-(1-p)"

Probability that we keep k$ (fair coin): }_. = 0.5 9 < Q

L —4

k—1
Prftosses < k] =05 < ‘]?,Dmad<€] -
=1-05" ¢~

2 o.t,‘d

Thus probability of walking away with k$ is

1 1
Pr[winning k$] = 5(1 —0.5F71) + 50.55_1
—— 1
=5- 0.5% + 0.5
: 1
EE M"M-X =5+ (0.5 — 0.5%)

Thus the expected win is
. TalX=x]v 9 TalX = y]

E[win] = k (% +(0.5° = 0.5%) ) +¢ (% +(0.5% — 0.54)>
f - ]

# https://docs.python.org/3/library/random. html
# Do not use for cryptography!

from random import randint

from random import random

(¢) Simulate.

Solution:

def geometric(pr: float = 0.5) -> int:
""'pr is success probability, return the number of tosses until

the first success.”"""

assert pr > 0

sample = 1

fail pr = 1 - pr

while random() < fail_pr:
sample += 1

return sample

# Our unknown amounts.

envelopes = [5, 10]
109

=>N = 1000000 # Number of samples.
total_amount = O # Total sum that we got during all samples.
got_larger = 0 # Number of times we walked away with the larger sum.

for _ in range(N):

# Pick the first envelope at random.
lchosen = randint (0, 1)

————



12 CHAPTER 3. SOLUTIONS

(;f geometric() < envelopes([chosen]:

# K€52~Eﬁif_ffe'
pass

else:
# Choose the other.
chosen = 1 - chosen

if envelopes[chosen] >= envelopes[l - chosen]:

C: got_larger += 1

total_amount += envelopes[chosen]
—

k = envelopes[0]

1 = envelopes[1]

pr_larger = 0.5 + abs(0.5%*k - 0.5%*1)

e_win = k * (0.5 + (0.5%x1 - 0.5%xk)) + 1 % (0.5 + (0.5%xxk - 0.5%x1))

print (f'Pr[selected larger] = {got_larger / N} (={pr_larger})')
print(f'E[win] = {total_amount / N} (={e_win})')

# Possible outcome: 3./0 5_% qb%
# Pr[selected larger] = 0.529865 (=0.5302734375)
# Elwin] = 7.649325 (=7.6513671875)

15,

V w&) —> TP

TEN ¥ &
V%mm’waov S G, 26



\l/

Ny Lg2 6 EY
e A Gﬁ,g* g & GG
647?@2 13

31, TUTORIAL 7o,
(, 3. Graph isomorphism. You have seen an 1nteract1ve proof of graph non-isomorphism
> on the class. Can you come up with an interactive proof of graph isomorphism?

{AG .

Solution:
~—

e Both the prover P and the verifier V know two graphs G1, Gs.

T (G’ \ e The prover knows an isomorphism 7 such that 7(G;) = G3. Formally n: V(G1) —

\/ C V(G3) such that
-u—€ . (u,v) € E(G1) & (7(u),(v)) € E(G2).
\
AL ;)73 ——=5 17 And by 7(G1) we mean the graph (r(V/(G1)),{(m(u), 7(v)) | (u,v) € E(G1)}).
} e For ease of presentation we set V(G1) =V (G3) = [n] ={1,2,3,...,n}.
e The prover picks uniformly random permutation o € S,, and sends the graph G =

(AL CTapeA)

}S& e The verifier picks uniformly random number ¢ € {1,2} and asks verifier to present a
Xh permutation 7 such that 7(G) = G;.

[ ¢ If i = 1 then the prover sends 7 = ¢~ *. If i = 2 then the prover sends 7 = (0 o 7)~ L.
This is indeed an interactive proof:
e If the prover knows the isomorphism 7, then all answers are correct.

e If G1, G5 are not isomorphic, then the verifier will pick a graph (either G; or G2) which
is not isomorphic with G with probability 1/2.

Again the prover learns nothing about the isomorphism. If you find these interactive proofs
interesting, take a look at “Zero Knowledge Proofs”.

Also note that our prover can be implemented efficiently as opposed to the case of graph
non-isomorphism. In fact in some sense the prover proves that it knows the isomorphism
(this can be made formal, see “Zero Knowledge Proofs of Knowledge”).

It is natural to repeat this protocol more times in order to boost the probabilities. This is
called probability amplification. We will investigate this much more during the semester.



M= ﬂmd. “Md()

14 CHAPTER 3. SOLUTIONS

4. We will focus on random walks and their properties a lot.

“ . “ (a) Random walks are useful when analysing algorithms — “two coloring without
2— monochromatic triangle” of three-colorable graph.

(b) Random numbers in the computer are often expensive to generate, can we
reduce number of used random bits (expanders)? Or even get a determin-
istic algorithm? ——

AR ¢
[ P /\> (c¢) To sample from extremely large spaces.
O—0—O—0-0| LetncN,say n=30. Let us the following problem we start with X, = [n/2] and
O a2 ... do the following process: % =0 1 2 3
] 3

. . |
R\ e if X; € {0,n} we stop ! 7 — !M

-‘z 1?: e we set X, = X; + 0 where § is pi random from {-1,1}

(a) Is this a Markov chain (Definition

1
O AT pa Solution: Yes (see the lecture video). }ﬁ({
>
[

? If so can you write it’s matrix?

a 1 Alrl;_
2 What is the expected number of steps until stopping?
2 2 0

_———

Solution: Let us set 1
AN

J
Sk = E[number of steps untill stopping, when starting at k] S — g = 0O
A

T Sum 3750 *Sgu) 1

——

We know the following:

So=5,=0

(by linearity of expectation)
——————

Sp=1+ §(Sk—1 + Sk41)

-

The above is so-called difference equation. It is not terribly complicated, but not super
easy to solve (hint try to consider equations for'd(k) = Sy — Sk—1 to get rid of the “1+”
term). You may look at lhttps://en.wikipedia.org/wiki/Recurrence_relation|
Luckily when dealing with asymptotics thus we do not need exact estimates. And you
will see some nice theoretical results tomorrow.

