NTIN 100 Intro to Info Transmission and Processing summer 2019/2020

1st homework assignment - Entropy and mutual information

turn in by March 17th, 2020.

Problem 1.

a) For which probability distributions p_1, p_2, \ldots, p_n , the entropy $H(p_1, p_2, \ldots, p_n) = 0$?

b) Let probability distributions p_1, p_2, \ldots, p_n and p'_1, \ldots, p'_n be such that for some indexes *i* and *j*, and $\epsilon \in (0, 1)$, $p'_i = \epsilon p_i + (1 - \epsilon)p_j$, $p'_j = \epsilon p_j + (1 - \epsilon)p_i$, and for all other $k, p'_k = p_k$. What is the relationship between $H(p_1, p_2, \ldots, p_n)$ and $H(p'_1, p'_2, \ldots, p'_n)$? How can one generalize this?

c) Prove that if H(Y|X) = 0 for two random variables X and Y then Y is a function of X.

Problem 2. Let X, Y, Z and g(X) be random variables, that may or may not be dependent. Prove that

- a) $H(X) \ge H(g(X)),$
- b) $H(X, Y|Z) \ge H(X|Z)$,
- c) $I(X, Y:Z) \ge I(X:Z)$,
- d) $I(X:Y|Z) \ge I(X:Z|Y) I(X:Z) + I(X:Y).$

and decide when equality occurs.

Problem 3. For random variables X, Y, Z define I(X : Y : Z) = I(X : Y) - I(X : Y|Z).

a) Show that I(X : Y : Z) is symmetric that is I(X : Y : Z) = I(Z : X : Y) = I(Y : Z : X).

b) Find X, Y, Z such that I(X : Y : Z) < 0.

c) Show that I(X:Y:Z)=H(X,Y,Z)-H(X,Y)-H(Y,Z)-H(Z,X)+H(X)+H(Y)+H(Z).

Problem 4. For random variables X, Y, Z define $\rho(X, Y) = H(X|Y) + H(Y|X)$.

a) Show that $\rho(X, Y) \ge 0$, $\rho(X, Y) = \rho(Y, X)$, and $\rho(X, Y) + \rho(Y, Z) \ge \rho(X, Z)$.

b) If there is a bijection g such that X = g(Y) we say that $X \approx Y$. Show that $\rho(X, Y) = 0$ if and only if $X \approx Y$.