3rd homework assignment - Communication complexity

turn in by June 15, 2023.
Problem 1. Let $G T(x, y):\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ be a function that is 1 if and only if $\sum_{i=1}^{n} x_{i} \cdot 2^{i} \geq \sum_{i=1}^{n} y_{i} \cdot 2^{i}$.
a) Show that its deterministic communication complexity satisfies $C C(G T) \leq n+1$.
b) Show that its deterministic communication complexity satisfies $C C(G T) \in \Omega(n)$.
c) Show that its randomized communication complexity satisfies $R_{1 / 4}(G T) \in O\left(\log ^{2} n\right)$.
d) Show that its randomized communication complexity satisfies $R_{1 / 4}(G T) \in O(\log n)$.

Problem 2. Let $\operatorname{MED}(x, y):\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{1, \ldots, n\}$ be a function that gives the median of the union of the two sets represented by x and y, that is the median of $\left\{i \in\{1, \ldots, n\} ; x_{i}=1\right.$ or $\left.y_{i}=1\right\}$.
a) Show a deterministic protocol for $M E D$ which communicates at most $O\left(\log ^{2} n\right)$ bits and which works whenever x contains only even integers and y contains only odd integers.
a) Show that its deterministic communication complexity satisfies $C C(M E D) \in$ $\Omega(n)$. (Hint: Use $M E D$ to solve $D I S J$.)

Problem 3. Let $f: X \times Y \rightarrow\{0,1\}$ be a function and $M_{f} \subseteq\{0,1\}^{X \times Y}$ be its matrix. Show that if M_{f} can be partitioned into ℓ monochromatic combinatorial rectangles then $\operatorname{rank}\left(M_{f}\right) \leq \ell$. Show that $C C(f) \geq \log \operatorname{rank}\left(M_{f}\right)$.

Problem 4. Consider an undirected graph $G=(V, E)$ with m vertices and n edges. Each subset of the edges of G can be represented by a vector $\{0,1\}^{n}$, where each coordinate corresponds to an edge of G and indicates whether the edge is present in the subset. Define a code $C_{\text {cut }} \subseteq\{0,1\}^{n}$ of vectors that represent cuts in G, that is subsets of edges $F \subseteq E$ such that for some subset $S \subseteq V, F=\{\{u, v\}, u \in S \& v \notin$ $S\}$.
a) Show that $C_{\text {cut }}$ is a linear code.
b) Show that if we can efficiently find for each $x \in\{0,1\}^{n}$ the closest codeword from $C_{\text {cut }}$, then we can efficiently find the largest cut in G. Finding the largest cut in G is so called MAX-CUT problem that is known to be NP-complete.

