Probability review

• Probability space Ω - a finite (or for us at most countable) set endowed with a measure $p: \Omega \to \mathcal{R}$ satisfying:

$$\forall \omega \in \Omega; \ p(\omega) > 0$$

and

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

- An event $\mathbf{A} \subseteq \Omega$ $\Pr[A] = \sum_{\omega \in A} p(\omega)$.
- Random variable $X X : \Omega \to \mathcal{R}$.

Example: If **X** is a random variable then for a fixed $t, t' \in \mathcal{R}$, $t \leq \mathbf{X} \leq t'$ and $\mathbf{X} > t$ are probabilistic events.

- Two events \mathbf{A} and \mathbf{B} are independent $\Pr[\mathbf{A} \cap \mathbf{B}] = \Pr[\mathbf{A}] \cdot \Pr[\mathbf{B}]$.
- Conditional probability of **A** given **B** $\Pr[\mathbf{A}|\mathbf{B}] = \Pr[\mathbf{A} \cap \mathbf{B}]/\Pr[\mathbf{B}]$ (assuming $\Pr[B] \neq 0$).

Example: **A** and **B** are independent iff $\overline{\mathbf{A}}$ and **B** are independent iff . . . iff $\Pr[\mathbf{A}|\mathbf{B}] = \Pr[\mathbf{A}]$.

- For a random variable X and an event A, X is independent of A for all $S \subseteq \mathcal{R}$, $\Pr[X \in S | A] = \Pr[X \in S]$.
- Two random variables X and Y are independent for all $S, T \subseteq \mathcal{R}, X \in S$ and $Y \in T$ are independent events.
- Events $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n$ are mutually independent for all $I \subseteq \{1, \dots, n\}$,

$$\Pr[\bigcap_{i \in I} A_i \cap \bigcap_{i \notin I} \overline{A_i}] = \prod_{i \in I} \Pr[A_i] \cdot \prod_{i \notin I} \Pr[\overline{A_i}].$$

- Random variables $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ are mutually independent- for all $t_1, t_2, \dots, t_n \in \mathcal{R}$, events $\mathbf{X}_1 = t_1, \mathbf{X}_2 = t_2, \dots, \mathbf{X}_n = t_n$ are mutually independent.
- Expectation of a random variable \mathbf{X} $\mathbf{E}[\mathbf{X}] = \sum_{\omega \in \Omega} p(\omega) \mathbf{X}(\omega)$. Three easy claims:

Claim: (Linearity of expectation) For random variables X_1, X_2, \ldots, X_n

$$\mathbf{E}[\mathbf{X}_1 + \mathbf{X}_2 + \cdots \mathbf{X}_n] = \sum_{i=1}^n \mathbf{E}[\mathbf{X}_i].$$

Claim: For independent random variables X and Y, $E[X \cdot Y] = E[X] \cdot E[Y]$.

Claim: For a random variable $\mathbf{X}: \Omega \to \mathcal{N}, \mathbf{E}[\mathbf{X}] = \sum_{k=1}^{\infty} \Pr[\mathbf{X} \geq k].$

Theorem: (Markov Inequality) For a non-negative random variable X and any $t \in \mathcal{R}$

$$\Pr[\mathbf{X} \ge t] \le \frac{\mathbf{E}[\mathbf{X}]}{t}.$$

Proof: $\mathbf{E}[\mathbf{X}] = \sum_{\omega \in \Omega} p(\omega) \mathbf{X}(\omega) \ge \sum_{\omega \in \Omega, \ \mathbf{X}(\omega) \ge t} p(\omega) \mathbf{X}(\omega) \ge t \cdot \sum_{\omega \in \Omega, \ \mathbf{X}(\omega) \ge t} p(\omega) = t \cdot \Pr[\mathbf{X} \ge t].$

• Variance $\mathbf{Var}[\mathbf{X}]$ of a random variable \mathbf{X} - $\mathbf{Var}[\mathbf{X}] = \mathbf{E}[(\mathbf{X} - \mu)^2]$ where $\mu = \mathbf{E}[\mathbf{X}]$. Claim: For any random variable \mathbf{X} , $\mathbf{Var}[\mathbf{X}] = \mathbf{E}[\mathbf{X}^2] - (\mathbf{E}[\mathbf{X}])^2$.

Claim: For any random variable **X** and a constant c, $Var[cX] = c^2 Var[X]$.

Claim: (Linearity of variance) For mutually independent random variables $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$, $\mathbf{Var}[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n] = \mathbf{Var}[\mathbf{X}_1] + \mathbf{Var}[\mathbf{X}_2] + \dots + \mathbf{Var}[\mathbf{X}_n]$.

