Fine-Graind Lower Bounds for Dynamic Graph Problems

Amir Abboud

DIMACS Tutorial on Fine-Grained Complexity, July 17, 2024

- An area with lots of FG lower bounds
- More tricks with SETH/OV
- "Finding the right conjecture is key"

Dynamic graph algorithms

Given initial graph G, can preprocess it. Edge updates: insert(u,v), delete(u,v)

Queries: (depend on the problem)
How many SCCs are there? Can u reach v? ...

Want to minimize the preprocessing, update and query times.

$$\tilde{O}(m)$$
 $\tilde{O}(1)$ $\tilde{O}(1)$

- Worst case time
- Amortized time
- Total time (over all updates)

Dynamic Problems

Dynamic (undirected) Connectivity

Input: an undirected graph G

<u>Updates:</u> Add or remove edges.

Query: Are s and t connected?

Trivial algorithm: O(m) updates.

[Henzinger-King '95, Thorup'01]: O(log m (log log m)3) amortized time per update.

[Pătraşcu - Demaine STOC'05]: $\Omega(log\ m)$ Cell-probe lower bound.

Great!

Dynamic Problems

Dynamic (directed) Reachability

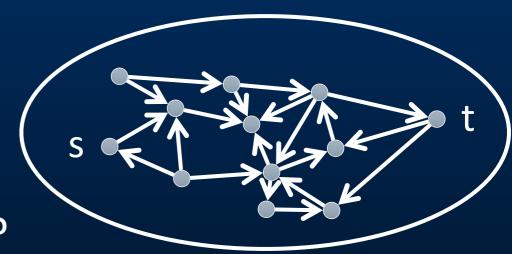
Input: A directed graph G.

Updates: Add or remove edges.

Query:

s,t-Reach: Is there a path from s to t?

#SSR: How many nodes can s reach?



Trivial algorithm: O(m) time updates

Using fast matrix multiplication

Not great.

Best cell probe lower bound still $\Omega(log m)$

Many Examples

Connectivity

Minimum Spanning Tree (MST)

Maximal Matching

Reachability

Strongly Connected Components (SCC)

s,t-shortest-path

(Bipartite) Maximum Matching

s,t-Max Flow

Diameter

Conditional Lower Bounds?

Connectivity

Minimum Spanning Tree (MST)

Maximal Matching

Reachability

Strongly Connected Components (SCC)

s,t-shortest-path

(Bipartite) Maximum Matching

s,t-Max Flow

Diameter (static to dynamic self-reduction)

Conditional Lower Bounds?

[Pătrașcu STOC'10]: Polynomial Lower Bounds under the 3-SUM Conjecture.

3SUM — Triangle Listing — ... — Dynamic Problems
$$\Omega(n^{1/8}) \text{ lower bounds}$$

[A. - Vassilevska Williams FOCS'14]: "Finding the right conjecture is the key..."

Tight lower bounds under SETH/APSP/more.

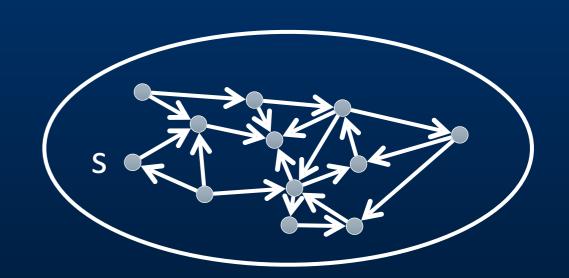
Single Source Reachability

Input: A directed graph G.

<u>Updates:</u> Add or remove edges.

Query:

#SSR: How many nodes can s reach?



Trivial algorithm: O(m) updates.

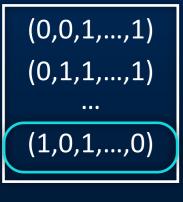
Theorem:

If <u>dynamic #SSR</u> can be solved with $O(m^{0.99})$ update and query times, then <u>OV</u> can be solved in $\tilde{O}(n^{1.99})$ time (and SETH is false).

Theorem: If dynamic #SSR can be solved with $O(m^{0.99})$ update and query times, then OV can be solved in $\tilde{O}(n^{1.99})$ time (and SETH is false).