But it can be shown that

which we can easily check that this is indeed a solution (note that we would also need
Sm _ @ (Mz) that this is a unique solution, see solution methods on Wikipedia for this part):
2

(oM -

Sp=1+ %(Sk—l + Sk+1)

Sp=1+ %((k— Dn—(k—=1)+ (k+1)(n—(k+1)))
S =1+ %((k—l)n— (k=12 +(k+1)n—(k+1)%)
S =1+ %(an— (k—1)2 = (k+1)%)

1
Sk, :1+§(2kn—2k2—2)
Sk =k(n—k)



3.1. TUTORIAL 1.

5. Think of some example MCs.

=

(a) Create a MC that is irreducible.

1/2 1/2
1/2 1/2
(with probability 1/2 stay at the current state, with probability 1/2 switch to the other

state). @g K_N‘\o ,
1

(b) Create a MC that is not irreducible.

(6 o) 3

(always stay at the first state or immediatelly go there). /7 1% \J
(c) Create a MC that is periodic. 4

Solution: Three states: A G""’/D 2

Solution: Two states:

Solution: Two states:

010
0 01
100

(from the first state go always to the third, from the second always to the first and
from the third always to the second).

(d) Create a MC that is not periodic.

Solution: Two states:

(2 1)

€, with probability 1/2 switch to the other

(with probability 1/2 stay at the curren
iy =1- A state).

(e) Compute a stationary distribution of the following MC:

A A 2 4 4
\ =N\ 2.\\\ _ (j 2N - A Z > X =
ols A — 2 4 L 4
5 TN A(-A120 Carje 7
Solution: = One eigenvalue is 1, the only stationary distribution (1/2,1/2)%. The
other eigenvalue is 0 with the corresponding eigenvector (1,—1)7 (this is not a distri-

bution). =

(f) Create a MC that has more stationary distributions.

Solution: Two states: @ Q
1 0 1 2
0 1

(always stay where we are).



E] @ /@_ - @ QEN\O‘«‘% S 3y

-

—

T @ @ @ e
.—T—>0f——~3°—-—bo -~> .. Do

1 'HAPTER 3. LUTION;

s n' 9 < M C R 3. SOLUTIONS

6. We are collectors and we want to collect all n kinds of coupons. Coupons are
sold in packages which all look the same. Thus when we buy an coupon, we
buy one of n kinds uniformly at random. This is known as the coupon collector
problem.

NWJ—\Q %’LQ? Qa) What is the expected number of coupons we need to buy to get all kinds?
Solution: Le@be the time to collect the i-th coupon kind after we have collected

E[G;L/:_—"/L\AD '-5'2 — 1 coupons. The probability of buying the i-th coupon is Py
“ n—(-1 N -

AN g r[getting i-th coupon when already having ¢ — 1 coupons| =
EATRY g_(_.x;\ L Betting p y g pons| "
VA
2 Thus t; has geometric distribution (we are tossing the same probability and waiting for

the first success). The expected value of ¢; is:

By linearity of expectation:

N E[collecting] = E[t; +to + ... + t,,]
= =E[t1] + E[ta] + ... + E[t,]
S | E—
‘I!‘ '> “n n—1 n-2"""""n—(n-1)

A

N3

=nH, Larva Ovac. MV\M—Q(}'\ =<7
— nlog(n) ¥ n-0.577... +1/2 + O(1/n) (source Wikipedia)
e

(b) How many coupons do we need to buy to have probability at least 1 — ¢ of
collecting all kinds?

Solution: We can use Markov inequality Pr[T" > nH,,/q] < q (here T is the random
variable telling us how many tosses are necessary).

(c) What is the Markov chain? Is this similar to a random walk on some graph?

Solution: There might be more Markov chains corresponding to this problem. The

states could be all subsets of [n] = {1,2,3,...,n} (too big — not that nice to work with)
D€ all SubSets ol 1)

or how many coupons have we collected so far (much smaller).

This corresponds to the cover time of a complete graph (when we have loops in each
vertes).

(d) Simulate.
Solution:

import matplotlib.pyplot as plt
from collections import Counter
from random import randint

def catch_them_all(n: int = 50) -> int:
coupons = [False] * n
coupons_collected = 0
coupons_bought = 0
while coupons_collected < len(coupons):
new_coupon = randint(0, len(coupons) - 1)



3.1.

TUTORIAL 1.

coupons_bought += 1
if not coupons[new_coupon] :
coupons [new_coupon] = True
coupons_collected += 1
return coupons_bought

cnt = Counter(catch_them_all(50) for
plt.bar(cnt.keys(), cnt.values())

in range(10000))

plt.xlabel("Steps untill collecting all 50 coupons")
plt.ylabel("How many times did we take this many steps")

# plt.show()
plt.savefig('coupon_collector.pdf')

17

100 -

(00}
o

D
o

How many times did we take this many steps

(e2)
o
1

N
o
1

1W‘\

iy
T
u "m""

fi

,a M
i

ik

’ l‘ﬂ

300 ~— 400 500

R/Epswng all 50 coupons

.
[

600

Figure 3.1: A histogram of how many steps were necessary (say 200 steps was necessary around

80 times).