Theorem: (Chebyshev's inequality) Let $\mathbf X$ be a random variable. For any real number a>0 it holds:

 $\Pr(|\mathbf{X} - \mathbf{E}[\mathbf{X}]| > a) \le \frac{\mathbf{Var}[\mathbf{X}]}{a^2}.$

Proof: Let $\mu = \mathbf{E}[\mathbf{X}]$. Consider the non-negative random variable $\mathbf{Y} = (\mathbf{X} - \mu)^2$. Clearly $\mathbf{E}[\mathbf{Y}] = \mathbf{Var}[\mathbf{X}]$. Using Markov inequality,

$$\Pr[|\mathbf{X} - \mu| > a] = \Pr[\mathbf{Y} > a^2]$$

$$\leq \frac{\mathbf{E}[\mathbf{Y}]}{a^2}$$

$$= \frac{\mathbf{Var}[\mathbf{X}]}{a^2}.$$

Theorem: (Chernoff Bounds) Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ be independent 0-1 random variables. Denote $p_i = \Pr[\mathbf{X}_i = 1]$, hence $1 - p_i = \Pr[\mathbf{X}_i = 0]$. Let $\mathbf{X} = \sum_{i=1}^n X_i$. Denote $\mu = \mathbf{E}[X] = \sum_{i=1}^n p_i$. For any $0 < \delta < 1$ it holds

$$\Pr[\mathbf{X} \ge (1+\delta)\mu] \le \left\lceil \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \right\rceil^{\mu}$$

and

$$\Pr[\mathbf{X} \le (1 - \delta)\mu] \le e^{-\frac{1}{2}\mu\delta^2}.$$

Proof: For any real number t > 0,

$$\begin{array}{lcl} \Pr[\mathbf{X} \geq (1+\delta)\mu] & = & \Pr[t\mathbf{X} \geq t(1+\delta)\mu] \\ & = & \Pr[\mathrm{e}^{t\mathbf{X}} \geq e^{t(1+\delta)\mu}] \end{array}$$

where based on \mathbf{X} we define new random variables $t\mathbf{X}$ and $e^{t\mathbf{X}}$. Notice, $e^{t\mathbf{X}}$ is a non-negative random variable so one can apply the Markov inequality to obtain

$$\Pr[e^{t\mathbf{X}} \ge e^{t(1+\delta)\mu}] \le \frac{\mathbf{E}[e^{t\mathbf{X}}]}{e^{t(1+\delta)\mu}}.$$

Since all \mathbf{X}_i are mutually independent, random variables $e^{t\mathbf{X}_i}$ are also mutually independent so

$$\mathbf{E}[e^{t\mathbf{X}}] = \mathbf{E}[e^{t\sum_i \mathbf{X}_i}] = \prod_{i=1}^n \mathbf{E}[e^{t\mathbf{X}_i}].$$

We can evaluate $\mathbf{E}[e^{t\mathbf{X}_i}]$

$$\mathbf{E}[e^{t\mathbf{X}_i}] = p_i e^t + (1 - p_i) \cdot 1 = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}.$$

where in the last step we have used $1 + x \le e^x$ which holds for all x. (Look on the graph of functions 1 + x and e^x and their derivatives in x = 0.) Thus

$$\mathbf{E}[e^{tX}] \leq \prod_{i=1}^{n} e^{p_i(e^t - 1)}$$

$$= e^{\sum_{i=1}^{n} p_i(e^t - 1)}$$

$$= e^{\mu(e^t - 1)}$$

By choosing $t = \ln(1 + \delta)$ and rearranging terms we obtain

$$\Pr[\mathbf{X} \ge (1+\delta)\mu] = \Pr[e^{t\mathbf{X}} \ge e^{t(1+\delta)\mu}]$$

$$\le \frac{e^{\mu(e^t-1)}}{e^{t(1+\delta)\mu}}$$

$$= \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

That proofs the first bound. The second bound is obtained in a similar way:

$$\begin{array}{lcl} \Pr[\mathbf{X} \leq (1-\delta)\mu] & = & \Pr[-t\mathbf{X} \geq -t(1-\delta)\mu] \\ & = & \Pr[e^{-t\mathbf{X}} \geq e^{-t(1-\delta)\mu}] \\ & \leq & \frac{\mathbf{E}[e^{-t\mathbf{X}}]}{e^{-t(1-\delta)\mu}}. \end{array}$$

Bounding $\mathbf{E}[e^{-t\mathbf{X}}]$ as before gives

$$\mathbf{E}[e^{-tX}] \le \mathrm{e}^{\mu(e^{-t}-1)}$$

By choosing $t = -\ln(1 - \delta)$ and rearranging terms we obtain

$$\Pr[\mathbf{X} \le (1 - \delta)\mu] = \Pr[e^{-t\mathbf{X}} \ge e^{-t(1 - \delta)\mu}]$$

$$\le \frac{e^{\mu(e^{-t} - 1)}}{e^{-t(1 - \delta)\mu}}$$

$$= \left[\frac{e^{-\delta}}{(1 - \delta)^{(1 - \delta)}}\right]^{\mu}$$

We use the well known expansion for $0 < \delta < 1$

$$\ln(1-\delta) = -\sum_{i=1}^{\infty} \frac{\delta^i}{i}$$

to obtain

$$(1 - \delta) \ln(1 - \delta) = \sum_{i=1}^{\infty} \frac{\delta^{i+1}}{i} - \sum_{i=1}^{\infty} \frac{\delta^{i}}{i}$$
$$= \sum_{i=2}^{\infty} \frac{\delta^{i}}{i(i-1)} - \delta$$

Thus

$$(1-\delta)^{(1-\delta)} \ge e^{\frac{\delta^2}{2}-\delta}$$

Hence

$$\Pr[\mathbf{X} \le (1 - \delta)\mu] \le e^{-\frac{\delta^2}{2} + \delta - \delta} = e^{-\frac{\delta^2}{2}\mu}$$