Proof outline:

Orthogonal Vectors

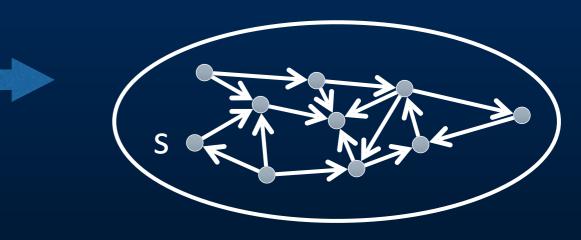


(1,0,1,...,0)

(0,0,1,...,1)

Given two lists of n vectors in {0,1}d is there an orthogonal pair?

dynamic #SSR



#SSR asks how many nodes can s reach?

Graph G on *m=O(nd)* nodes and edges,
O(nd) updates and queries

OVP in **~O(n**^{1.9}) time

O(nd) updates/queries in ~O(n^{1.9}) time

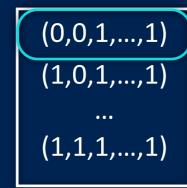
Amortized *O(m^{0.9})* update/query time

(refutes SETH)

 $d=polylog(n), m=\sim O(n)$

Orthogonal Vectors

(0,0,1,...,1) (0,1,1,...,1)(1,0,1,...,0)

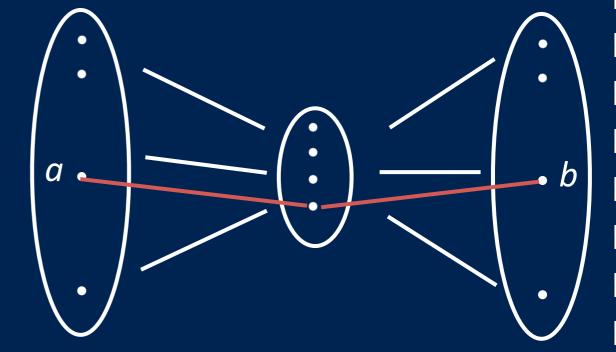


(0,0,1,...,1)Given two lists of n vectors in {0,1}d

(1,0,1,...,0)

is there an orthogonal pair?

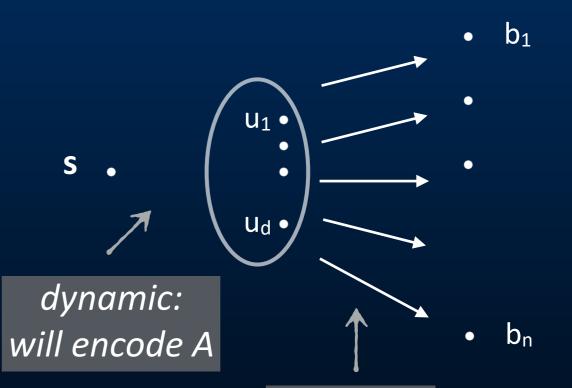
Graph OV

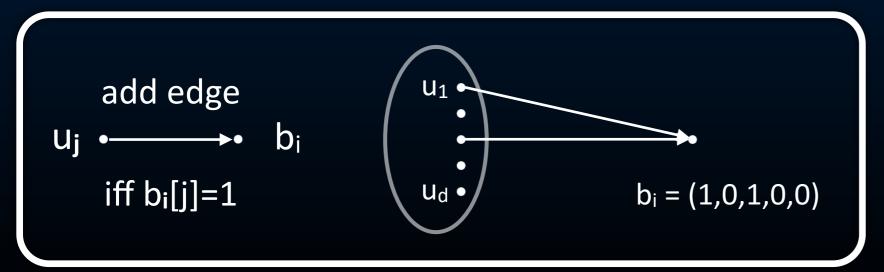


d(a,b) = 2 if not orth.d(a,b)>2 if orth.

Theorem: If <u>dynamic #SSR</u> can be solved with $O(m^{0.99})$ update and query times, then <u>OV</u> can be solved in $\tilde{O}(n^{1.99})$ time (and SETH is false).

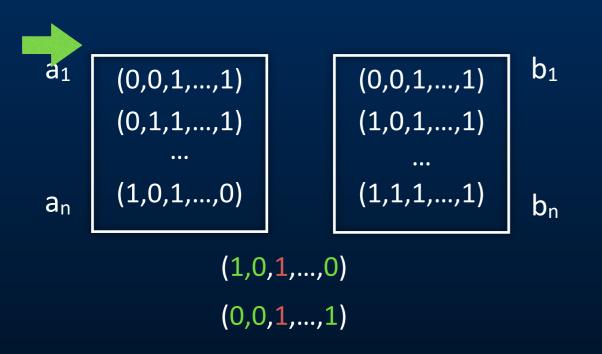
Proof: Orthogonal Vectors

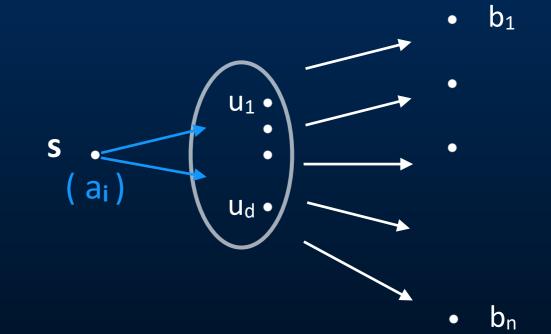




static: encodes B <u>Theorem</u>: If <u>dynamic #SSR</u> can be solved with $O(m^{0.99})$ update and query times, then <u>OV</u> can be solved in $\tilde{O}(n^{1.99})$ time (and SETH is false).

Proof: Orthogonal Vectors dynamic #SSR



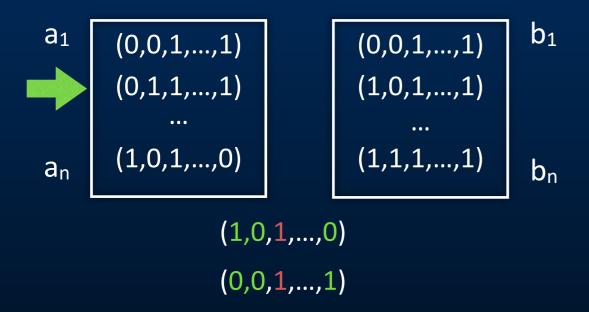


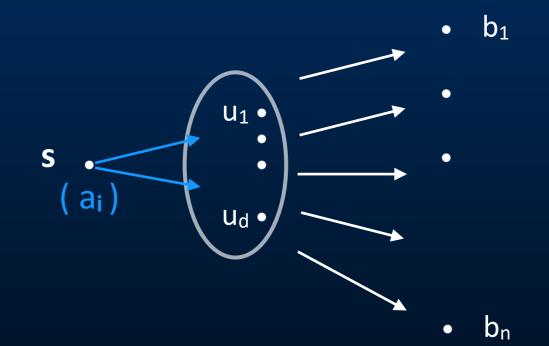
add edge
$$u_j \bullet \longrightarrow \bullet b_i$$
 iff $b_i[j]=1$

- 1. add edges $s \leftarrow u_i$ iff $a_i[j]=1$
- 2. ask #SSR(s)

Theorem: If dynamic #SSR can be solved with $O(m^{0.99})$ update and query times, then OV can be solved in $\tilde{O}(n^{1.99})$ time (and SETH is false).

Proof: Orthogonal Vectors dynamic #SSR





add edge
$$u_{j} \bullet \longrightarrow b_{i}$$

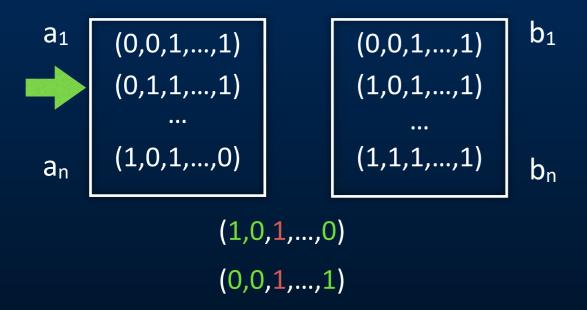
$$iff b_{i}[j]=1$$

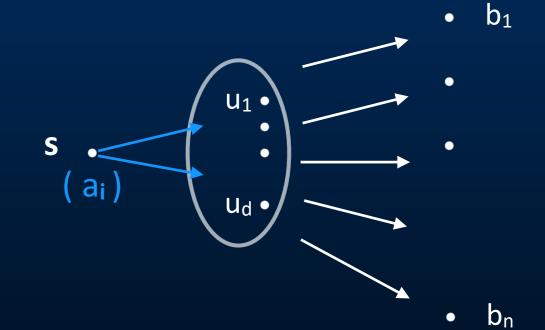
Observation:

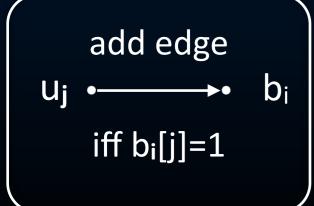
 \boldsymbol{s} cannot reach \boldsymbol{b} iff \boldsymbol{a}_i and \boldsymbol{b} are orthogonal.

<u>Theorem</u>: If <u>dynamic #SSR</u> can be solved with $O(m^{0.99})$ update and query times, then <u>OV</u> can be solved in $\tilde{O}(n^{1.99})$ time (and SETH is false).

Proof: Orthogonal Vectors dynamic #SSR







For each *a_i*:

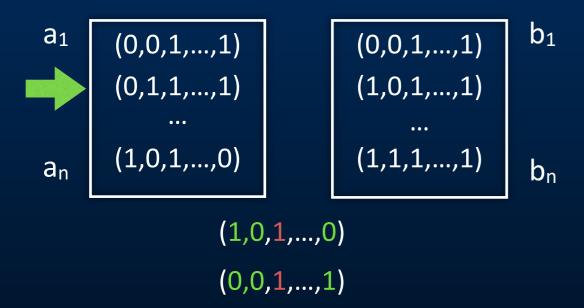
- 1. add edges s u_j iff $a_i[j]=1$
- 2. ask #SSR(s),

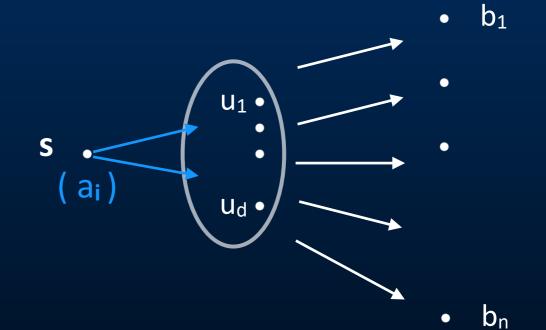
if $\langle n + (1s in a_i) \rangle$, output "yes".

3. remove edges and move on to next a_i

Theorem: If dynamic #SSR can be solved with $O(m^{0.99})$ update and query times, then OV can be solved in $\tilde{O}(n^{1.99})$ time (and SETH is false).

Proof: Orthogonal Vectors dynamic #SSR





O(nd) updates, m = O(nd) edges

 $^{\sim}\Omega(m)$ per update!

For each *a_i*:

- 1. add edges s u_i iff $a_i[j]=1$
- 2. ask #SSR(s), and if $\langle n + (1s \text{ in } a_i) \rangle$, output "yes".
- 3. remove edges and move on to next a_i

Theorem: If dynamic #SSR can be solved with $O(m^{0.99})$ update and query times, then $O(m^{0.99})$ can be solved in $O(n^{1.99})$ time (and SETH is false).

Observation: The LB holds even if preprocessing time is $O(n^{100})$.

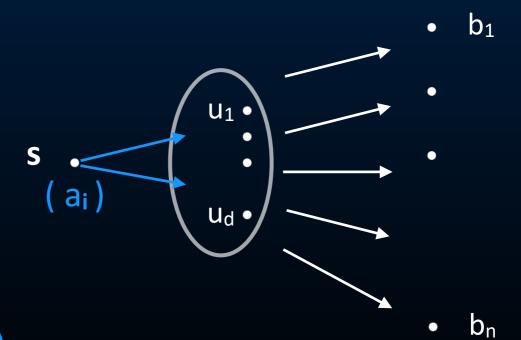
Why?

<u>Lemma:</u> OV with $|A|=n^a, |B|=n^b$ requires $\Omega(n^{a+b-\varepsilon})$ time.

Let
$$|A| = n, |B| = n^{1/100}$$

LB is
$$\Omega(n^{1/100})$$

but also $m = \tilde{O}(n^{1/100})$



(preprocessing time is negligible)

Conditional Lower Bounds?

Connectivity

Minimum Spanning Tree (MST)

Maximal Matching

Reachability

SETH

Strongly Connected Components (SCC)

s,t-shortest-path

(Bipartite) Maximum Matching

s,t-Max Flow

Diameter

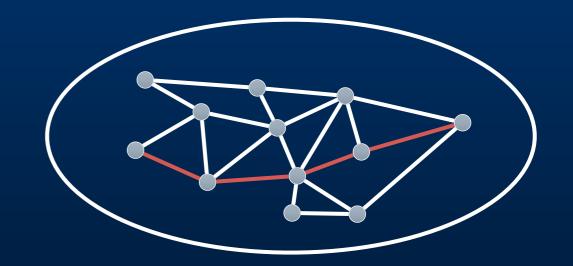
Next: an even higher SETH lower bound.

Dynamic Diameter

Input: an undirected graph G

<u>Updates:</u> Add or remove edges.

Query: What is the <u>diameter</u> of G?



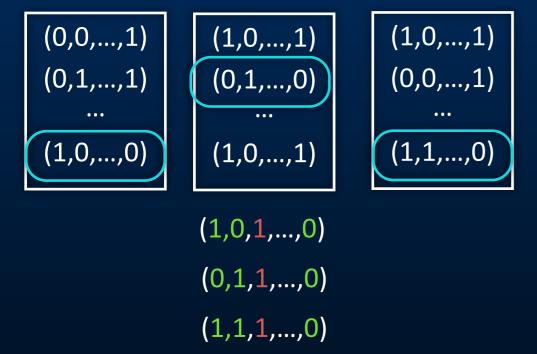
Upper bounds for dynamic All-Pairs-Shortest-Paths: Naive: $^{\sim}O(mn)$ per update.

[Demetrescu-Italiano 03', Thorup 04']: amortized $\sim O(n^2)$.

<u>Theorem</u>: 1.3-approximation for the diameter of a sparse graph under edge updates with amortized $O(m^{1.99})$ updates refutes SETH!

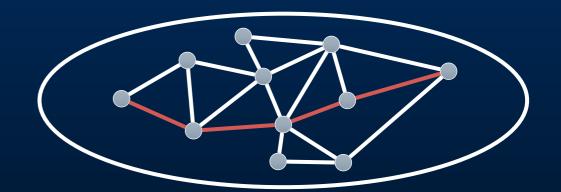
Proof outline:

Three Orthogonal Vectors



Given three lists of n vectors in {0,1}d is there an "orthogonal" triple?

dynamic Diameter

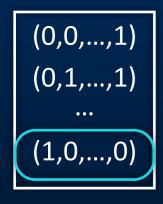


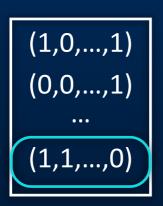
d=polylog(n)

Lemma: 3-OV in $\tilde{O}(n^{3-\varepsilon})$ time refutes SETH

Proof outline:

Three Orthogonal Vectors





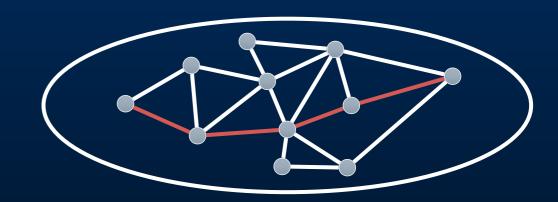
(1,0,1,...,0)

(0,1,1,...,0)

(1,1,1,...,0)

Given three lists of n vectors in {0,1}d is there an "orthogonal" triple?

dynamic Diameter



is the diameter 3 or more?

Graph G on *m=O(nd)* nodes and edges,
O(nd) updates and queries

3-OVP in **~O(n^{2.9})** time

O(nd) updates/queries in ~O(n^{2.9}) time

Amortized *O(m^{1.9})* update/query time

(refutes SETH)

 $d=polylog(n), m=^{\circ}O(n)$

Proof:

Three Orthogonal Vectors

dynamic Diameter

A (0,0,...,1) (0,1,...,1) ... (1,0,...,0)

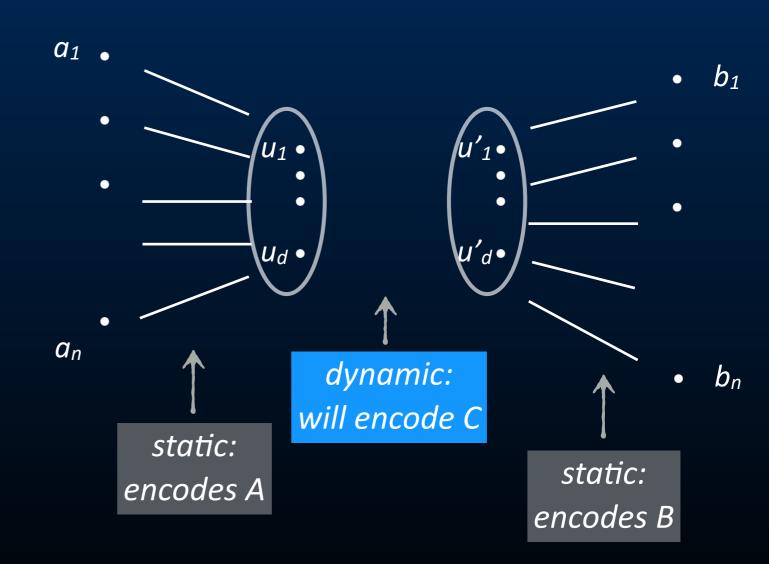
(1,0,...,1) (0,1,...,0) ... (1,0,...,1)

В

(1,0,...,1) (0,0,...,1) ... (1,1,...,0)

(1,0,1,...,0) (0,1,1,...,0) (1,1,1,...,0)

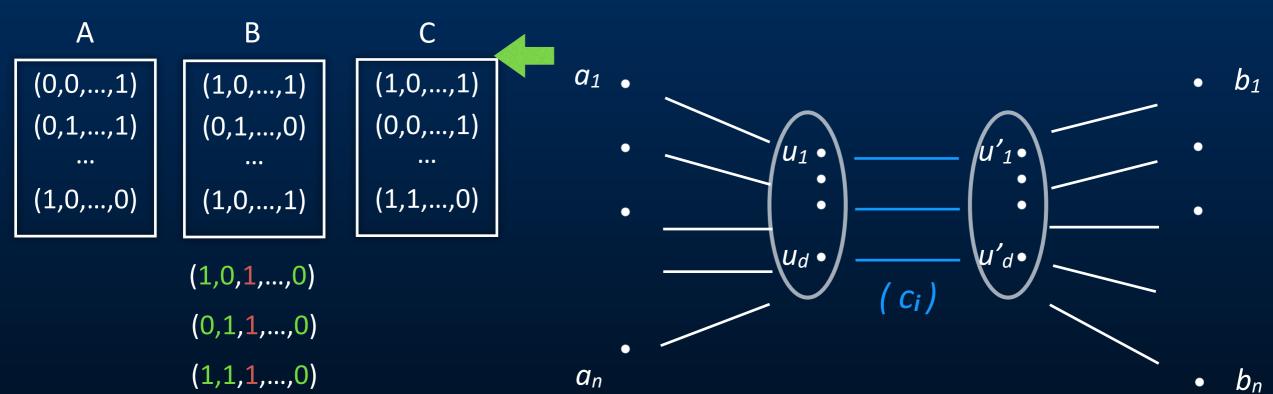
add edge $u'_{j} \bullet ---- b_{i}$ iff $b_{i}[j]=1$



Proof:

Three Orthogonal Vectors

dynamic Diameter



add edge
$$u'_j \bullet ---- \bullet b_i$$
 iff $b_i[j]=1$

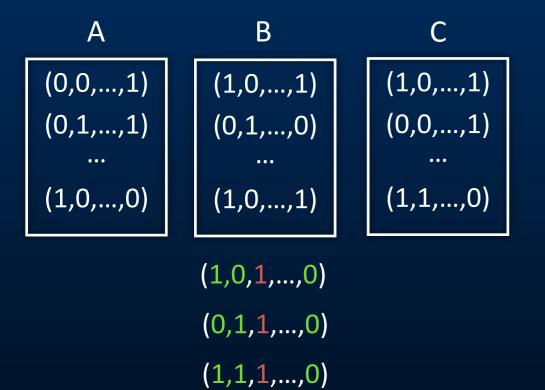
For each *c_i*:

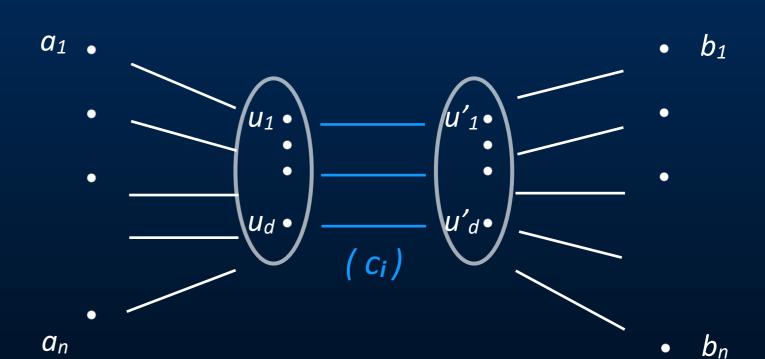
- 1. add edges $u_i u_i$ iff $c_i[j]=1$
- 2. ask Diameter query.

Proof:

Three Orthogonal Vectors

dynamic Diameter





add edge u'j •——• b_i iff b_i[j]=1

Observation:

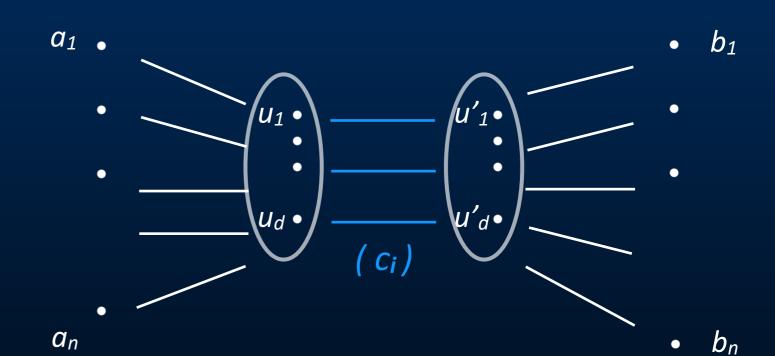
The distance from a to b is more than a iff a,b,c_i are an orthogonal triple.

(no coordinate with all three 1's)

Proof:

Three Orthogonal Vectors

dynamic Diameter



O(nd) updates, m = O(nd) edges

 $^{\sim}\Omega(n^2)$ per update!

For each *c_i*:

- 1. add edges $u_j \leftarrow u'_j$ iff $c_i[j]=1$
- 2. Query. If Diameter > 3, output "yes".
- 3. remove edges and move on to next c_i

Single Pair Problems

<u>Theorem</u>: s,t-shortest path with amortized $O(n^{1.99})$ updates refutes APSP.

APSP \downarrow Negative Triangle \longrightarrow n-Pair-SP \longrightarrow dynamic s,t-SP O(n) updates/queries

What about unweighted graphs?

Can we assume that BMM/Triangle requires cubic time?

On Friday: "Combinatorial lower bounds"

OMv Lower Bounds

[Henzinger - Krinninger - Nanongkai - Saranurak STOC '15] Most BMM lower bounds hold for non-combinatorial algorithms as well, under the Online Matrix Vector Multiplication Conjecture.

OMv problem: Given n x n Boolean matrix A and n Boolean vectors $v_1,...,v_n$, given online, return each $A \cdot v_i$ right after v_i has been given.

$$A \qquad * \quad v_1, \dots, v_i \quad v_{i+1} \quad \dots \quad = \quad Av_1, \dots, Av_i \quad Av_{i+1} \quad \dots$$

<u>Theorem</u>: s,t-reachability with amortized $O(n^{0.99})$ updates refutes OMv.

Same for Maximum Bipartite Matching.

Fine-Grained Lower Bounds

Connectivity

Minimum Spanning Tree (MST)

Maximal Matching

Reachability

Strongly Connected Components (SCC)

s,t-shortest-path

(Bipartite) Maximum Matching

s,t-Max Flow

Diameter